#*--------------------------------------------------------------------- * EMSO Model Library (EML) Copyright (C) 2004 - 2007 ALSOC. * * This LIBRARY is free software; you can distribute it and/or modify * it under the therms of the ALSOC FREE LICENSE as available at * http://www.enq.ufrgs.br/alsoc. * * EMSO Copyright (C) 2004 - 2007 ALSOC, original code * from http://www.rps.eng.br Copyright (C) 2002-2004. * All rights reserved. * * EMSO is distributed under the therms of the ALSOC LICENSE as * available at http://www.enq.ufrgs.br/alsoc. * *---------------------------------------------------------------------- * 3. Vapor pressure data representation by polynomials and equations *---------------------------------------------------------------------- * * Description: * This problem is part of a collection of 10 representative * problems in Chemical Engineering for solution by numerical methods * developed for Cutlip (1998). * * Subject: * * Mathematical Methods * * Thermodynamics * * Concepts utilized: * Use of polynomials, a modified Clausis-Clapeyron, and the * Antoine equations to model vapor pressure versus temperature data. * * Numerical method: * * Nonlinear regression * * Reference: * * CUTLIP et al. A collection of 10 numerical problems in * chemical engineering solved by various mathematical software * packages. Comp. Appl. in Eng. Education. v. 6, 169-180, 1998. * * More informations and a detailed description of all problems * is available online in http://www.polymath-software.com/ASEE * *---------------------------------------------------------------------- * Author: Rodolfo Rodrigues * GIMSCOP/UFRGS - Group of Integration, Modeling, Simulation, * Control, and Optimization of Processes * $Id$ *--------------------------------------------------------------------*# using "types"; #*--------------------------------------------------------------------- * Simple polynomial equation *--------------------------------------------------------------------*# FlowSheet simple_polynomial PARAMETERS # N as Integer (Brief="Number of polynomial terms", Default=5); # a(N) as Real (Brief="Parameters (coefficients) to be determined", Default=1e-2); a1 as Real (Default=100); a2 as Real (Default=1); a3 as Real (Default=1e-2); a4 as Real (Default=1e-4); a5 as Real (Default=1e-6); VARIABLES P as pressure (Brief="Vapor pressure", DisplayUnit='mmHg', Upper=1e4); T as temperature (Brief="Temperature"); # T(K) EQUATIONS # "Polynomial expression" # P(mmHg) and T(K) # P/'mmHg' = sum(a*(T/'K' - 273.15)^[0:N-1]); "Polynomial expression" # P(mmHg) and T(K) # P/'mmHg' = a1 + (T/'K' - 273.15)*(a2 + (T/'K' - 273.15)*(a3 + # (T/'K' - 273.15)*(a4 + a5*(T/'K' - 273.15)))); P/'mmHg' = a1 + a2*(T/'K' - 273.15) + a3*(T/'K' - 273.15)^2 + a4*(T/'K' - 273.15)^3 + a5*(T/'K' - 273.15)^4; # SET # a = [100 1 1e-2 1e-4 1e-6]; SPECIFY T = 300*'K'; OPTIONS Dynamic = false; end #*--------------------------------------------------------------------- * Clausius-Clapeyron equation *--------------------------------------------------------------------*# FlowSheet clausius_clapeyron PARAMETERS A as Real (Brief="Parameters to be determined", Default=10); B as temperature (Brief="Parameters to be determined", Default=1e3); VARIABLES P as pressure (Brief="Vapor pressure", DisplayUnit='mmHg', Upper=1e4); T as temperature (Brief="Temperature"); # T(K) EQUATIONS "Clausis-Clapeyron equation" # P(mmHg) and T(°C) P/'mmHg' = exp(A - B/T); SPECIFY T = 300*'K'; OPTIONS Dynamic = false; end #*--------------------------------------------------------------------- * Antoine equation *--------------------------------------------------------------------*# FlowSheet antoine PARAMETERS A as Real (Brief="Parameters to be determined", Default=10); B as temperature (Brief="Parameters to be determined", Default=1e3); C as temperature (Brief="Parameters to be determined", Default=20); VARIABLES P as pressure (Brief="Vapor pressure", DisplayUnit='mmHg', Upper=1e4); T as temperature (Brief="Temperature"); # T(K) EQUATIONS "Antoine equation" # P(mmHg) and T(K) P/'mmHg' = exp(A - B/(T + C)); SPECIFY T = 300*'K'; OPTIONS Dynamic = false; end #*--------------------------------------------------------------------- * Parameter estimation to simple polynomial equation *--------------------------------------------------------------------*# Estimation est_pol as simple_polynomial ESTIMATE # PAR START LOWER UPPER UNIT #* a(1) 100 0 1e3; a(2) 1 0 10; a(3) 1e-2 0 10; a(4) 1e-4 0 10; a(5) 1e-6 0 10; *# a1 100 0 1e3; a2 1 0 10; a3 1e-2 0 10; a4 1e-4 0 10; a5 1e-6 0 10; EXPERIMENTS # FILE WEIGTH "prob03.dat" 1; # Data from Perry (1999), Table 2-8 # Solution: a=[24.75, 1.61, 3.56e-2, 4.13e-4, 4.23e-6] OPTIONS NLPSolver( # File = "ipopt_emso", File = "complex", ObjTol = 1e-6); Dynamic = false; end #*--------------------------------------------------------------------- * Parameter estimation to Clausius-Clapeyron equation *--------------------------------------------------------------------*# Estimation est_clau as clausius_clapeyron ESTIMATE # PAR START LOWER UPPER UNIT A 10 -3 100; B 1e3 200 5e3 'K'; EXPERIMENTS # FILE WEIGTH "prob03.dat" 1; # Data from Perry (1999), Table 2-8 # Solution: A=8.75, B=2035.33K OPTIONS NLPSolver( File = "ipopt_emso", # File = "complex", ObjTol = 1e-6); Dynamic = false; end #*--------------------------------------------------------------------- * Parameter estimation to Antoine equation *--------------------------------------------------------------------*# Estimation est_ant as antoine ESTIMATE # PAR START LOWER UPPER UNIT A 10 -3 100; B 1e3 200 5e3 'K'; C 20 -200 200 'K'; EXPERIMENTS # FILE WEIGTH "prob03.dat" 1; # Data from Perry (1999), Table 2-8 # Solution: A=5.73, B=665.42, C=152.47-273.15 OPTIONS NLPSolver( File = "ipopt_emso", # File = "complex", ObjTol = 1e-6); Dynamic = false; end