#*-------------------------------------------------------------------
* EMSO Model Library (EML) Copyright (C) 2004 - 2007 ALSOC.
*
* This LIBRARY is free software; you can distribute it and/or modify
* it under the therms of the ALSOC FREE LICENSE as available at
* http://www.enq.ufrgs.br/alsoc.
*
* EMSO Copyright (C) 2004 - 2007 ALSOC, original code
* from http://www.rps.eng.br Copyright (C) 2002-2004.
* All rights reserved.
*
* EMSO is distributed under the therms of the ALSOC LICENSE as
* available at http://www.enq.ufrgs.br/alsoc.
*
*----------------------------------------------------------------------
* Author: Paula B. Staudt
* $Id: condenser.mso 555 2008-07-18 19:01:13Z rafael $
*--------------------------------------------------------------------*#
using "tank";
Model condenserSteady
ATTRIBUTES
Pallete = true;
Icon = "icon/CondenserSteady";
Brief = "Model of a Steady State condenser with no thermodynamics equilibrium.";
Info =
"== ASSUMPTIONS ==
* perfect mixing of both phases;
* no thermodynamics equilibrium.
== SET ==
* the pressure drop in the condenser;
== SPECIFY ==
* the InletVapour stream;
* the InletQ (the model requires an energy stream, also you can use a controller for setting the heat duty using the heat_flow model).
== OPTIONAL ==
* the condenser model has two control ports
** TI OutletLiquid Temperature Indicator;
** PI OutletLiquid Pressure Indicator;
";
PARAMETERS
outer PP as Plugin (Brief = "External Physical Properties", Type="PP");
outer NComp as Integer (Brief = "Number of Components");
Pdrop as press_delta (Brief="Pressure Drop in the condenser",Default=0, Symbol="\Delta _P");
VARIABLES
in InletVapour as stream (Brief="Vapour inlet stream", PosX=0.16, PosY=0, Symbol="_{in}^{Vapour}");
out OutletLiquid as liquid_stream (Brief="Liquid outlet stream", PosX=0.53, PosY=1, Symbol="_{out}^{Liquid}");
in InletQ as power (Brief="Heat Duty", PosX=1, PosY=0.08, Symbol="Q_{in}",Protected=true);
Tbubble as temperature (Brief ="Bubble Temperature",Protected=true, Symbol ="T_{bubble}");
Deg_Subcooled as temp_delta (Brief ="Degrees subcooled",Symbol ="\Delta T_{subcooled}");
out TI as control_signal (Brief="Temperature Indicator of Condenser", Protected = true, PosX=0.50, PosY=0);
out PI as control_signal (Brief="Pressure Indicator of Condenser", Protected = true, PosX=0.32, PosY=0);
EQUATIONS
"Molar Flow Balance"
InletVapour.F = OutletLiquid.F;
"Molar Composition Balance"
InletVapour.z = OutletLiquid.z;
"Energy Balance"
InletVapour.F*InletVapour.h + InletQ = OutletLiquid.F*OutletLiquid.h;
"Pressure Drop"
OutletLiquid.P = InletVapour.P - Pdrop;
"Bubble Temperature"
Tbubble = PP.BubbleT(OutletLiquid.P,OutletLiquid.z);
"Temperature"
OutletLiquid.T = Tbubble-Deg_Subcooled;
"Temperature indicator"
TI * 'K' = OutletLiquid.T;
"Pressure indicator"
PI * 'atm' = OutletLiquid.P;
end
Model condenserSteady_fakeH
ATTRIBUTES
Pallete = true;
Icon = "icon/CondenserSteady";
Brief = "Model of a Steady State condenser with fake calculation of outlet conditions.";
Info =
"Model of a Steady State condenser with fake calculation of output temperature, but with a real
calculation of the output stream enthalpy.
== ASSUMPTIONS ==
* perfect mixing of both phases;
* no thermodynamics equilibrium.
