#*------------------------------------------------------------------- * EMSO Model Library (EML) Copyright (C) 2004 - 2007 ALSOC. * * This LIBRARY is free software; you can distribute it and/or modify * it under the therms of the ALSOC FREE LICENSE as available at * http://www.enq.ufrgs.br/alsoc. * * EMSO Copyright (C) 2004 - 2007 ALSOC, original code * from http://www.rps.eng.br Copyright (C) 2002-2004. * All rights reserved. * * EMSO is distributed under the therms of the ALSOC LICENSE as * available at http://www.enq.ufrgs.br/alsoc. * *---------------------------------------------------------------------- * Author: Paula B. Staudt * $Id$ *--------------------------------------------------------------------*# using "tank"; Model thermosyphon ATTRIBUTES Pallete = true; Icon = "icon/Thermosyphon"; Brief = "Model of a Steady State reboiler thermosyphon."; Info = "== ASSUMPTIONS == * perfect mixing of both phases; * no thermodynamics equilibrium; == SET == * the pressure drop in the reboiler; * the FlowConstant that relates the Flow through the reboiler and the heat duty ** Flow^3 = FlowConstant*InletQ == SPECIFY == * the InletLiquid stream; * the InletQ (the model requires an energy stream, also you can use a controller for setting the heat duty using the heat_flow model) OR the outlet temperature (OutletVapour.T); == OPTIONAL == * the reboiler model has two control ports ** TI OutletVapour Temperature Indicator; ** PI OutletVapour Pressure Indicator; "; PARAMETERS outer PP as Plugin (Brief = "External Physical Properties", Type="PP"); outer NComp as Integer (Brief="Number of Components"); Pdrop as press_delta (Brief="Pressure Drop in the reboiler", Symbol = "\Delta P"); FlowConstant as Real (Brief = "Flow Constant"); k as Real (Brief = "Flow Constant", Hidden = true, Unit='mol^3/(kg*m^2)'); SET k = 1*'mol^3/(kg*m^2)'; VARIABLES in InletLiquid as stream (Brief="Liquid inlet stream", PosX=0.44, PosY=1, Symbol="_{inL}"); out OutletVapour as streamPH (Brief="Vapour outlet stream", PosX=0, PosY=0.09, Symbol="_{outV}"); in InletQ as power (Brief="Heat supplied", PosX=1, PosY=0.77, Symbol="Q_{in}", Protected = true); out TI as control_signal (Brief="Temperature Indicator of Reboiler", Protected = true, PosX=1, PosY=0.57); out PI as control_signal (Brief="Pressure Indicator of Reboiler", Protected = true, PosX=1, PosY=0.35); EQUATIONS "Molar Flow Balance" InletLiquid.F = OutletVapour.F; "Molar Composition Balance" InletLiquid.z = OutletVapour.z; "Energy Balance" InletLiquid.F*InletLiquid.h + InletQ = OutletVapour.F*OutletVapour.h; "Pressure Drop" OutletVapour.P = InletLiquid.P - Pdrop; "Temperature indicator" TI * 'K' = OutletVapour.T; "Pressure indicator" PI * 'atm' = OutletVapour.P; "Flow through the thermosyphon reboiler" OutletVapour.F^3 = FlowConstant*k*InletQ; end Model reboilerSteady ATTRIBUTES Pallete = true; Icon = "icon/ReboilerSteady"; Brief = "Model of a Steady State reboiler with no thermodynamics equilibrium - thermosyphon."; Info = "Model of a Steady State reboiler with two approaches: **Fake Conditions: fake calculation of vaporisation fraction and output temperature, but with a real calculation of the output stream enthalpy. **Flash PH: in the outlet stream a PH Flash is performed to obtain the outlet conditions. == ASSUMPTIONS == * perfect mixing of both phases; * no thermodynamics equilibrium; == SET == * the option Flash_Calculation * the fake Outlet temperature; * the fake outlet vapour fraction; * the pressure drop in the reboiler; * the FlowConstant that relates the Flow through the reboiler and the heat duty ** Flow^3 = FlowConstant*InletQ == SPECIFY == * the InletLiquid stream; * the