#*-------------------------------------------------------------------- * EMSO Model Library (EML) Copyright (C) 2004 - 2007 ALSOC. * * This LIBRARY is free software; you can distribute it and/or modify * it under the therms of the ALSOC FREE LICENSE as available at * http://www.enq.ufrgs.br/alsoc. * * EMSO Copyright (C) 2004 - 2007 ALSOC, original code * from http://www.rps.eng.br Copyright (C) 2002-2004. * All rights reserved. * * EMSO is distributed under the therms of the ALSOC LICENSE as * available at http://www.enq.ufrgs.br/alsoc. * *---------------------------------------------------------------------- * Ammonia oxidation in a PFR *---------------------------------------------------------------------- * Solved problem from Fogler (1999) * Problem number: 6-8 * Page: 279 (Brazilian edition, 2002) *---------------------------------------------------------------------- * * Description: * In a PFR is occuring this simultaneous reaction catalyzed by * metal oxide in gas phase: * 1: 4NH3 + 5O2 -> 4NO + 6H2O * 2: 2NH3 + 1.5O2 -> N2 + 3H2O * 3: 2NO + O2 -> 2NO2 * 4: 4NH3 + 6NO -> 5N2 + 6H2O * The rates of reaction to one specific component are known. * They are: r1A, r2A, r3B and r4C. * The concentration are calculed as function of position in the * reactor. * * Assumptions: * * change time in reactor volume * * steady-state * * isotermic and isobaric system * * gaseous phase * * Specify: * * the inlet stream * * the kinetic parameters * *---------------------------------------------------------------------- * Author: Christiano D. W. Guerra and Rodolfo Rodrigues * $Id$ *--------------------------------------------------------------------*# using "types"; #*--------------------------------------------------------------------- * Example 6-8: in a PFR *--------------------------------------------------------------------*# FlowSheet pfr PARAMETERS NComp as Integer (Brief="Number of components"); NReac as Integer (Brief="Number of reactions"); stoic(NComp,NReac) as Real (Brief="Stoichiometric coefficients"); k(NReac) as Real (Brief="Specific velocity reaction"); Co(NComp) as conc_mol (Brief="Input molar concentration"); vo as flow_vol (Brief="Input volumetric flow"); VARIABLES F(NComp) as flow_mol (Brief="Molar flow", DisplayUnit='mol/min'); Fo(NComp) as flow_mol (Brief="Input molar flow", DisplayUnit='mol/min'); C(NComp) as conc_mol (Brief="Molar concentration", DisplayUnit='mol/l'); r(NComp,NReac)as reaction_mol(Brief="Relative rate of reaction", DisplayUnit='mol/min/l'); rate(NComp) as reaction_mol (Brief="Overall rate of reaction", DisplayUnit='mol/min/l'); V as volume (Brief="Reactor volume", DisplayUnit='l'); EQUATIONS "Change time in V" V = time*'l/s'; "Material balance" diff(F) = rate*'l/s'; "Molar concentration" C*sum(F) = F*sum(Co); "Input molar flow" Fo = Co*vo; "Relative rate of reaction 1" r(:,1) = stoic(:,1)*(k(1)*C(1)*C(2)^2)*'(m^3/kmol)^2/min'; "Relative rate of reaction 2" r(:,2) = stoic(:,2)*(k(2)*C(1)*C(2))*'m^3/kmol/min'; "Relative rate of reaction 3" r(:,3) = stoic(:,3)*(k(3)*C(2)*C(3)^2)*'(m^3/kmol)^2/min'; "Relative rate of reaction 4" r(:,4) = stoic(:,4)*(k(4)*C(3)*C(1)^(2/3))*'(m^3/kmol)^(2/3)/min'; "Overall rate of reaction" rate = sumt(r); SET NComp = 6; # 1:ammonia, 2:oxygen, 3:nitrogen oxide, # 4:water, 5:nitrogen and 6:nitrogen dioxide NReac = 4; # 1: 4A + 5B -> 4C + 6D, 2: 4A + 3B -> 2E + 6D # 3: 2C + B -> 2F, 4: 4A + 6C -> 5E + 6D stoic(:,1) = [ -1, -5/4, 1.0, 3/2, 0.0, 0.0]; # A + 5/4B -> C + 3/2D stoic(:,2) = [ -1, -3/4, 0.0, 3/2, 1/2, 0.0]; # A + 3/4B -> 1/2E + 3/2D stoic(:,3) = [ 0, -1.0, -2.0, 0.0, 0.0, 2.0]; # B + 2C -> 2F stoic(:,4) = [-2/3, 0.0, -1.0, 1.0, 5/6, 0.0]; # C + 2/3A -> 5/6E + D k = [5, 2, 10, 5]; vo = 10*'l/min'; Co = [1.0, 1.0, 0.0, 0.0, 0.0, 0.0]*'mol/l'; INITIAL "Molar flow" F = Fo; OPTIONS TimeStep = 0.1; TimeEnd = 10; end