== SET ==
* the fake Outlet temperature ;
* the pressure drop in the condenser;
== SPECIFY ==
* the InletVapour stream;
* the InletQ (the model requires an energy stream, also you can use a controller for setting the heat duty using the heat_flow model).
== OPTIONAL ==
* the condenser model has two control ports
** TI OutletLiquid Temperature Indicator;
** PI OutletLiquid Pressure Indicator;
";
PARAMETERS
outer PP as Plugin (Brief = "External Physical Properties", Type="PP");
outer NComp as Integer (Brief = "Number of Components");
Pdrop as press_delta (Brief="Pressure Drop in the condenser",Default=0, Symbol="\Delta _P");
Fake_Temperature as temperature (Brief="Fake temperature", Symbol = "T_{fake}");
VARIABLES
in InletVapour as stream (Brief="Vapour inlet stream", PosX=0.16, PosY=0, Symbol="_{in}^{Vapour}");
out OutletLiquid as stream (Brief="Liquid outlet stream", PosX=0.53, PosY=1, Symbol="_{out}^{Liquid}");
in InletQ as power (Brief="Heat Duty", PosX=1, PosY=0.08, Symbol="Q_{in}",Protected=true);
out TI as control_signal (Brief="Temperature Indicator of Condenser", Protected = true, PosX=0.50, PosY=0);
out PI as control_signal (Brief="Pressure Indicator of Condenser", Protected = true, PosX=0.32, PosY=0);
EQUATIONS
"Molar Flow Balance"
InletVapour.F = OutletLiquid.F;
"Molar Composition Balance"
InletVapour.z = OutletLiquid.z;
"Energy Balance"
InletVapour.F*InletVapour.h + InletQ = OutletLiquid.F*OutletLiquid.h;
"Pressure Drop"
OutletLiquid.P = InletVapour.P - Pdrop;
"Fake Temperature"
OutletLiquid.T = Fake_Temperature;
"Vapourisation Fraction"
OutletLiquid.v = 0;
"Temperature indicator"
TI * 'K' = OutletLiquid.T;
"Pressure indicator"
PI * 'atm' = OutletLiquid.P;
end
Model condenserReact
ATTRIBUTES
Pallete = false;
Icon = "icon/Condenser";
Brief = "Model of a Condenser with reaction in liquid phase.";
Info =
"== Assumptions ==
* perfect mixing of both phases;
* thermodynamics equilibrium;
* the reaction only takes place in liquid phase.
== Specify ==
* the reaction related variables;
* the inlet stream;
* the outlet flows: OutletVapour.F and OutletLiquid.F;
* the heat supply.
== Initial Conditions ==
* the condenser temperature (OutletLiquid.T);
* the condenser liquid level (Level);
* (NoComps - 1) OutletLiquid (OR OutletVapour) compositions.
