#*------------------------------------------------------------------- * EMSO Model Library (EML) Copyright (C) 2004 - 2007 ALSOC. * * This LIBRARY is free software; you can distribute it and/or modify * it under the therms of the ALSOC FREE LICENSE as available at * http://www.enq.ufrgs.br/alsoc. * * EMSO Copyright (C) 2004 - 2007 ALSOC, original code * from http://www.rps.eng.br Copyright (C) 2002-2004. * All rights reserved. * * EMSO is distributed under the therms of the ALSOC LICENSE as * available at http://www.enq.ufrgs.br/alsoc. * *--------------------------------------------------------------------- * Hydrolysis of propylene glycol *---------------------------------------------------------------------- * Solved problem from Fogler (1999) * Problem number: 8-4 and 8-5 * Page: 404-410 (Brazilian edition, 2002) *---------------------------------------------------------------------- * * Description: * The propylene glycol is produced for hydrolysis reaction of * propylene oxide in a CSTR: * CH3(O)CHCH3 + H2O -> CH2(OH)CH2(OH)CH3 * This sample calculates the molar conversion that is reached * with this operation condition. In the example 8-4 is used an * adiabatic CSTR and in the example 8-5 is used a CSTR with a * cooling coil. * * Assumptions * * first-order reaction with respect to propylene oxide * * steady-state * * adiabatic system * * liquid phase * * Specify: * * the inlet stream * * the kinetic parameters * * the components parameters * *---------------------------------------------------------------------- * Author: Christiano D. W. Guerra and Rodolfo Rodrigues * $Id: propylene_glycol.mso 202 2007-03-14 04:17:25Z arge $ *--------------------------------------------------------------------*# using "types"; #*--------------------------------------------------------------------- * Example 8-4: In an adiabatic CSTR *--------------------------------------------------------------------*# FlowSheet adiabatic_cstr PARAMETERS NComp as Integer (Brief="Number of components", Lower=1); stoic(NComp)as Real (Brief="Stoichiometric coefficients"); vo(NComp) as flow_vol (Brief="Total input flow", DisplayUnit='ft^3/h'); Hro(NComp) as enth_mol (Brief="Enthalpy of formation", DisplayUnit='Btu/lbmol'); To as temperature (Brief="Initial temperature", DisplayUnit='degR'); Tr as temperature (Brief="Reference temperature", DisplayUnit='degR'); Cp(NComp) as Real (Brief="Molar heat capacity", Unit='Btu/lbmol/degR'); Fo(NComp) as flow_mol (Brief="Input molar flow of component", DisplayUnit='lbmol/h'); V as volume (Brief="Volume of the reactor"); # Rate of reaction A as frequency (Brief="Frequency factor"); E as Real (Brief="Energy activation", Unit='Btu/lbmol'); R as Real (Brief="Universal gas constant", Unit='Btu/lbmol/degR', Default=1.987); VARIABLES T as temperature (Brief="Temperature", DisplayUnit='degR'); k as Real (Brief="Specific rate of reaction", Unit='1/h'); XMB as fraction (Brief="Conversion as Material balance"); XEB as fraction (Brief="Conversion as Energy balance"); tau as time_h (Brief="Residence time"); Theta(NComp)as Real (Brief="Molar fraction between components"); EQUATIONS "Change time in T" T = time*'degR/s'; "Residence