#*------------------------------------------------------------------- * EMSO Model Library (EML) Copyright (C) 2004 - 2007 ALSOC. * * This LIBRARY is free software; you can distribute it and/or modify * it under the therms of the ALSOC FREE LICENSE as available at * http://www.enq.ufrgs.br/alsoc. * * EMSO Copyright (C) 2004 - 2007 ALSOC, original code * from http://www.rps.eng.br Copyright (C) 2002-2004. * All rights reserved. * * EMSO is distributed under the therms of the ALSOC LICENSE as * available at http://www.enq.ufrgs.br/alsoc. * *--------------------------------------------------------------------- * Membrane reactor *---------------------------------------------------------------------- * Solved problem from Fogler (1999) * Problem number: 4-10 * Page: 164 (Brazilian version, 2002) *---------------------------------------------------------------------- * * Description: * Sample to calculate of the molar flows as function of the * volume in a membrane reactor with a generic reaction of * dehydrogenation: * A <-> B + C * The membrane is permeable to the B but it is not permeable to * the A and the C. * * Assumptions: * * change time in volume * * steady-state * * isotermic and isobaric system * * gaseous phase * * Specify: * * the inlet stream * * the kinetic parameters * *---------------------------------------------------------------------- * Author: Christiano D. W. Guerra and Rodolfo Rodrigues * $Id: membrane_reactor.mso 574 2008-07-25 14:18:50Z rafael $ *--------------------------------------------------------------------*# using "types"; FlowSheet reactor PARAMETERS NComp as Integer (Brief="Number of chemical components", Lower=1); stoic(NComp)as Real (Brief="Stoichiometric number"); Kc as conc_mol (Brief="Equilibrium constant", DisplayUnit='mol/l'); kc as Real (Brief="Mass transfer coefficient", Unit='1/min'); R as Real (Brief="Universal gas constant", Unit='atm*l/mol/K', Default=0.082); VARIABLES F(NComp)as flow_mol (Brief="Molar flow", DisplayUnit='mol/min'); C(NComp)as conc_mol (Brief="Molar concentration", DisplayUnit='mol/l', Lower=0); r(NComp)as reaction_mol (Brief="Rate of reaction", DisplayUnit='mol/l/min'); Cto as conc_mol (Brief="Total inlet concentration", DisplayUnit='mol/l'); k as Real (Brief="Specific rate of reaction", Unit='1/min'); V as volume (Brief="Volume", DisplayUnit='l'); T as temperature (Brief="Temperatura"); P as pressure (Brief="Pressure"); EQUATIONS "Change time in V" V = time*'l/s'; "Molar balance for A" diff(F(1))*'s/l' = r(1); "Molar balance for B" diff(F(2))*'s/l' = r(2) - kc*C(2); "Molar balance for C" diff(F(3))*'s/l' = r(3); "Rate of reaction" r = stoic*k*(C(1) - C(2)*C(3)/Kc); "Molar concentration" C*sum(F) = Cto*F; "Total molar concentration" Cto = P/(R*T); SET NComp = 3; # A: propane, B: propylene and C: hydrogen stoic = [-1.0, 1.0, 1.0]; # A <-> B + C kc = 0.20*'1/min'; Kc = 0.05*'mol/l'; SPECIFY P = 8.2*'atm'; # Isobaric system T = 500*'K'; # Isotermic system k = 0.7*'1/min'; INITIAL "Molar flow" F = [10, 0.0, 0.0]*'mol/min'; OPTIONS TimeStep = 10; TimeEnd = 500; TimeUnit = 's'; end