";
PARAMETERS
outer PP as Plugin(Type="PP");
outer NComp as Integer;
V as volume (Brief="Condenser total volume");
Across as area (Brief="Cross Section Area of reboiler");
stoic(NComp) as Real (Brief="Stoichiometric matrix");
Hr as energy_mol;
Initial_Level as length (Brief="Initial Level of liquid phase");
Initial_Temperature as temperature (Brief="Initial Temperature of Condenser");
Initial_Composition(NComp) as fraction (Brief="Initial Liquid Composition");
VARIABLES
in InletVapour as stream (Brief="Vapour inlet stream", PosX=0.1164, PosY=0, Symbol="_{inV}");
out OutletLiquid as liquid_stream (Brief="Liquid outlet stream", PosX=0.4513, PosY=1, Symbol="_{outL}");
out OutletVapour as vapour_stream (Brief="Vapour outlet stream", PosX=0.4723, PosY=0, Symbol="_{outV}");
InletQ as power (Brief="Cold supplied", PosX=1, PosY=0.6311, Symbol="_{in}");
M(NComp) as mol (Brief="Molar Holdup in the tray");
ML as mol (Brief="Molar liquid holdup");
MV as mol (Brief="Molar vapour holdup");
E as energy (Brief="Total Energy Holdup on tray");
vL as volume_mol (Brief="Liquid Molar Volume");
vV as volume_mol (Brief="Vapour Molar volume");
Level as length (Brief="Level of liquid phase");
Vol as volume;
r3 as reaction_mol (Brief="Reaction Rates", DisplayUnit = 'mol/l/s');
C(NComp) as conc_mol (Brief="Molar concentration", Lower = -1);
INITIAL
Level = Initial_Level;
OutletLiquid.T = Initial_Temperature;
OutletLiquid.z(1:NComp-1) = Initial_Composition(1:NComp-1)/sum(Initial_Composition);
EQUATIONS
"Molar Concentration"
OutletLiquid.z = vL * C;
"Reaction"
r3 = exp(-7150*'K'/OutletLiquid.T)*(4.85e4*C(1)*C(2) - 1.23e4*C(3)*C(4)) * 'l/mol/s';
"Component Molar Balance"
diff(M) = InletVapour.F*InletVapour.z - OutletLiquid.F*OutletLiquid.z - OutletVapour.F*OutletVapour.z + stoic*r3*ML*vL;
"Energy Balance"
diff(E) = InletVapour.F*InletVapour.h - OutletLiquid.F*OutletLiquid.h- OutletVapour.F*OutletVapour.h + InletQ + Hr * r3 * ML*vL;
"Molar Holdup"
M = ML*OutletLiquid.z + MV*OutletVapour.z;
"Energy Holdup"
E = ML*OutletLiquid.h + MV*OutletVapour.h - OutletVapour.P*V;
"Mol fraction normalisation"
sum(OutletLiquid.z)=1.0;
"Liquid Volume"
vL = PP.LiquidVolume(OutletLiquid.T, OutletLiquid.P, OutletLiquid.z);
"Vapour Volume"
vV = PP.VapourVolume(OutletVapour.T, OutletVapour.P, OutletVapour.z);
"Thermal Equilibrium"
OutletLiquid.T = OutletVapour.T;
"Mechanical Equilibrium"
OutletVapour.P = OutletLiquid.P;
"Geometry Constraint"
V = ML*vL + MV*vV;
Vol = ML*vL;
"Level of liquid phase"
Level = ML*vL/Across;
"Chemical Equilibrium"
PP.LiquidFugacityCoefficient(OutletLiquid.T, OutletLiquid.P, OutletLiquid.z)*OutletLiquid.z =
PP.VapourFugacityCoefficient(OutletVapour.T, OutletVapour.P, OutletVapour.z)*OutletVapour.z;
sum(OutletLiquid.z)=sum(OutletVapour.z);
end
Model condenser
ATTRIBUTES
Pallete = true;
Icon = "icon/Condenser";
Brief = "Model of a dynamic condenser with control.";
Info =
"== ASSUMPTIONS ==
* perfect mixing of both phases;
* thermodynamics equilibrium.
== SPECIFY ==
* the InletVapour stream;
* the outlet flows: OutletVapour.F and OutletLiquid.F;
* the InletQ (the model requires an energy stream, also you can use a controller for setting the heat duty using the heat_flow model).
== OPTIONAL ==
* the condenser model has three control ports
** TI OutletLiquid Temperature Indicator;
** PI OutletLiquid Pressure Indicator;
** LI Level Indicator of Condenser;
== INITIAL CONDITIONS ==
* Initial_Temperature : the condenser temperature (OutletLiquid.T);
* Levelpercent_Initial : the condenser liquid level in percent (LI);
* Initial_Composition : (NoComps) OutletLiquid compositions.