InletQ (the model requires an energy stream, also you can use a controller for setting the heat duty using the heat_flow model) OR the outlet temperature (OutletVapour.T); == OPTIONAL == * the reboiler model has two control ports ** TI OutletVapour Temperature Indicator; ** PI OutletVapour Pressure Indicator; "; PARAMETERS outer PP as Plugin (Brief = "External Physical Properties", Type="PP"); outer NComp as Integer (Brief="Number of Components"); Flash_Calculation as Switcher (Brief="Flash Calculation", Valid=["Flash_PH","Fake_Conditions"],Default="Fake_Conditions"); Pdrop as press_delta (Brief="Pressure Drop in the reboiler", Symbol = "\Delta P"); FlowConstant as Real (Brief = "Flow Constant"); Fake_Temperature as temperature (Brief="Fake temperature", Symbol = "T_{fake}"); Fake_Vfrac as fraction (Brief="Fake vapour fraction", Symbol = "v_{fake}"); k as Real (Brief = "Flow Constant", Hidden = true, Unit='mol^3/(kg*m^2)'); SET k = 1*'mol^3/(kg*m^2)'; VARIABLES in InletLiquid as stream (Brief="Liquid inlet stream", PosX=0.345, PosY=1, Symbol="_{inL}", Protected = true); out OutletVapour as stream (Brief="Vapour outlet stream", PosX=0.17, PosY=0, Symbol="_{outV}", Protected = true); in InletQ as power (Brief="Heat supplied", PosX=1, PosY=0.08, Symbol="Q_{in}", Protected = true); x(NComp) as fraction (Brief = "Liquid Molar Fraction",Hidden=true); y(NComp) as fraction (Brief = "Vapour Molar Fraction",Hidden=true); out TI as control_signal (Brief="Temperature Indicator of Reboiler", Protected = true, PosX=0.44, PosY=0); out PI as control_signal (Brief="Pressure Indicator of Reboiler", Protected = true, PosX=0.35, PosY=0); EQUATIONS "Molar Flow Balance" InletLiquid.F = OutletVapour.F; "Molar Composition Balance" InletLiquid.z = OutletVapour.z; "Energy Balance" InletLiquid.F*InletLiquid.h + InletQ = OutletVapour.F*OutletVapour.h; "Pressure Drop" OutletVapour.P = InletLiquid.P - Pdrop; "Temperature indicator" TI * 'K' = OutletVapour.T; "Pressure indicator" PI * 'atm' = OutletVapour.P; "Flow through the reboiler" OutletVapour.F^3 = FlowConstant*k*InletQ; switch Flash_Calculation case "Flash_PH": #*"Flash Calculation" [OutletVapour.v, x, y] = PP.FlashPH(OutletVapour.P, OutletVapour.h, OutletVapour.z); "Enthalpy" OutletVapour.h = (1-OutletVapour.v)*PP.LiquidEnthalpy(OutletVapour.T, OutletVapour.P, x) + OutletVapour.v*PP.VapourEnthalpy(OutletVapour.T, OutletVapour.P, y); *# "Fake Vapourisation Fraction" OutletVapour.v = Fake_Vfrac; "Fake output temperature" OutletVapour.T = Fake_Temperature; "Fake Liquid Molar Fraction" x = 1; "Fake Vapour Molar Fraction" y = 1; case "Fake_Conditions": "Fake Vapourisation Fraction" OutletVapour.v = Fake_Vfrac; "Fake output temperature" OutletVapour.T = Fake_Temperature; "Fake Liquid Molar Fraction" x = 1; "Fake Vapour Molar Fraction" y = 1; end end Model reboilerReact ATTRIBUTES Pallete = false; Icon = "icon/Reboiler"; Brief = "Model of a dynamic reboiler with reaction."; Info = "== Assumptions == * perfect mixing of both phases; * thermodynamics equilibrium; * no liquid entrainment in the vapour stream; * the reaction takes place only in the liquid phase. == Specify == * the kinetics variables; * the inlet stream; * the liquid inlet stream; * the outlet flows: OutletVapour.F and OutletLiquid.F; * the heat supply. == Initial Conditions == * the reboiler temperature (OutletLiquid.T); * the reboiler liquid level (Level); * (NoComps - 1) OutletLiquid (OR OutletVapour) compositions. "; PARAMETERS outer PP as Plugin(Type="PP"); outer NComp as Integer; Across as area (Brief="Cross Section Area of reboiler"); V as volume (Brief="Total volume of reboiler"); stoic(NComp) as