time" V = tau*sum(vo); "Parameter Theta" Theta = Fo/Fo(1); "Specific rate of reaction" k = A*exp(-E/R/T); "Conversion as Material balance" XMB*(1 + tau*k) = tau*k; "Conversion as Energy balance" XEB*(sumt(stoic*Hro) + sumt(stoic*Cp)*(T - Tr)) = -sumt(Theta*Cp)*(T - To); SET NComp = 4; # A: propylene oxide, B: water, # C: propylene glicol, and M: methanol stoic = [-1, -1, 1, 0]; # A + B -> C V = 300*'gal'; Hro = [-6.66e4, -1.23e5, -2.26e5, 0]*'Btu/lbmol'; # at Tr Cp = [35, 18, 46, 19.5]*'Btu/lbmol/degR'; vo = [46.62, 233.1, 0, 46.62]*'ft^3/h'; Fo = [43.04, 802.8, 0, 71.87]*'lbmol/h'; To = (75 + 459.69)*'degR'; Tr = (68 + 459.69)*'degR'; A = 16.96e12*'1/h'; E = 32400*'Btu/lbmol'; OPTIONS TimeStart = 535; TimeStep = 0.45; TimeEnd = 625; end #*--------------------------------------------------------------------- * Example 8-5: In a CSTR with a cooling coil *--------------------------------------------------------------------*# FlowSheet cooling_cstr PARAMETERS NComp as Integer (Brief="Number of components", Lower=1); stoic(NComp)as Real (Brief="Stoichiometric coefficients"); vo(NComp) as flow_vol (Brief="Total input flow", DisplayUnit='ft^3/h'); Hro(NComp) as enth_mol (Brief="Enthalpy of formation", DisplayUnit='Btu/lbmol'); To as temperature (Brief="Initial temperature"); Tr as temperature (Brief="Reference temperature"); Ta as temperature (Brief="Temperature of cooling"); Cp(NComp) as Real (Brief="Molar heat capacity", Unit='Btu/lbmol/degR'); Fo(NComp) as flow_mol (Brief="Input molar flow of component", DisplayUnit='lbmol/h'); V as volume (Brief="Volume of the reactor"); U as heat_trans_coeff(Brief="Heat transfer coefficient"); a as area (Brief="Heat transfer area"); # Rate of reaction A as frequency (Brief="Frequency factor"); E as Real (Brief="Energy Activation", Unit='Btu/lbmol'); R as Real (Brief="Universal gas constant", Unit='Btu/lbmol/degR', Default=1.987); VARIABLES XMB as fraction (Brief="Molar conversion as Material balance"); XEB as Real (Brief="Molar conversion as Energy balance", Lower=-0.1, Upper=1.5); k as Real (Brief="Specific rate of reaction", Unit='1/h'); T as temperature (Brief="Temperature", DisplayUnit='degR'); tau as time_h (Brief="Residence time"); Theta(NComp)as Real (Brief="Molar fraction between components"); EQUATIONS "Change time in T" T = time*'degR/s'; "Specific rate of reaction" k = A*exp(-E/(R*T)); "Residence time" V = tau*sum(vo); "Parameter Theta" Theta = Fo/Fo(1); "Conversion as Material balance" XMB*(1 + tau*k) = tau*k; "Conversion as Energy balance" XEB*(sumt(stoic*Hro) + sumt(stoic*Cp)*(T - Tr)) = -(sumt(Theta*Cp)*(T - To) + U*a*(T - Ta)/Fo(1)); SET NComp = 4; # A: propylene oxide, B: water, # C: propylene glicol, and M: methanol stoic = [-1, -1, 1, 0]; # A + B -> C V = 300*'gal'; U = 100*'Btu/ft^2/h/degR'; a = 40*'ft^2'; Hro = [-6.66e4, -1.23e5, -2.26e5, 0]*'Btu/lbmol'; # at Tr Cp = [35, 18, 46, 19.5]*'Btu/lbmol/degR'; vo = [46.62, 233.1, 0, 46.62]*'ft^3/h'; Fo = [43.04, 802.8, 0, 71.87]*'lbmol/h'; To = (75 + 459.69)*'degR'; Tr = (68 + 459.69)*'degR'; Ta = (85 + 459.69)*'degR'; A = 16.96e12*'1/h'; E = 32400*'Btu/lbmol'; OPTIONS TimeStart = 535; TimeStep = 0.45; TimeEnd = 625; end