";
PARAMETERS
outer PP as Plugin (Brief = "External Physical Properties", Type="PP");
outer NComp as Integer (Brief="Number of Components");
Mw(NComp) as molweight (Brief = "Component Mol Weight",Hidden=true);
low_flow as flow_mol (Brief = "Low Flow",Default = 1E-6, Hidden=true);
zero_flow as flow_mol (Brief = "No Flow",Default = 0, Hidden=true);
VapourFlow as Switcher (Brief="Vapour Flow", Valid = ["on", "off"], Default = "on",Hidden=true);
Kfactor as positive (Brief="K factor for pressure drop", Lower = 1E-8, Default = 1E-3);
Levelpercent_Initial as positive (Brief="Initial liquid height in Percent", Default = 0.70);
Initial_Temperature as temperature (Brief="Initial Temperature of Condenser");
Initial_Composition(NComp) as positive (Brief="Initial Liquid Composition", Lower=1E-6);
VARIABLES
Geometry as VesselVolume (Brief="Vessel Geometry", Symbol=" ");
in InletVapour as stream (Brief="Vapour inlet stream", PosX=0.13, PosY=0, Symbol="_{in}^{Vapour}");
out OutletLiquid as liquid_stream (Brief="Liquid outlet stream", PosX=0.35, PosY=1, Symbol="_{out}^{Liquid}");
out OutletVapour as vapour_stream (Brief="Vapour outlet stream", PosX=0.54, PosY=0, Symbol="_{out}^{Vapour}");
in InletQ as power (Brief="Heat supplied", Protected = true, PosX=1, PosY=0.08, Symbol="Q_{in}");
out TI as control_signal (Brief="Temperature Indicator of Condenser", Protected = true, PosX=0.33, PosY=0);
out LI as control_signal (Brief="Level Indicator of Condenser", Protected = true, PosX=0.43, PosY=0);
out PI as control_signal (Brief="Pressure Indicator of Condenser", Protected = true, PosX=0.25, PosY=0);
M(NComp) as mol (Brief="Molar Holdup in the tray", Protected = true);
ML as mol (Brief="Molar liquid holdup", Protected = true);
MV as mol (Brief="Molar vapour holdup", Protected = true);
E as energy (Brief="Total Energy Holdup on tray", Protected = true);
vL as volume_mol (Brief="Liquid Molar Volume", Protected = true);
vV as volume_mol (Brief="Vapour Molar volume", Protected = true);
rho as dens_mass (Brief ="Inlet Vapour Mass Density",Hidden=true, Symbol ="\rho");
Pdrop as press_delta (Brief = "Pressure Drop", DisplayUnit = 'kPa', Symbol ="\Delta P", Protected=true);
SET
Mw = PP.MolecularWeight();
low_flow = 1E-6 * 'kmol/h';
zero_flow = 0 * 'kmol/h';
INITIAL
"Initial level Percent"
LI = Levelpercent_Initial;
"Initial Temperature"
OutletLiquid.T = Initial_Temperature;
"Initial Composition"
OutletLiquid.z(1:NComp-1) = Initial_Composition(1:NComp-1)/sum(Initial_Composition);
EQUATIONS
switch VapourFlow
case "on":
InletVapour.F*vV = Kfactor *sqrt(Pdrop/rho)*'m^2';
when InletVapour.F < low_flow switchto "off";
case "off":
InletVapour.F = zero_flow;
when InletVapour.P > OutletLiquid.P switchto "on";
end
"Component Molar Balance"
diff(M) = InletVapour.F*InletVapour.z - OutletLiquid.F*OutletLiquid.z- OutletVapour.F*OutletVapour.z;
"Energy Balance"
diff(E) = InletVapour.F*InletVapour.h - OutletLiquid.F*OutletLiquid.h- OutletVapour.F*OutletVapour.h + InletQ;
"Molar Holdup"
M = ML*OutletLiquid.z + MV*OutletVapour.z;
