#*------------------------------------------------------------------- * EMSO Model Library (EML) Copyright (C) 2004 - 2007 ALSOC. * * This LIBRARY is free software; you can distribute it and/or modify * it under the therms of the ALSOC FREE LICENSE as available at * http://www.enq.ufrgs.br/alsoc. * * EMSO Copyright (C) 2004 - 2007 ALSOC, original code * from http://www.rps.eng.br Copyright (C) 2002-2004. * All rights reserved. * * EMSO is distributed under the therms of the ALSOC LICENSE as * available at http://www.enq.ufrgs.br/alsoc. * *---------------------------------------------------------------------- * Author: Paula B. Staudt * $Id: condenser.mso 555 2008-07-18 19:01:13Z rafael $ *--------------------------------------------------------------------*# using "tank"; Model condenserSteady ATTRIBUTES Pallete = true; Icon = "icon/CondenserSteady"; Brief = "Model of a Steady State condenser with no thermodynamics equilibrium."; Info = "== ASSUMPTIONS == * perfect mixing of both phases; * no thermodynamics equilibrium. == SET == * the pressure drop in the condenser; == SPECIFY == * the InletVapour stream; * the InletQ (the model requires an energy stream, also you can use a controller for setting the heat duty using the heat_flow model). == OPTIONAL == * the condenser model has two control ports ** TI OutletLiquid Temperature Indicator; ** PI OutletLiquid Pressure Indicator; "; PARAMETERS outer PP as Plugin (Brief = "External Physical Properties", Type="PP"); outer NComp as Integer (Brief = "Number of Components"); Pdrop as press_delta (Brief="Pressure Drop in the condenser",Default=0, Symbol="\Delta _P"); VARIABLES in InletVapour as stream (Brief="Vapour inlet stream", PosX=0.16, PosY=0, Symbol="_{in}^{Vapour}"); out OutletLiquid as liquid_stream (Brief="Liquid outlet stream", PosX=0.53, PosY=1, Symbol="_{out}^{Liquid}"); in InletQ as power (Brief="Heat Duty", PosX=1, PosY=0.08, Symbol="Q_{in}",Protected=true); Tbubble as temperature (Brief ="Bubble Temperature",Protected=true, Symbol ="T_{bubble}"); Deg_Subcooled as temp_delta (Brief ="Degrees subcooled",Symbol ="\Delta T_{subcooled}"); out TI as control_signal (Brief="Temperature Indicator of Condenser", Protected = true, PosX=0.50, PosY=0); out PI as control_signal (Brief="Pressure Indicator of Condenser", Protected = true, PosX=0.32, PosY=0); EQUATIONS "Molar Flow Balance" InletVapour.F = OutletLiquid.F; "Molar Composition Balance" InletVapour.z = OutletLiquid.z; "Energy Balance" InletVapour.F*InletVapour.h + InletQ = OutletLiquid.F*OutletLiquid.h; "Pressure Drop" OutletLiquid.P = InletVapour.P - Pdrop; "Bubble Temperature" Tbubble = PP.BubbleT(OutletLiquid.P,OutletLiquid.z); "Temperature" OutletLiquid.T = Tbubble-Deg_Subcooled; "Temperature indicator" TI * 'K' = OutletLiquid.T; "Pressure indicator" PI * 'atm' = OutletLiquid.P; end Model condenserSteady_fakeH ATTRIBUTES Pallete = true; Icon = "icon/CondenserSteady"; Brief = "Model of a Steady State condenser with fake calculation of outlet conditions."; Info = "Model of a Steady State condenser with fake calculation of output temperature, but with a real calculation of the output stream enthalpy. == ASSUMPTIONS == * perfect mixing of both phases; * no thermodynamics equilibrium. == SET == * the fake Outlet temperature ; * the pressure drop in the condenser; == SPECIFY == * the InletVapour stream; * the InletQ (the model requires an energy stream, also you can use a controller for setting the heat duty using the heat_flow model). == OPTIONAL == * the condenser model has