Real(Brief="Stoichiometric matrix"); Hr as energy_mol; Initial_Level as length (Brief="Initial Level of liquid phase"); Initial_Temperature as temperature (Brief="Initial Temperature of Reboiler"); Initial_Composition(NComp) as fraction (Brief="Initial Liquid Composition"); VARIABLES in InletLiquid as stream (Brief="Liquid inlet stream", PosX=0, PosY=0.5254, Symbol="_{inL}"); out OutletLiquid as liquid_stream (Brief="Liquid outlet stream", PosX=0.2413, PosY=1, Symbol="_{outL}"); out OutletVapour as vapour_stream (Brief="Vapour outlet stream", PosX=0.5079, PosY=0, Symbol="_{outV}"); InletQ as power (Brief="Heat supplied", PosX=1, PosY=0.6123, Symbol="_{in}"); M(NComp) as mol (Brief="Molar Holdup in the tray"); ML as mol (Brief="Molar liquid holdup"); MV as mol (Brief="Molar vapour holdup"); E as energy (Brief="Total Energy Holdup on tray"); vL as volume_mol (Brief="Liquid Molar Volume"); vV as volume_mol (Brief="Vapour Molar volume"); Level as length (Brief="Level of liquid phase"); Vol as volume; rhoV as dens_mass; r3 as reaction_mol (Brief = "Reaction resulting ethyl acetate", DisplayUnit = 'mol/l/s'); C(NComp) as conc_mol (Brief = "Molar concentration", Lower = -1); INITIAL Level = Initial_Level; OutletLiquid.T = Initial_Temperature; OutletLiquid.z(1:NComp-1) = Initial_Composition(1:NComp-1)/sum(Initial_Composition); EQUATIONS "Molar Concentration" OutletLiquid.z = vL * C; "Reaction" r3 = exp(-7150*'K'/OutletLiquid.T)*(4.85e4*C(1)*C(2) - 1.23e4*C(3)*C(4)) * 'l/mol/s'; "Component Molar Balance" diff(M)= InletLiquid.F*InletLiquid.z- OutletLiquid.F*OutletLiquid.z - OutletVapour.F*OutletVapour.z + stoic*r3*ML*vL; "Energy Balance" diff(E) = InletLiquid.F*InletLiquid.h- OutletLiquid.F*OutletLiquid.h - OutletVapour.F*OutletVapour.h + InletQ + Hr * r3 * vL*ML; "Molar Holdup" M = ML*OutletLiquid.z + MV*OutletVapour.z; "Energy Holdup" E = ML*OutletLiquid.h + MV*OutletVapour.h - OutletLiquid.P*V; "Mol fraction normalisation" sum(OutletLiquid.z)=1.0; "Liquid Volume" vL = PP.LiquidVolume(OutletLiquid.T, OutletLiquid.P, OutletLiquid.z); "Vapour Volume" vV = PP.VapourVolume(OutletVapour.T, OutletVapour.P, OutletVapour.z); "Vapour Density" rhoV = PP.VapourDensity(OutletVapour.T, OutletVapour.P, OutletVapour.z); "Level of liquid phase" Level = ML*vL/Across; Vol = ML*vL; "Mechanical Equilibrium" OutletLiquid.P = OutletVapour.P; "Thermal Equilibrium" OutletLiquid.T = OutletVapour.T; "Geometry Constraint" V = ML*vL + MV*vV; "Chemical Equilibrium" PP.LiquidFugacityCoefficient(OutletLiquid.T, OutletLiquid.P, OutletLiquid.z)*OutletLiquid.z = PP.VapourFugacityCoefficient(OutletVapour.T, OutletVapour.P, OutletVapour.z)*OutletVapour.z; sum(OutletLiquid.z)=sum(OutletVapour.z); end Model reboiler ATTRIBUTES Pallete = true; Icon = "icon/Reboiler"; Brief = "Model of a dynamic reboiler - kettle with control."; Info = "== ASSUMPTIONS == * perfect mixing of both phases; * thermodynamics equilibrium; * no liquid entrainment in the vapour stream. == SET == *Orientation: vessel position - vertical or horizontal; *Heads (bottom and top heads are identical) **elliptical: 2:1 elliptical heads (25% of vessel diameter); **hemispherical: hemispherical heads (50% of vessel diameter); *Diameter: Vessel diameter; *Lenght: Side length of the cylinder shell; == SPECIFY == * the InletLiquid stream; * the outlet flows: OutletVapour.F and OutletLiquid.F; * the InletQ (the model requires an energy stream, also you can use a controller for setting the heat duty using the heat_flow model). == OPTIONAL == * the reboiler model has three control ports ** TI OutletLiquid Temperature Indicator; ** PI OutletLiquid Pressure Indicator; ** LI Level Indicator of