"Energy Holdup"
E = ML*OutletLiquid.h + MV*OutletVapour.h - OutletVapour.P*Geometry.Vtotal;
"Mol fraction normalisation"
sum(OutletLiquid.z)=1.0;
"Mol fraction Constraint"
sum(OutletLiquid.z)=sum(OutletVapour.z);
"Liquid Volume"
vL = PP.LiquidVolume(OutletLiquid.T, OutletLiquid.P, OutletLiquid.z);
"Vapour Volume"
vV = PP.VapourVolume(OutletVapour.T, OutletVapour.P, OutletVapour.z);
"Inlet Vapour Density"
rho = PP.VapourDensity(InletVapour.T, InletVapour.P, InletVapour.z);
"Chemical Equilibrium"
PP.LiquidFugacityCoefficient(OutletLiquid.T, OutletLiquid.P, OutletLiquid.z)*OutletLiquid.z =
PP.VapourFugacityCoefficient(OutletVapour.T, OutletVapour.P, OutletVapour.z)*OutletVapour.z;
"Thermal Equilibrium"
OutletLiquid.T = OutletVapour.T;
"Mechanical Equilibrium"
OutletVapour.P = OutletLiquid.P;
"Pressure Drop"
OutletLiquid.P = InletVapour.P - Pdrop;
"Geometry Constraint"
Geometry.Vtotal = ML*vL + MV*vV;
"Liquid Level"
ML * vL = Geometry.Vfilled;
"Temperature indicator"
TI * 'K' = OutletLiquid.T;
"Pressure indicator"
PI * 'atm' = OutletLiquid.P;
"Level indicator"
LI*Geometry.Vtotal= Geometry.Vfilled;
end
Model condenser2
ATTRIBUTES
Pallete = true;
Icon = "icon/Condenser";
Brief = "Model of a dynamic condenser with control.";
Info =
"== ASSUMPTIONS ==
* perfect mixing of both phases;
* thermodynamics equilibrium.
== SPECIFY ==
* the InletVapour stream;
* the outlet flows: Product.F and Reflux.F;
* the InletQ (the model requires an energy stream, also you can use a controller for setting the heat duty using the heat_flow model).
== OPTIONAL ==
* the condenser model has three control ports
** TI OutletLiquid Temperature Indicator;
** PI OutletLiquid Pressure Indicator;
** LI Level Indicator of Condenser;
== INITIAL CONDITIONS ==
* Initial_Temperature : the condenser temperature (OutletLiquid.T);
* Levelpercent_Initial : the condenser liquid level in percent (LI);
* Initial_Composition : (NoComps) OutletLiquid compositions.
";
PARAMETERS
outer PP as Plugin (Brief = "External Physical Properties", Type="PP");
outer NComp as Integer (Brief="Number of Components");
Mw(NComp) as molweight (Brief = "Component Mol Weight",Hidden=true);
low_flow as flow_mol (Brief = "Low Flow",Default = 1E-6, Hidden=true);
zero_flow as flow_mol (Brief = "No Flow",Default = 0, Hidden=true);
CondenserType as Switcher (Brief="Condenser type", Valid = ["partial", "total"], Default = "partial");
VapourFlow as Switcher (Brief="Vapour Flow", Valid = ["on", "off"], Default = "on",Hidden=true);
Kfactor as positive (Brief="K factor for pressure drop", Lower = 1E-8, Default = 1E-3);
Levelpercent_Initial as positive (Brief="Initial liquid height in Percent", Default = 0.70);
Initial_Temperature as temperature (Brief="Initial Temperature of Condenser");
Initial_Composition(NComp) as positive (Brief="Initial Liquid Composition", Lower=1E-6);
VARIABLES
Geometry as VesselVolume (Brief="Vessel Geometry", Symbol=" ");
in InletVapour as stream (Brief="Vapour inlet stream", PosX=0.13, PosY=0, Symbol="_{in}^{Vapour}");
