#*------------------------------------------------------------------- * EMSO Model Library (EML) Copyright (C) 2004 - 2007 ALSOC. * * This LIBRARY is free software; you can distribute it and/or modify * it under the therms of the ALSOC FREE LICENSE as available at * http://www.enq.ufrgs.br/alsoc. * * EMSO Copyright (C) 2004 - 2007 ALSOC, original code * from http://www.rps.eng.br Copyright (C) 2002-2004. * All rights reserved. * * EMSO is distributed under the therms of the ALSOC LICENSE as * available at http://www.enq.ufrgs.br/alsoc. * *--------------------------------------------------------------------- * Production of acetic anhydride *---------------------------------------------------------------------- * Solved problem from Fogler (1999) * Problem number: 8-7 * Page: 421 (Brazilian version, 2002) *---------------------------------------------------------------------- * * Description: * The acetic anhydride is produced for thermal craking of the * acetone in a PFR: * CH3COCH3 -> CH2CO + CH4 * This sample calculates the molar conversion and temperature * as function of the length in the tubular reactor. In the case I * the operation is adiabatic and in the case II the reactor is * jacketed. * * Assumptions * * first-order reaction with respect to acetone * * steady-state * * gaseous phase * * Specify: * * the inlet stream * * the kinetic parameters * * the parameters of components * *---------------------------------------------------------------------- * Author: Christiano D. W. Guerra and Rodolfo Rodrigues * $Id: acetic_anhydride.mso 574 2008-07-25 14:18:50Z rafael $ *--------------------------------------------------------------------*# using "types"; #*--------------------------------------------------------------------- * Model of the thermal craking of acetone *--------------------------------------------------------------------*# Model thermal_cracking PARAMETERS NComp as Integer (Brief="Number of components", Lower=1); stoic(NComp)as Real (Brief="Stoichiometric number"); Pao as pressure (Brief="Input pressure of A"); Tr as temperature (Brief="Reference temperature"); To as temperature (Brief="Inlet temperature"); Ta as temperature (Brief="Internal temperature"); Hr(NComp) as enth_mol (Brief="Enthalpy of component"); R as Real (Brief="Universal gas constant", Unit='kPa*m^3/kmol/K', Default=8.314); U as Real (Brief="Heat transfer coefficient", Unit='J/m^2/K/s'); a as Real (Brief="Heat transfer area per volume of tube", Unit='1/m'); alpha(NComp)as cp_mol (Brief="Alpha term of Cp expression"); beta(NComp) as Real (Brief="Beta term of Cp expression", Unit='J/mol/K^2'); gamma(NComp)as Real (Brief="Gamma term of Cp expression", Unit='J/mol/K^3'); VARIABLES Ca as conc_mol (Brief="Molar concentration of A", DisplayUnit='kmol/m^3'); Cao as conc_mol (Brief="Inlet molar concentration of A", DisplayUnit='mol/m^3'); Fao as flow_mol (Brief="Inlet molar flow of A"); vo as flow_vol (Brief="Volumetric flow", DisplayUnit='m^3/s'); r as reaction_mol (Brief="Rate of reaction", DisplayUnit='kmol/m^3/s'); k as Real (Brief="Specific rate of reaction", Unit='1/s'); T as temperature (Brief="Temperature of reactor"); X as fraction (Brief="Molar conversion"); V as volume (Brief="Volume"); eps as Real (Brief="Parameter epsilon"); Cp(NComp) as cp_mol (Brief="Molar heat capacity", DisplayUnit='J/mol/K'); DHr as enth_mol (Brief="Enthalpy of reaction", DisplayUnit='kJ/mol'); EQUATIONS "Change time in V" V = time*'m^3/s'; "Molar balance" diff(X) = (-r)/Fao*'m^3/s'; "Rate of reaction" r = -k*Ca; "Specific rate of reaction" k = exp(34.34)*exp(-34222*'K'/T)*'1/s'; "Concentration of component A" Ca = Cao*(1 - X)/(1 + eps*X)*To/T; "Parameter epsilon" eps = sum(stoic); # yAo = 1 "Inlet molar concentration of A" Cao = Pao/(R*To); "Volumetric flow" Fao = Cao*vo; "Energy balance" diff(T)*(Fao*(Cp(1) + X*sumt(stoic*Cp))) = (U*a*(Ta - T) + (-r)*(-DHr))*'m^3/s'; "Enthalpy of reaction" DHr = sumt(stoic*Hr) + sumt(stoic*alpha)*(T - Tr) + sumt(stoic*beta)/2*(T^2 - Tr^2) + sumt(stoic*gamma)/3*(T^3 - Tr^3); "Molar heat capacity" Cp = alpha + beta*T + gamma*T^2; end #*--------------------------------------------------------------------- * Case I: In an adiabatic PFR *--------------------------------------------------------------------*# FlowSheet adiabatic_reactor DEVICES R as thermal_cracking; SET R.NComp = 3; # A: acetone, B: ketene and C: methane R.stoic = [-1.0, 1.0, 1.0]; # A -> B + C R.Pao = 162*'kPa'; R.alpha = [26.63, 20.04, 13.39]*'J/mol/K'; R.beta = [0.183, 0.0945, 0.077]*'J/mol/K^2'; R.gamma = [-45.86e-6, -30.95e-6, -18.71e-6]*'J/mol/K^3'; R.Hr = [-216.67, -61.09, -74.81]*'kJ/mol'; R.Tr = 298*'K'; R.To = 1035*'K'; R.Ta = 1150*'K'; R.U = 0.0*'J/m^2/K/s'; R.a = 150*'1/m'; SPECIFY R.Fao = (8000/58)*'kmol/h'; INITIAL "Molar conversion" R.X = 0.0; "Temperature" R.T = 1035*'K'; OPTIONS TimeStep = 0.05; TimeEnd = 5; TimeUnit = 's'; end #*--------------------------------------------------------------------- * Case II: In an jacketed PFR *--------------------------------------------------------------------*# FlowSheet jacketed_reactor DEVICES R as thermal_cracking; SET R.NComp = 3; # A: acetone, B: ketene and C: methane R.stoic = [-1.0, 1.0, 1.0]; # A -> B + C R.Pao = 162*'kPa'; R.alpha = [26.63, 20.04, 13.39]*'J/mol/K'; R.beta = [0.183, 0.0945, 0.077]*'J/mol/K^2'; R.gamma = [-45.86e-6, -30.95e-6, -18.71e-6]*'J/mol/K^3'; R.Hr = [-216.67, -61.09, -74.81]*'kJ/mol'; R.Tr = 298*'K'; R.To = 1035*'K'; R.Ta = 1150*'K'; R.U = 110*'J/m^2/K/s'; R.a = 150*'1/m'; SPECIFY R.Fao = (18.8*2e-3)*'mol/s'; INITIAL "Molar conversion" R.X = 0.0; "Temperature" R.T = 1035*'K'; OPTIONS TimeStep = 1e-5; TimeEnd = 1e-3; TimeUnit = 's'; end