Reboiler; == INITIAL CONDITIONS == * Initial_Temperature : the reboiler temperature (OutletLiquid.T); * Levelpercent_Initial : the reboiler liquid level in percent (LI); * Initial_Composition : (NoComps) OutletLiquid compositions. "; PARAMETERS outer PP as Plugin (Brief = "External Physical Properties", Type="PP"); outer NComp as Integer (Brief="Number of Components"); Levelpercent_Initial as positive (Brief="Initial liquid height in Percent", Default = 0.70); Initial_Temperature as temperature (Brief="Initial Temperature of Reboiler"); Initial_Composition(NComp) as positive (Brief="Initial Liquid Composition",Lower=1E-6); VARIABLES Geometry as VesselVolume (Brief="Vessel Geometry", Symbol=" "); in InletLiquid as stream (Brief="Liquid inlet stream", PosX=0.17, PosY=1, Symbol="_{in}^{Liquid}"); out OutletLiquid as liquid_stream (Brief="Liquid outlet stream", PosX=0.53, PosY=1, Symbol="_{out}^{Liquid}"); out OutletVapour as vapour_stream (Brief="Vapour outlet stream", PosX=0.17, PosY=0, Symbol="_{out}^{Vapour}"); in InletQ as power (Brief="Heat supplied", Protected = true, PosX=1, PosY=0.08, Symbol="Q_{in}"); out TI as control_signal (Brief="Temperature Indicator of Reboiler", Protected = true, PosX=0.44, PosY=0); out LI as control_signal (Brief="Level Indicator of Reboiler", Protected = true, PosX=0.53, PosY=0); out PI as control_signal (Brief="Pressure Indicator of Reboiler", Protected = true, PosX=0.35, PosY=0); M(NComp) as mol (Brief="Molar Holdup in the tray", Protected = true); ML as mol (Brief="Molar liquid holdup", Protected = true); MV as mol (Brief="Molar vapour holdup", Protected = true); E as energy (Brief="Total Energy Holdup on tray", Protected = true); vL as volume_mol (Brief="Liquid Molar Volume", Protected = true); vV as volume_mol (Brief="Vapour Molar volume", Protected = true); rhoV as dens_mass (Brief="Vapour Density", Protected = true, Symbol="\rho"); Pdrop as press_delta (Brief = "Pressure Drop", DisplayUnit = 'kPa', Symbol ="\Delta P", Protected=true); INITIAL "Initial level Percent" LI = Levelpercent_Initial; "Initial Temperature" OutletLiquid.T = Initial_Temperature; "Initial Composition" OutletLiquid.z(1:NComp-1) = Initial_Composition(1:NComp-1)/sum(Initial_Composition); EQUATIONS "Component Molar Balance" diff(M)= InletLiquid.F*InletLiquid.z - OutletLiquid.F*OutletLiquid.z - OutletVapour.F*OutletVapour.z; "Energy Balance" diff(E) = InletLiquid.F*InletLiquid.h - OutletLiquid.F*OutletLiquid.h - OutletVapour.F*OutletVapour.h + InletQ; "Molar Holdup" M = ML*OutletLiquid.z + MV*OutletVapour.z; "Energy Holdup" E = ML*OutletLiquid.h + MV*OutletVapour.h - OutletLiquid.P*Geometry.Vtotal; "Mol Fraction Normalisation" sum(OutletLiquid.z)=1.0; "Mol fraction Constraint" sum(OutletLiquid.z)=sum(OutletVapour.z); "Vapour Density" rhoV = PP.VapourDensity(OutletVapour.T, OutletVapour.P, OutletVapour.z); "Liquid Volume" vL = PP.LiquidVolume(OutletLiquid.T, OutletLiquid.P, OutletLiquid.z); "Vapour Volume" vV = PP.VapourVolume(OutletVapour.T, OutletVapour.P, OutletVapour.z); "Chemical Equilibrium" PP.LiquidFugacityCoefficient(OutletLiquid.T, OutletLiquid.P, OutletLiquid.z)*OutletLiquid.z = PP.VapourFugacityCoefficient(OutletVapour.T, OutletVapour.P, OutletVapour.z)*OutletVapour.z; "Mechanical Equilibrium" OutletLiquid.P = OutletVapour.P; "Thermal Equilibrium" OutletLiquid.T = OutletVapour.T; "Pressure Drop" OutletLiquid.P = InletLiquid.P - Pdrop; "Geometry Constraint" Geometry.Vtotal = ML*vL + MV*vV; "Liquid Level" ML * vL = Geometry.Vfilled; "Temperature Indicator" TI * 'K' = OutletLiquid.T; "Pressure Indicator" PI * 'atm' = OutletLiquid.P; "Level indicator" LI*Geometry.Vtotal= Geometry.Vfilled; end