out OutletLiquid as liquid_stream (Brief="Liquid outlet stream", PosX=0.35, PosY=1, Symbol="_{out}^{Liquid}");
Vapour as vapour_stream (Brief="Vapour outlet stream", Hidden=true, Symbol="_{out}^{Vapour}");
out Product as stream (Brief="Vapour or Liquid product stream", PosX=0.54, PosY=0, Symbol="_{out}^{Vapour}");
in InletQ as power (Brief="Heat supplied", Protected = true, PosX=1, PosY=0.08, Symbol="Q_{in}");
RefluxRatio as positive (Brief = "Reflux Ratio", Default=10, Lower = 0.05);
out TI as control_signal (Brief="Temperature Indicator of Condenser", Protected = true, PosX=0.33, PosY=0);
out LI as control_signal (Brief="Level Indicator of Condenser", Protected = true, PosX=0.43, PosY=0);
out PI as control_signal (Brief="Pressure Indicator of Condenser", Protected = true, PosX=0.25, PosY=0);
M(NComp) as mol (Brief="Molar Holdup in the tray", Protected = true);
ML as mol (Brief="Molar liquid holdup", Protected = true);
MV as mol (Brief="Molar vapour holdup", Protected = true);
E as energy (Brief="Total Energy Holdup on tray", Protected = true);
vL as volume_mol (Brief="Liquid Molar Volume", Protected = true);
vV as volume_mol (Brief="Vapour Molar volume", Protected = true);
rho as dens_mass (Brief ="Inlet Vapour Mass Density",Hidden=true, Symbol ="\rho");
Pdrop as press_delta (Brief = "Pressure Drop", DisplayUnit = 'kPa', Symbol ="\Delta P", Protected=true);
SET
Mw = PP.MolecularWeight();
low_flow = 1E-6 * 'kmol/h';
zero_flow = 0 * 'kmol/h';
INITIAL
"Initial level Percent"
LI = Levelpercent_Initial;
"Initial Temperature"
OutletLiquid.T = Initial_Temperature;
"Initial Composition"
OutletLiquid.z(1:NComp-1) = Initial_Composition(1:NComp-1)/sum(Initial_Composition);
EQUATIONS
Vapour.F = zero_flow;
"Reflux ratio"
RefluxRatio*Product.F = OutletLiquid.F;
switch CondenserType
case "partial":
Product.v = Vapour.v;
Product.h = Vapour.h;
Product.z = Vapour.z;
case "total":
Product.v = OutletLiquid.v;
Product.h = OutletLiquid.h;
Product.z = OutletLiquid.z;
end
switch VapourFlow
case "on":
InletVapour.F*vV = Kfactor *sqrt(Pdrop/rho)*'m^2';
when InletVapour.F < low_flow switchto "off";
case "off":
InletVapour.F = zero_flow;
when InletVapour.P > OutletLiquid.P switchto "on";
end
"Component Molar Balance"
diff(M) = InletVapour.F*InletVapour.z - OutletLiquid.F*OutletLiquid.z- Product.F*Product.z;
"Energy Balance"
diff(E) = InletVapour.F*InletVapour.h - OutletLiquid.F*OutletLiquid.h- Product.F*Product.h + InletQ;
"Molar Holdup"
M = ML*OutletLiquid.z + MV*Vapour.z;
"Energy Holdup"
E = ML*OutletLiquid.h + MV*Vapour.h - Vapour.P*Geometry.Vtotal;
"Mol fraction normalisation"
sum(OutletLiquid.z)=1.0;
"Mol fraction Constraint"
sum(OutletLiquid.z)=sum(Vapour.z);
"Liquid Volume"
vL = PP.LiquidVolume(OutletLiquid.T, OutletLiquid.P, OutletLiquid.z);
"Vapour Volume"
vV = PP.VapourVolume(Vapour.T, Vapour.P, Vapour.z);
"Inlet Vapour Density"
rho = PP.VapourDensity(InletVapour.T, InletVapour.P, InletVapour.z);
"Chemical Equilibrium"
PP.LiquidFugacityCoefficient(OutletLiquid.T, OutletLiquid.P, OutletLiquid.z)*OutletLiquid.z =