two control ports ** TI OutletLiquid Temperature Indicator; ** PI OutletLiquid Pressure Indicator; "; PARAMETERS outer PP as Plugin (Brief = "External Physical Properties", Type="PP"); outer NComp as Integer (Brief = "Number of Components"); Pdrop as press_delta (Brief="Pressure Drop in the condenser",Default=0, Symbol="\Delta _P"); Fake_Temperature as temperature (Brief="Fake temperature", Symbol = "T_{fake}"); VARIABLES in InletVapour as stream (Brief="Vapour inlet stream", PosX=0.16, PosY=0, Symbol="_{in}^{Vapour}"); out OutletLiquid as stream (Brief="Liquid outlet stream", PosX=0.53, PosY=1, Symbol="_{out}^{Liquid}"); in InletQ as power (Brief="Heat Duty", PosX=1, PosY=0.08, Symbol="Q_{in}",Protected=true); out TI as control_signal (Brief="Temperature Indicator of Condenser", Protected = true, PosX=0.50, PosY=0); out PI as control_signal (Brief="Pressure Indicator of Condenser", Protected = true, PosX=0.32, PosY=0); EQUATIONS "Molar Flow Balance" InletVapour.F = OutletLiquid.F; "Molar Composition Balance" InletVapour.z = OutletLiquid.z; "Energy Balance" InletVapour.F*InletVapour.h + InletQ = OutletLiquid.F*OutletLiquid.h; "Pressure Drop" OutletLiquid.P = InletVapour.P - Pdrop; "Fake Temperature" OutletLiquid.T = Fake_Temperature; "Vapourisation Fraction" OutletLiquid.v = 0; "Temperature indicator" TI * 'K' = OutletLiquid.T; "Pressure indicator" PI * 'atm' = OutletLiquid.P; end Model condenserReact ATTRIBUTES Pallete = false; Icon = "icon/Condenser"; Brief = "Model of a Condenser with reaction in liquid phase."; Info = "== Assumptions == * perfect mixing of both phases; * thermodynamics equilibrium; * the reaction only takes place in liquid phase. == Specify == * the reaction related variables; * the inlet stream; * the outlet flows: OutletVapour.F and OutletLiquid.F; * the heat supply. == Initial Conditions == * the condenser temperature (OutletLiquid.T); * the condenser liquid level (Level); * (NoComps - 1) OutletLiquid (OR OutletVapour) compositions. "; PARAMETERS outer PP as Plugin(Type="PP"); outer NComp as Integer; V as volume (Brief="Condenser total volume"); Across as area (Brief="Cross Section Area of reboiler"); stoic(NComp) as Real (Brief="Stoichiometric matrix"); Hr as energy_mol; Initial_Level as length (Brief="Initial Level of liquid phase"); Initial_Temperature as temperature (Brief="Initial Temperature of Condenser"); Initial_Composition(NComp) as fraction (Brief="Initial Liquid Composition"); VARIABLES in InletVapour as stream (Brief="Vapour inlet stream", PosX=0.1164, PosY=0, Symbol="_{inV}"); out OutletLiquid as liquid_stream (Brief="Liquid outlet stream", PosX=0.4513, PosY=1, Symbol="_{outL}"); out OutletVapour as vapour_stream (Brief="Vapour outlet stream", PosX=0.4723, PosY=0, Symbol="_{outV}"); InletQ as power (Brief="Cold supplied", PosX=1, PosY=0.6311, Symbol="_{in}"); M(NComp) as mol (Brief="Molar Holdup in the tray"); ML as mol (Brief="Molar liquid holdup"); MV as mol (Brief="Molar vapour holdup"); E as energy (Brief="Total Energy Holdup on tray"); vL as volume_mol (Brief="Liquid Molar Volume"); vV as volume_mol (Brief="Vapour Molar volume"); Level as length (Brief="Level of liquid phase"); Vol as volume; r3 as reaction_mol (Brief="Reaction Rates", DisplayUnit = 'mol/l/s'); C(NComp) as conc_mol (Brief="Molar concentration", Lower = -1); INITIAL Level = Initial_Level; OutletLiquid.T = Initial_Temperature; OutletLiquid.z(1:NComp-1) = Initial_Composition(1:NComp-1)/sum(Initial_Composition); EQUATIONS "Molar Concentration" OutletLiquid.z = vL * C; "Reaction" r3 = exp(-7150*'K'/OutletLiquid.T)*(4.85e4*C(1)*C(2) - 1.23e4*C(3)*C(4)) * 'l/mol/s'; "Component Molar Balance" diff(M) = InletVapour.F*InletVapour.z - OutletLiquid.F*OutletLiquid.z - OutletVapour.F*OutletVapour.z + stoic*r3*ML*vL; "Energy Balance" diff(E) = InletVapour.F*InletVapour.h - OutletLiquid.F*OutletLiquid.h- OutletVapour.F*OutletVapour.h + InletQ + Hr * r3 * ML*vL; "Molar Holdup" M = ML*OutletLiquid.z + MV*OutletVapour.z; "Energy Holdup" E = ML*OutletLiquid.h + MV*OutletVapour.h - OutletVapour.P*V; "Mol fraction normalisation" sum(OutletLiquid.z)=1.0; "Liquid Volume" vL = PP.LiquidVolume(OutletLiquid.T, OutletLiquid.P, OutletLiquid.z); "Vapour Volume" vV = PP.VapourVolume(OutletVapour.T, OutletVapour.P, OutletVapour.z); "Thermal Equilibrium" OutletLiquid.T = OutletVapour.T; "Mechanical Equilibrium" OutletVapour.P = OutletLiquid.P; "Geometry Constraint" V = ML*vL + MV*vV; Vol = ML*vL; "Level of liquid phase" Level = ML*vL/Across; "Chemical Equilibrium" PP.LiquidFugacityCoefficient(OutletLiquid.T, OutletLiquid.P, OutletLiquid.z)*OutletLiquid.z = PP.VapourFugacityCoefficient(OutletVapour.T, OutletVapour.P, OutletVapour.z)*OutletVapour.z; sum(OutletLiquid.z)=sum(OutletVapour.z); end Model condenser ATTRIBUTES Pallete = true; Icon = "icon/Condenser"; Brief = "Model of a dynamic condenser with control."; Info = "== ASSUMPTIONS == * perfect mixing of both phases; * thermodynamics equilibrium. == SPECIFY == * the InletVapour stream; * the outlet flows: OutletVapour.F and OutletLiquid.F; * the InletQ (the model requires an energy stream, also you can use a controller for setting the heat duty using the heat_flow model). == OPTIONAL == * the condenser model has three control ports ** TI OutletLiquid Temperature Indicator; ** PI OutletLiquid Pressure Indicator; ** LI Level Indicator of Condenser; == INITIAL CONDITIONS == * Initial_Temperature : the condenser temperature (OutletLiquid.T); * Levelpercent_Initial : the condenser liquid level in percent (LI); * Initial_Composition : (NoComps) OutletLiquid compositions. "; PARAMETERS outer PP as Plugin (Brief = "External Physical Properties", Type="PP"); outer NComp as Integer (Brief="Number of Components"); Mw(NComp) as molweight (Brief = "Component Mol Weight",Hidden=true); low_flow as flow_mol (Brief = "Low Flow",Default = 1E-6, Hidden=true); zero_flow as flow_mol (Brief = "No Flow",Default = 0, Hidden=true); VapourFlow as Switcher (Brief="Vapour Flow", Valid = ["on", "off"], Default = "on",Hidden=true); Kfactor as positive (Brief="K factor for pressure drop", Lower = 1E-8, Default = 1E-3); Levelpercent_Initial as positive (Brief="Initial liquid height in Percent", Default = 0.70); Initial_Temperature as temperature (Brief="Initial Temperature of Condenser"); Initial_Composition(NComp) as positive (Brief="Initial Liquid Composition", Lower=1E-6); VARIABLES Geometry as VesselVolume (Brief="Vessel Geometry", Symbol=" "); in InletVapour as stream (Brief="Vapour inlet stream", PosX=0.13, PosY=0, Symbol="_{in}^{Vapour}"); out OutletLiquid as liquid_stream (Brief="Liquid outlet stream", PosX=0.35, PosY=1, Symbol="_{out}^{Liquid}"); out OutletVapour as vapour_stream (Brief="Vapour outlet stream", PosX=0.54, PosY=0, Symbol="_{out}^{Vapour}"); in InletQ as power (Brief="Heat supplied", Protected = true, PosX=1, PosY=0.08, Symbol="Q_{in}"); out TI as control_signal (Brief="Temperature Indicator of Condenser", Protected = true, PosX=0.33, PosY=0); out LI as control_signal (Brief="Level Indicator of Condenser", Protected = true, PosX=0.43, PosY=0); out PI as control_signal (Brief="Pressure Indicator of Condenser", Protected = true, PosX=0.25, PosY=0); M(NComp) as mol (Brief="Molar Holdup in the tray", Protected = true); ML as mol (Brief="Molar liquid holdup", Protected = true); MV as mol (Brief="Molar vapour holdup", Protected = true); E as energy (Brief="Total Energy Holdup on tray", Protected = true); vL as volume_mol (Brief="Liquid Molar Volume", Protected = true); vV as volume_mol (Brief="Vapour Molar volume", Protected = true); rho as dens_mass (Brief ="Inlet Vapour Mass Density",Hidden=true, Symbol ="\rho"); Pdrop as press_delta (Brief = "Pressure Drop", DisplayUnit = 'kPa', Symbol ="\Delta P", Protected=true); SET Mw = PP.MolecularWeight(); low_flow = 1E-6 * 'kmol/h'; zero_flow = 0 * 'kmol/h'; INITIAL "Initial level Percent" LI = Levelpercent_Initial; "Initial Temperature" OutletLiquid.T = Initial_Temperature; "Initial Composition" OutletLiquid.z(1:NComp-1) = Initial_Composition(1:NComp-1)/sum(Initial_Composition); EQUATIONS switch VapourFlow case "on": InletVapour.F*vV = Kfactor *sqrt(Pdrop/rho)*'m^2'; when InletVapour.F < low_flow switchto "off"; case "off": InletVapour.F = zero_flow; when InletVapour.P > OutletLiquid.P switchto "on"; end "Component Molar Balance" diff(M) = InletVapour.F*InletVapour.z - OutletLiquid.F*OutletLiquid.z- OutletVapour.F*OutletVapour.z; "Energy Balance" diff(E) = InletVapour.F*InletVapour.h - OutletLiquid.F*OutletLiquid.h- OutletVapour.F*OutletVapour.h + InletQ; "Molar Holdup" M = ML*OutletLiquid.z + MV*OutletVapour.z; "Energy Holdup" E = ML*OutletLiquid.h + MV*OutletVapour.h - OutletVapour.P*Geometry.Vtotal; "Mol fraction normalisation" sum(OutletLiquid.z)=1.0; "Mol fraction Constraint" sum(OutletLiquid.z)=sum(OutletVapour.z); "Liquid Volume" vL = PP.LiquidVolume(OutletLiquid.T, OutletLiquid.P, OutletLiquid.z); "Vapour Volume" vV = PP.VapourVolume(OutletVapour.T, OutletVapour.P, OutletVapour.z); "Inlet Vapour Density" rho = PP.VapourDensity(InletVapour.T, InletVapour.P, InletVapour.z); "Chemical Equilibrium" PP.LiquidFugacityCoefficient(OutletLiquid.T, OutletLiquid.P, OutletLiquid.z)*OutletLiquid.z = PP.VapourFugacityCoefficient(OutletVapour.T, OutletVapour.P, OutletVapour.z)*OutletVapour.z; "Thermal Equilibrium" OutletLiquid.T = OutletVapour.T; "Mechanical Equilibrium" OutletVapour.P = OutletLiquid.P; "Pressure Drop" OutletLiquid.P = InletVapour.P - Pdrop; "Geometry Constraint" Geometry.Vtotal = ML*vL + MV*vV; "Liquid Level" ML * vL = Geometry.Vfilled; "Temperature indicator" TI * 'K' = OutletLiquid.T; "Pressure indicator" PI * 'atm' = OutletLiquid.P; "Level indicator" LI*Geometry.Vtotal= Geometry.Vfilled; end Model condenser2 ATTRIBUTES Pallete = true; Icon = "icon/Condenser"; Brief = "Model of a dynamic condenser with control."; Info = "== ASSUMPTIONS == * perfect mixing of both phases; * thermodynamics equilibrium. == SPECIFY == * the InletVapour stream; * the outlet flows: Product.F and Reflux.F; * the InletQ (the model requires an energy stream, also you can use a controller for setting the heat duty using the heat_flow model). == OPTIONAL == * the condenser model has three control ports ** TI OutletLiquid Temperature Indicator; ** PI OutletLiquid Pressure Indicator; ** LI Level Indicator of Condenser; == INITIAL CONDITIONS == * Initial_Temperature : the condenser temperature (OutletLiquid.T); * Levelpercent_Initial : the condenser liquid level in percent (LI); * Initial_Composition : (NoComps) OutletLiquid compositions. "; PARAMETERS outer PP as Plugin (Brief = "External Physical Properties", Type="PP"); outer NComp as Integer (Brief="Number of Components"); Mw(NComp) as molweight (Brief = "Component Mol Weight",Hidden=true); low_flow as flow_mol (Brief = "Low Flow",Default = 1E-6, Hidden=true); zero_flow as flow_mol (Brief = "No Flow",Default = 0, Hidden=true); CondenserType as Switcher (Brief="Condenser type", Valid = ["partial", "total"], Default = "partial"); VapourFlow as Switcher (Brief="Vapour Flow", Valid = ["on", "off"], Default = "on",Hidden=true); Kfactor as positive (Brief="K factor for pressure drop", Lower = 1E-8, Default = 1E-3); Levelpercent_Initial as positive (Brief="Initial liquid height in Percent", Default = 0.70); Initial_Temperature as temperature (Brief="Initial Temperature of Condenser"); Initial_Composition(NComp) as positive (Brief="Initial Liquid Composition", Lower=1E-6); VARIABLES Geometry as VesselVolume (Brief="Vessel Geometry", Symbol=" "); in InletVapour as stream (Brief="Vapour inlet stream", PosX=0.13, PosY=0, Symbol="_{in}^{Vapour}"); out OutletLiquid as liquid_stream (Brief="Liquid outlet stream", PosX=0.35, PosY=1, Symbol="_{out}^{Liquid}"); Vapour as vapour_stream (Brief="Vapour outlet stream", Hidden=true, Symbol="_{out}^{Vapour}"); out Product as stream (Brief="Vapour or Liquid product stream", PosX=0.54, PosY=0, Symbol="_{out}^{Vapour}"); in InletQ as power (Brief="Heat supplied", Protected = true, PosX=1, PosY=0.08, Symbol="Q_{in}"); RefluxRatio as positive (Brief = "Reflux Ratio", Default=10, Lower = 0.05); out TI as control_signal (Brief="Temperature Indicator of Condenser", Protected = true, PosX=0.33, PosY=0); out LI as control_signal (Brief="Level Indicator of Condenser", Protected = true, PosX=0.43, PosY=0); out PI as control_signal (Brief="Pressure Indicator of Condenser", Protected = true, PosX=0.25, PosY=0); M(NComp) as mol (Brief="Molar Holdup in the tray", Protected = true); ML as mol (Brief="Molar liquid holdup", Protected = true); MV as mol (Brief="Molar vapour holdup", Protected = true); E as energy (Brief="Total Energy Holdup on tray", Protected = true); vL as volume_mol (Brief="Liquid Molar Volume", Protected = true); vV as volume_mol (Brief="Vapour Molar volume", Protected = true); rho as dens_mass (Brief ="Inlet Vapour Mass Density",Hidden=true, Symbol ="\rho"); Pdrop as press_delta (Brief = "Pressure Drop", DisplayUnit = 'kPa', Symbol ="\Delta P", Protected=true); SET Mw = PP.MolecularWeight(); low_flow = 1E-6 * 'kmol/h'; zero_flow = 0 * 'kmol/h'; INITIAL "Initial level Percent" LI = Levelpercent_Initial; "Initial Temperature" OutletLiquid.T = Initial_Temperature; "Initial Composition" OutletLiquid.z(1:NComp-1) = Initial_Composition(1:NComp-1)/sum(Initial_Composition); EQUATIONS Vapour.F = zero_flow; "Reflux ratio" RefluxRatio*Product.F = OutletLiquid.F; switch CondenserType case "partial": Product.v = Vapour.v; Product.h = Vapour.h; Product.z = Vapour.z; case "total": Product.v = OutletLiquid.v; Product.h = OutletLiquid.h; Product.z = OutletLiquid.z; end switch VapourFlow case "on": InletVapour.F*vV = Kfactor *sqrt(Pdrop/rho)*'m^2'; when InletVapour.F < low_flow switchto "off"; case "off": InletVapour.F = zero_flow; when InletVapour.P > OutletLiquid.P switchto "on"; end "Component Molar Balance" diff(M) = InletVapour.F*InletVapour.z - OutletLiquid.F*OutletLiquid.z- Product.F*Product.z; "Energy Balance" diff(E) = InletVapour.F*InletVapour.h - OutletLiquid.F*OutletLiquid.h- Product.F*Product.h + InletQ; "Molar Holdup" M = ML*OutletLiquid.z + MV*Vapour.z; "Energy Holdup" E = ML*OutletLiquid.h + MV*Vapour.h - Vapour.P*Geometry.Vtotal; "Mol fraction normalisation" sum(OutletLiquid.z)=1.0; "Mol fraction Constraint" sum(OutletLiquid.z)=sum(Vapour.z); "Liquid Volume" vL = PP.LiquidVolume(OutletLiquid.T, OutletLiquid.P, OutletLiquid.z); "Vapour Volume" vV = PP.VapourVolume(Vapour.T, Vapour.P, Vapour.z); "Inlet Vapour Density" rho = PP.VapourDensity(InletVapour.T, InletVapour.P, InletVapour.z); "Chemical Equilibrium" PP.LiquidFugacityCoefficient(OutletLiquid.T, OutletLiquid.P, OutletLiquid.z)*OutletLiquid.z = PP.VapourFugacityCoefficient(Vapour.T, Vapour.P, Vapour.z)*Vapour.z; "Thermal Equilibrium" OutletLiquid.T = Vapour.T; OutletLiquid.T = Product.T; "Mechanical Equilibrium" Vapour.P = OutletLiquid.P; Vapour.P = Product.P; "Pressure Drop" OutletLiquid.P = InletVapour.P - Pdrop; "Geometry Constraint" Geometry.Vtotal = ML*vL + MV*vV; "Liquid Level" ML * vL = Geometry.Vfilled; "Temperature indicator" TI * 'K' = OutletLiquid.T; "Pressure indicator" PI * 'atm' = OutletLiquid.P; "Level indicator" LI*Geometry.Vtotal= Geometry.Vfilled; end Model condenserSubcooled ATTRIBUTES Pallete = true; Icon = "icon/CondenserSteady"; Brief = "Model of a Steady State total condenser with specified outlet temperature conditions."; Info = "A simple model of a Steady State total condenser with specified temperature (or subcooling degree), with a real calculation of the output stream enthalpy. The subcooling degree is considered to be the difference between the inlet vapour and the outlet liquid temperatures. == ASSUMPTIONS == * perfect mixing of both phases; * saturated vapour at the Inlet; * no thermodynamics equilibrium; * no pressure drop in the condenser. == SPECIFY == * the InletVapour stream; * the subcooled temperature OR the the degree of subcooling. "; PARAMETERS outer PP as Plugin (Brief = "External Physical Properties", Type="PP"); outer NComp as Integer (Brief = "Number of Components"); # Pdrop as press_delta (Brief="Pressure Drop in the condenser",Default=0, Symbol="\Delta _P"); #Fake_Temperature as temperature (Brief="Fake temperature", Symbol = "T_{fake}"); VARIABLES in InletVapour as stream (Brief="Vapour inlet stream", PosX=0.16, PosY=0, Symbol="_{in}^{Vapour}"); out OutletLiquid as stream (Brief="Liquid outlet stream", PosX=0.53, PosY=1, Symbol="_{out}^{Liquid}"); #in InletQ as power (Brief="Heat Duty", PosX=1, PosY=0.08, Symbol="Q_{in}",Protected=true); T_sub as temperature (Brief="Condensate temperature (subcooled)", Symbol = "T_{sub}"); SubcoolingDegree as temp_delta (Brief="Subcooling Degree", Symbol = "\Delta T_{sub}"); CondenserDuty as power (Brief="Calculated condenser duty for desired subcooling", Protected = true, Symbol = "Q_{cond}"); #out TI as control_signal (Brief="Temperature Indicator of Condenser", Protected = true, PosX=0.50, PosY=0); #out PI as control_signal (Brief="Pressure Indicator of Condenser", Protected = true, PosX=0.32, PosY=0); EQUATIONS "Molar Flow Balance" InletVapour.F = OutletLiquid.F; "Molar Composition Balance" InletVapour.z = OutletLiquid.z; #"Energy Balance" #InletVapour.F*InletVapour.h + InletQ = OutletLiquid.F*OutletLiquid.h; "Pressure Drop" OutletLiquid.P = InletVapour.P; "Subcooled Temperature" OutletLiquid.T = T_sub; "Degree of subcooling" SubcoolingDegree = InletVapour.T - T_sub; "Liquid enthalpy" OutletLiquid.h = PP.LiquidEnthalpy(OutletLiquid.T, OutletLiquid.P, OutletLiquid.z); "Condenser Duty" CondenserDuty = OutletLiquid.F*OutletLiquid.h - InletVapour.F*InletVapour.h; "Vapourisation Fraction" OutletLiquid.v = 0; end