#*------------------------------------------------------------------- * EMSO Model Library (EML) Copyright (C) 2004 - 2007 ALSOC. * * This LIBRARY is free software; you can distribute it and/or modify * it under the therms of the ALSOC FREE LICENSE as available at * http://www.enq.ufrgs.br/alsoc. * * EMSO Copyright (C) 2004 - 2007 ALSOC, original code * from http://www.rps.eng.br Copyright (C) 2002-2004. * All rights reserved. * * EMSO is distributed under the therms of the ALSOC LICENSE as * available at http://www.enq.ufrgs.br/alsoc. * *---------------------------------------------------------------------- * Author: Paula B. Staudt * $Id: condenser.mso 555 2008-07-18 19:01:13Z rafael $ *--------------------------------------------------------------------*# using "streams"; Model condenserSteady ATTRIBUTES Pallete = true; Icon = "icon/CondenserSteady"; Brief = "Model of a Steady State condenser with no thermodynamics equilibrium."; Info = "== ASSUMPTIONS == * perfect mixing of both phases; * no thermodynamics equilibrium. == SET == * the pressure drop in the condenser; == SPECIFY == * the InletVapour stream; * the InletQ (the model requires an energy stream, also you can use a controller for setting the heat duty using the heat_flow model). == OPTIONAL == * the condenser model has two control ports ** TI OutletLiquid Temperature Indicator; ** PI OutletLiquid Pressure Indicator; "; PARAMETERS outer PP as Plugin (Brief = "External Physical Properties", Type="PP"); outer NComp as Integer (Brief = "Number of Components"); Pdrop as press_delta (Brief="Pressure Drop in the condenser",Default=0, Symbol="\Delta _P"); VARIABLES in InletVapour as stream (Brief="Vapour inlet stream", PosX=0.16, PosY=0, Symbol="_{in}^{Vapour}"); out OutletLiquid as liquid_stream (Brief="Liquid outlet stream", PosX=0.53, PosY=1, Symbol="_{out}^{Liquid}"); in InletQ as power (Brief="Heat Duty", PosX=1, PosY=0.08, Symbol="Q_{in}",Protected=true); Tbubble as temperature (Brief ="Bubble Temperature",Protected=true, Symbol ="T_{bubble}"); Deg_Subcooled as temp_delta (Brief ="Degrees subcooled",Symbol ="\Delta T_{subcooled}"); out TI as control_signal (Brief="Temperature Indicator of Condenser", Protected = true, PosX=0.50, PosY=0); out PI as control_signal (Brief="Pressure Indicator of Condenser", Protected = true, PosX=0.32, PosY=0); EQUATIONS "Molar Flow Balance" InletVapour.F = OutletLiquid.F; "Molar Composition Balance" InletVapour.z = OutletLiquid.z; "Energy Balance" InletVapour.F*InletVapour.h + InletQ = OutletLiquid.F*OutletLiquid.h; "Pressure Drop" OutletLiquid.P = InletVapour.P - Pdrop; "Bubble Temperature" Tbubble = PP.BubbleT(OutletLiquid.P,OutletLiquid.z); "Temperature" OutletLiquid.T = Tbubble-Deg_Subcooled; "Temperature indicator" TI * 'K' = OutletLiquid.T; "Pressure indicator" PI * 'atm' = OutletLiquid.P; end Model condenserSteady_fakeH ATTRIBUTES Pallete = true; Icon = "icon/CondenserSteady"; Brief = "Model of a Steady State condenser with fake calculation of outlet conditions."; Info = "Model of a Steady State condenser with fake calculation of output temperature, but with a real calculation of the output stream enthalpy. == ASSUMPTIONS == * perfect mixing of both phases; * no thermodynamics equilibrium. == SET == * the fake Outlet temperature ; * the pressure drop in the condenser; == SPECIFY == * the InletVapour stream; * the InletQ (the model requires an energy stream, also you can use a controller for setting the heat duty using the heat_flow model). == OPTIONAL == * the condenser model has two control ports ** TI OutletLiquid Temperature Indicator; ** PI OutletLiquid Pressure Indicator; "; PARAMETERS outer PP as Plugin (Brief = "External Physical Properties", Type="PP"); outer NComp as Integer (Brief = "Number of Components"); Pdrop as press_delta (Brief="Pressure Drop in the condenser",Default=0, Symbol="\Delta _P"); Fake_Temperature as temperature (Brief="Fake temperature", Symbol = "T_{fake}"); VARIABLES in InletVapour as stream (Brief="Vapour inlet stream", PosX=0.16, PosY=0, Symbol="_{in}^{Vapour}"); out OutletLiquid as stream (Brief="Liquid outlet stream", PosX=0.53, PosY=1, Symbol="_{out}^{Liquid}"); in InletQ as power (Brief="Heat Duty", PosX=1, PosY=0.08, Symbol="Q_{in}",Protected=true); out TI as control_signal (Brief="Temperature Indicator of Condenser", Protected = true, PosX=0.50, PosY=0); out PI as control_signal (Brief="Pressure Indicator of Condenser", Protected = true, PosX=0.32, PosY=0); EQUATIONS "Molar Flow Balance" InletVapour.F = OutletLiquid.F; "Molar Composition Balance" InletVapour.z = OutletLiquid.z; "Energy Balance" InletVapour.F*InletVapour.h + InletQ = OutletLiquid.F*OutletLiquid.h; "Pressure Drop" OutletLiquid.P = InletVapour.P - Pdrop; "Fake Temperature" OutletLiquid.T = Fake_Temperature; "Vapourisation Fraction" OutletLiquid.v = 0; "Temperature indicator" TI * 'K' = OutletLiquid.T; "Pressure indicator" PI * 'atm' = OutletLiquid.P; end Model condenserReact ATTRIBUTES Pallete = false; Icon = "icon/Condenser"; Brief = "Model of a Condenser with reaction in liquid phase."; Info = "== Assumptions == * perfect mixing of both phases; * thermodynamics equilibrium; * the reaction only takes place in liquid phase. == Specify == * the reaction related variables; * the inlet stream; * the outlet flows: OutletVapour.F and OutletLiquid.F; * the heat supply. == Initial Conditions == * the condenser temperature (OutletLiquid.T); * the condenser liquid level (Level); * (NoComps - 1) OutletLiquid (OR OutletVapour) compositions. "; PARAMETERS outer PP as Plugin(Type="PP"); outer NComp as Integer; V as volume (Brief="Condenser total volume"); Across as area (Brief="Cross Section Area of reboiler"); stoic(NComp) as Real (Brief="Stoichiometric matrix"); Hr as energy_mol; Initial_Level as length (Brief="Initial Level of liquid phase"); Initial_Temperature as temperature (Brief="Initial Temperature of Condenser"); Initial_Composition(NComp) as fraction (Brief="Initial Liquid Composition"); VARIABLES in InletVapour as stream (Brief="Vapour inlet stream", PosX=0.1164, PosY=0, Symbol="_{inV}"); out OutletLiquid as liquid_stream (Brief="Liquid outlet stream", PosX=0.4513, PosY=1, Symbol="_{outL}"); out OutletVapour as vapour_stream (Brief="Vapour outlet stream", PosX=0.4723, PosY=0, Symbol="_{outV}"); InletQ as power (Brief="Cold