PP.VapourFugacityCoefficient(Vapour.T, Vapour.P, Vapour.z)*Vapour.z;
"Thermal Equilibrium"
OutletLiquid.T = Vapour.T;
OutletLiquid.T = Product.T;
"Mechanical Equilibrium"
Vapour.P = OutletLiquid.P;
Vapour.P = Product.P;
"Pressure Drop"
OutletLiquid.P = InletVapour.P - Pdrop;
"Geometry Constraint"
Geometry.Vtotal = ML*vL + MV*vV;
"Liquid Level"
ML * vL = Geometry.Vfilled;
"Temperature indicator"
TI * 'K' = OutletLiquid.T;
"Pressure indicator"
PI * 'atm' = OutletLiquid.P;
"Level indicator"
LI*Geometry.Vtotal= Geometry.Vfilled;
end
Model condenserSubcooled
ATTRIBUTES
Pallete = true;
Icon = "icon/CondenserSteady";
Brief = "Model of a Steady State total condenser with specified outlet temperature conditions.";
Info =
"A simple model of a Steady State total condenser with specified temperature (or subcooling degree), with a real
calculation of the output stream enthalpy. The subcooling degree is considered to be the difference between the
inlet vapour and the outlet liquid temperatures.
== ASSUMPTIONS ==
* perfect mixing of both phases;
* saturated vapour at the Inlet;
* no thermodynamics equilibrium;
* no pressure drop in the condenser.
== SPECIFY ==
* the InletVapour stream;
* the subcooled temperature OR the the degree of subcooling.
";
PARAMETERS
outer PP as Plugin (Brief = "External Physical Properties", Type="PP");
outer NComp as Integer (Brief = "Number of Components");
# Pdrop as press_delta (Brief="Pressure Drop in the condenser",Default=0, Symbol="\Delta _P");
#Fake_Temperature as temperature (Brief="Fake temperature", Symbol = "T_{fake}");
VARIABLES
in InletVapour as stream (Brief="Vapour inlet stream", PosX=0.16, PosY=0, Symbol="_{in}^{Vapour}");
out OutletLiquid as stream (Brief="Liquid outlet stream", PosX=0.53, PosY=1, Symbol="_{out}^{Liquid}");
#in InletQ as power (Brief="Heat Duty", PosX=1, PosY=0.08, Symbol="Q_{in}",Protected=true);
T_sub as temperature (Brief="Condensate temperature (subcooled)", Symbol = "T_{sub}");
SubcoolingDegree as temp_delta (Brief="Subcooling Degree", Symbol = "\Delta T_{sub}");
CondenserDuty as power (Brief="Calculated condenser duty for desired subcooling", Protected = true, Symbol = "Q_{cond}");
#out TI as control_signal (Brief="Temperature Indicator of Condenser", Protected = true, PosX=0.50, PosY=0);
#out PI as control_signal (Brief="Pressure Indicator of Condenser", Protected = true, PosX=0.32, PosY=0);
EQUATIONS
"Molar Flow Balance"
InletVapour.F = OutletLiquid.F;
"Molar Composition Balance"
InletVapour.z = OutletLiquid.z;
#"Energy Balance"
#InletVapour.F*InletVapour.h + InletQ = OutletLiquid.F*OutletLiquid.h;
"Pressure Drop"
OutletLiquid.P = InletVapour.P;
"Subcooled Temperature"
OutletLiquid.T = T_sub;
"Degree of subcooling"
SubcoolingDegree = InletVapour.T - T_sub;
"Liquid enthalpy"
OutletLiquid.h = PP.LiquidEnthalpy(OutletLiquid.T, OutletLiquid.P, OutletLiquid.z);
"Condenser Duty"
CondenserDuty = OutletLiquid.F*OutletLiquid.h - InletVapour.F*InletVapour.h;
"Vapourisation Fraction"
OutletLiquid.v = 0;
end