supplied", PosX=1, PosY=0.6311, Symbol="_{in}"); M(NComp) as mol (Brief="Molar Holdup in the tray"); ML as mol (Brief="Molar liquid holdup"); MV as mol (Brief="Molar vapour holdup"); E as energy (Brief="Total Energy Holdup on tray"); vL as volume_mol (Brief="Liquid Molar Volume"); vV as volume_mol (Brief="Vapour Molar volume"); Level as length (Brief="Level of liquid phase"); Vol as volume; r3 as reaction_mol (Brief="Reaction Rates", DisplayUnit = 'mol/l/s'); C(NComp) as conc_mol (Brief="Molar concentration", Lower = -1); INITIAL Level = Initial_Level; OutletLiquid.T = Initial_Temperature; OutletLiquid.z(1:NComp-1) = Initial_Composition(1:NComp-1)/sum(Initial_Composition); EQUATIONS "Molar Concentration" OutletLiquid.z = vL * C; "Reaction" r3 = exp(-7150*'K'/OutletLiquid.T)*(4.85e4*C(1)*C(2) - 1.23e4*C(3)*C(4)) * 'l/mol/s'; "Component Molar Balance" diff(M) = InletVapour.F*InletVapour.z - OutletLiquid.F*OutletLiquid.z - OutletVapour.F*OutletVapour.z + stoic*r3*ML*vL; "Energy Balance" diff(E) = InletVapour.F*InletVapour.h - OutletLiquid.F*OutletLiquid.h- OutletVapour.F*OutletVapour.h + InletQ + Hr * r3 * ML*vL; "Molar Holdup" M = ML*OutletLiquid.z + MV*OutletVapour.z; "Energy Holdup" E = ML*OutletLiquid.h + MV*OutletVapour.h - OutletVapour.P*V; "Mol fraction normalisation" sum(OutletLiquid.z)=1.0; "Liquid Volume" vL = PP.LiquidVolume(OutletLiquid.T, OutletLiquid.P, OutletLiquid.z); "Vapour Volume" vV = PP.VapourVolume(OutletVapour.T, OutletVapour.P, OutletVapour.z); "Thermal Equilibrium" OutletLiquid.T = OutletVapour.T; "Mechanical Equilibrium" OutletVapour.P = OutletLiquid.P; "Geometry Constraint" V = ML*vL + MV*vV; Vol = ML*vL; "Level of liquid phase" Level = ML*vL/Across; "Chemical Equilibrium" PP.LiquidFugacityCoefficient(OutletLiquid.T, OutletLiquid.P, OutletLiquid.z)*OutletLiquid.z = PP.VapourFugacityCoefficient(OutletVapour.T, OutletVapour.P, OutletVapour.z)*OutletVapour.z; sum(OutletLiquid.z)=sum(OutletVapour.z); end Model condenser ATTRIBUTES Pallete = true; Icon = "icon/Condenser"; Brief = "Model of a dynamic condenser with control."; Info = "== ASSUMPTIONS == * perfect mixing of both phases; * thermodynamics equilibrium. == SPECIFY == * the InletVapour stream; * the outlet flows: OutletVapour.F and OutletLiquid.F; * the InletQ (the model requires an energy stream, also you can use a controller for setting the heat duty using the heat_flow model). == OPTIONAL == * the condenser model has three control ports ** TI OutletLiquid Temperature Indicator; ** PI OutletLiquid Pressure Indicator; ** LI Level Indicator of Condenser; == INITIAL CONDITIONS == * Initial_Temperature : the condenser temperature (OutletLiquid.T); * Levelpercent_Initial : the condenser liquid level in percent (LI); * Initial_Composition : (NoComps) OutletLiquid compositions. "; PARAMETERS outer PP as Plugin (Brief = "External Physical Properties", Type="PP"); outer NComp as Integer (Brief="Number of Components"); pi as positive (Brief="Pi value", Default=3.141593,Hidden=true, Symbol="\pi"); g as acceleration (Brief="Gravity Acceleration",Default=9.81,Hidden=true); Orientation as Switcher (Valid=["vertical","horizontal"],Default="vertical"); Heads as Switcher (Valid=["elliptical","hemispherical"],Default="elliptical"); Diameter as length (Brief="Vessel diameter", Symbol="D_{i}"); Lenght as length (Brief="Side length of the cylinder shell", Symbol="L_{vessel}"); Vhead_elliptical as volume (Brief="Elliptical Head Total Volume",Hidden=true, Symbol="V_{head}^{elliptical}"); Vhead_hemispherical as volume (Brief="Hemispherical Head Total Volume",Hidden=true, Symbol="V_{head}^{hemispherical}"); Vcylinder as volume (Brief="Cylinder Total Volume",Hidden=true, Symbol="V_{cylinder}"); radius as length (Brief="Vessel radius",Hidden=true, Symbol="R_{cylinder}"); Mw(NComp) as molweight (Brief = "Component Mol Weight",Hidden=true); low_flow as flow_mol (Brief = "Low Flow",Default = 1E-6, Hidden=true); zero_flow as flow_mol (Brief = "No Flow",Default = 0, Hidden=true); KfConst as area (Brief="Constant for K factor pressure drop", Default = 1, Hidden=true); VapourFlow as Switcher (Brief="Vapour Flow", Valid = ["on", "off"], Default = "on",Hidden=true); Kfactor as positive (Brief="K factor for pressure drop", Lower = 1E-8, Default = 1E-3); Levelpercent_Initial as positive (Brief="Initial liquid height in Percent", Default = 0.70); Initial_Temperature as temperature (Brief="Initial Temperature of Condenser"); Initial_Composition(NComp) as positive (Brief="Initial Liquid Composition", Lower=1E-6); VARIABLES in InletVapour as stream (Brief="Vapour inlet stream", PosX=0.13, PosY=0, Symbol="_{in}^{Vapour}"); out OutletLiquid as liquid_stream (Brief="Liquid outlet stream", PosX=0.35, PosY=1, Symbol="_{out}^{Liquid}"); out OutletVapour as vapour_stream (Brief="Vapour outlet stream", PosX=0.54, PosY=0, Symbol="_{out}^{Vapour}"); in InletQ as power (Brief="Heat supplied", Protected = true, PosX=1, PosY=0.08, Symbol="Q_{in}"); out TI as control_signal (Brief="Temperature Indicator of Condenser", Protected = true, PosX=0.33, PosY=0); out LI as control_signal (Brief="Level Indicator of Condenser", Protected = true, PosX=0.43, PosY=0); out PI as control_signal (Brief="Pressure Indicator of Condenser", Protected = true, PosX=0.25, PosY=0); M(NComp) as mol (Brief="Molar Holdup in the tray", Protected = true); ML as mol (Brief="Molar liquid holdup", Protected = true); MV as mol (Brief="Molar vapour holdup", Protected = true); E as energy (Brief="Total Energy Holdup on tray", Protected = true); vL as volume_mol (Brief="Liquid Molar Volume", Protected = true); vV as volume_mol (Brief="Vapour Molar volume", Protected = true); rho as dens_mass (Brief ="Inlet Vapour Mass Density",Hidden=true, Symbol ="\rho"); Level as length (Brief="Level of liquid phase", Protected = true); Pdrop as press_delta (Brief = "Pressure Drop", DisplayUnit = 'kPa', Symbol ="\Delta P", Protected=true); Vtotal as volume (Brief="Vessel total volume",Protected=true, Symbol="V_{total}"); Vfilled as volume (Brief="Vessel volume content",Protected=true, Symbol="V_{filled}"); Across as area (Brief="Cross Section Area of condenser",Protected=true); SET pi = 3.141593; g = 9.81 * 'm/(s^2)'; Vhead_elliptical = (pi*Diameter^3)/12; Vhead_hemispherical = (pi*Diameter^3)/6; Vcylinder = 0.25*(pi*Diameter^2)*Lenght; radius = 0.5*Diameter; Mw = PP.MolecularWeight(); low_flow = 1E-6 * 'kmol/h'; zero_flow = 0 * 'kmol/h'; KfConst = 1*'m^2'; INITIAL "Initial level Percent" LI = Levelpercent_Initial; "Initial Temperature" OutletLiquid.T = Initial_Temperature; "Initial Composition" OutletLiquid.z(1:NComp-1) = Initial_Composition(1:NComp-1)/sum(Initial_Composition); EQUATIONS switch Orientation case "vertical": "Vessel Cross Section Area" Across = 0.25*(pi*Diameter^2); switch Heads case "elliptical": "Vessel Total Volume" Vtotal = Vhead_elliptical + Vcylinder; if Level < 0.25*Diameter then "Vessel Filled Volume" Vfilled = 0.25*pi*(((Diameter*Level)/(0.25*Diameter))^2)*(0.25*Diameter-Level/3); else "Vessel Filled Volume" Vfilled = 0.25*pi*(Diameter^2)*(Level - 0.25*Diameter/3); end case "hemispherical": "Vessel Total Volume" Vtotal = Vhead_hemispherical + Vcylinder; if Level < 0.5*Diameter then "Vessel Filled Volume" Vfilled = 0.25*pi*(Level^2)*(2*Diameter-4*Level/3); else "Vessel Filled Volume" Vfilled = 0.25*pi*((2/3)*((0.5*Diameter)^3) - (0.25*(Diameter)^3) + Level*Diameter^2); end end case "horizontal": "Vessel Cross Section Area" Across = (radius^2)*acos((radius-Level)/radius)-(radius-Level)*sqrt((2*radius*Level-Level^2)); switch Heads case "elliptical": "Vessel Total Volume" Vtotal = Vhead_elliptical + Vcylinder; "Vessel Filled Volume" Vfilled = 0.5236*Level^2*(1.5*Diameter-Level) + Across*Lenght; case "hemispherical": "Vessel Total Volume" Vtotal = Vhead_hemispherical + Vcylinder; "Vessel Filled Volume" Vfilled = 1.0472*Level^2*(1.5*Diameter-Level) + Across*Lenght; end end switch VapourFlow case "on": InletVapour.F*sum(Mw*InletVapour.z) = Kfactor *sqrt(Pdrop*rho)*KfConst; when InletVapour.F < low_flow switchto "off"; case "off": InletVapour.F = zero_flow; when InletVapour.P > OutletLiquid.P switchto "on"; end "Component Molar Balance" diff(M) = InletVapour.F*InletVapour.z - OutletLiquid.F*OutletLiquid.z- OutletVapour.F*OutletVapour.z; "Energy Balance" diff(E) = InletVapour.F*InletVapour.h - OutletLiquid.F*OutletLiquid.h- OutletVapour.F*OutletVapour.h + InletQ; "Molar Holdup" M = ML*OutletLiquid.z + MV*OutletVapour.z; "Energy Holdup" E = ML*OutletLiquid.h + MV*OutletVapour.h - OutletVapour.P*Vtotal; "Mol fraction normalisation" sum(OutletLiquid.z)=1.0; "Mol fraction Constraint" sum(OutletLiquid.z)=sum(OutletVapour.z); "Liquid Volume" vL = PP.LiquidVolume(OutletLiquid.T, OutletLiquid.P, OutletLiquid.z); "Vapour Volume" vV = PP.VapourVolume(OutletVapour.T, OutletVapour.P, OutletVapour.z); "Inlet Vapour Density" rho = PP.VapourDensity(InletVapour.T, InletVapour.P, InletVapour.z); "Chemical Equilibrium" PP.LiquidFugacityCoefficient(OutletLiquid.T, OutletLiquid.P, OutletLiquid.z)*OutletLiquid.z = PP.VapourFugacityCoefficient(OutletVapour.T, OutletVapour.P, OutletVapour.z)*OutletVapour.z; "Thermal Equilibrium" OutletLiquid.T = OutletVapour.T; "Mechanical Equilibrium" OutletVapour.P = OutletLiquid.P; "Pressure Drop" OutletLiquid.P = InletVapour.P - Pdrop; "Geometry Constraint" Vtotal = ML*vL + MV*vV; "Liquid Level" ML * vL = Vfilled; "Temperature indicator" TI * 'K' = OutletLiquid.T; "Pressure indicator" PI * 'atm' = OutletLiquid.P; "Level indicator" LI*Vtotal= Vfilled; end