#*------------------------------------------------------------------- * EMSO Model Library (EML) Copyright (C) 2004 - 2007 ALSOC. * * This LIBRARY is free software; you can distribute it and/or modify * it under the therms of the ALSOC FREE LICENSE as available at * http://www.enq.ufrgs.br/alsoc. * * EMSO Copyright (C) 2004 - 2007 ALSOC, original code * from http://www.rps.eng.br Copyright (C) 2002-2004. * All rights reserved. * * EMSO is distributed under the therms of the ALSOC LICENSE as * available at http://www.enq.ufrgs.br/alsoc. * *---------------------------------------------------------------------- * Author: Paula B. Staudt * $Id: condenser.mso 555 2008-07-18 19:01:13Z rafael $ *--------------------------------------------------------------------*# using "streams"; Model condenser ATTRIBUTES Pallete = true; Icon = "icon/Condenser"; Brief = "Model of a dynamic condenser."; Info = "== Assumptions == * perfect mixing of both phases; * thermodynamics equilibrium. == Specify == * the inlet stream; * the outlet flows: OutletVapour.F and OutletLiquid.F; * the heat supply. == Initial Conditions == * the condenser temperature (OutletLiquid.T); * the condenser liquid level (Level); * (NoComps - 1) OutletLiquid (OR OutletVapour) compositions. "; PARAMETERS outer PP as Plugin (Brief = "External Physical Properties", Type="PP"); outer NComp as Integer; V as volume (Brief="Condenser total volume"); Across as area (Brief="Cross Section Area of reboiler"); Initial_Level as length (Brief="Initial Level of liquid phase"); Initial_Temperature as temperature (Brief="Initial Temperature of Condenser"); Initial_Composition(NComp) as fraction (Brief="Initial Liquid Composition"); VARIABLES in InletVapour as stream (Brief="Vapour inlet stream", PosX=0.15, PosY=0, Symbol="_{inV}"); out OutletLiquid as liquid_stream (Brief="Liquid outlet stream", PosX=0.4513, PosY=1, Symbol="_{outL}"); out OutletVapour as vapour_stream (Brief="Vapour outlet stream", PosX=0.4723, PosY=0, Symbol="_{outV}"); in InletQ as power (Brief="Cold supplied", PosX=1, PosY=0, Symbol="_{in}"); M(NComp) as mol (Brief="Molar Holdup in the tray"); ML as mol (Brief="Molar liquid holdup"); MV as mol (Brief="Molar vapour holdup"); E as energy (Brief="Total Energy Holdup on tray"); vL as volume_mol (Brief="Liquid Molar Volume"); vV as volume_mol (Brief="Vapour Molar volume"); Level as length (Brief="Level of liquid phase"); INITIAL Level = Initial_Level; OutletLiquid.T = Initial_Temperature; OutletLiquid.z(1:NComp-1) = Initial_Composition(1:NComp-1)/sum(Initial_Composition); EQUATIONS "Component Molar Balance" diff(M) = InletVapour.F*InletVapour.z - OutletLiquid.F*OutletLiquid.z- OutletVapour.F*OutletVapour.z; "Energy Balance" diff(E) = InletVapour.F*InletVapour.h - OutletLiquid.F*OutletLiquid.h- OutletVapour.F*OutletVapour.h + InletQ; "Molar Holdup" M = ML*OutletLiquid.z + MV*OutletVapour.z; "Energy Holdup" E = ML*OutletLiquid.h + MV*OutletVapour.h - OutletVapour.P*V; "Mol fraction normalisation" sum(OutletLiquid.z)=1.0; sum(OutletLiquid.z)=sum(OutletVapour.z); "Liquid Volume" vL = PP.LiquidVolume(OutletLiquid.T, OutletLiquid.P, OutletLiquid.z); "Vapour Volume" vV = PP.VapourVolume(OutletVapour.T, OutletVapour.P, OutletVapour.z); "Chemical Equilibrium" PP.LiquidFugacityCoefficient(OutletLiquid.T, OutletLiquid.P, OutletLiquid.z)*OutletLiquid.z = PP.VapourFugacityCoefficient(OutletVapour.T, OutletVapour.P, OutletVapour.z)*OutletVapour.z; "Thermal Equilibrium" OutletLiquid.T = OutletVapour.T; "Mechanical Equilibrium" OutletVapour.P = OutletLiquid.P; "Geometry Constraint" V = ML*vL + MV*vV; "Level of liquid phase" Level = ML*vL/Across; end #*---------------------------------------------------------------------- * Model of a Steady State condenser with no thermodynamics equilibrium *---------------------------------------------------------------------*# Model condenserSteady ATTRIBUTES Pallete = true; Icon = "icon/CondenserSteady"; Brief = "Model of a Steady State condenser with no thermodynamics equilibrium."; Info = "== Assumptions == * perfect mixing of both phases; * no thermodynamics equilibrium. == Specify == * the inlet stream; * the pressure drop in the condenser; * the heat supply. "; PARAMETERS outer PP as Plugin (Brief = "External Physical Properties", Type="PP"); outer NComp as Integer; VARIABLES in InletVapour as stream (Brief="Vapour inlet stream", PosX=0.3431, PosY=0, Symbol="_{inV}"); out OutletLiquid as liquid_stream (Brief="Liquid outlet stream", PosX=0.34375, PosY=1, Symbol="_{outL}"); in InletQ as power (Brief="Cold supplied", PosX=1, PosY=0.5974, Symbol="_{in}"); DP as press_delta (Brief="Pressure Drop in the condenser",Default=0); EQUATIONS "Molar Balance" InletVapour.F = OutletLiquid.F; InletVapour.z = OutletLiquid.z; "Energy Balance" InletVapour.F*InletVapour.h = OutletLiquid.F*OutletLiquid.h + InletQ; "Pressure" DP = InletVapour.P - OutletLiquid.P; end #*------------------------------------------------------------------- * Condenser with reaction in liquid phase *--------------------------------------------------------------------*# Model condenserReact ATTRIBUTES Pallete = false; Icon = "icon/Condenser"; Brief = "Model of a Condenser with reaction in liquid phase."; Info = "== Assumptions == * perfect mixing of both phases; * thermodynamics equilibrium; * the reaction only takes place in liquid phase. == Specify == * the reaction related variables; * the inlet stream; * the outlet flows: OutletVapour.F and OutletLiquid.F; * the heat supply. == Initial Conditions == * the condenser temperature (OutletLiquid.T); * the condenser liquid level (Level); * (NoComps - 1) OutletLiquid (OR OutletVapour) compositions. "; PARAMETERS outer PP as Plugin(Type="PP"); outer NComp as Integer; V as volume (Brief="Condenser total volume"); Across as area (Brief="Cross Section Area of reboiler"); stoic(NComp) as Real (Brief="Stoichiometric matrix"); Hr as energy_mol; Initial_Level as length (Brief="Initial Level of liquid phase"); Initial_Temperature as temperature (Brief="Initial Temperature of Condenser"); Initial_Composition(NComp) as fraction (Brief="Initial Liquid Composition"); VARIABLES in InletVapour as stream (Brief="Vapour inlet stream", PosX=0.1164, PosY=0, Symbol="_{inV}"); out OutletLiquid as liquid_stream (Brief="Liquid outlet stream", PosX=0.4513, PosY=1, Symbol="_{outL}"); out OutletVapour as vapour_stream (Brief="Vapour outlet stream", PosX=0.4723, PosY=0, Symbol="_{outV}"); InletQ as power (Brief="Cold supplied", PosX=1, PosY=0.6311, Symbol="_{in}"); M(NComp) as mol (Brief="Molar Holdup in the tray"); ML as mol (Brief="Molar liquid holdup"); MV as mol (Brief="Molar vapour holdup"); E as energy (Brief="Total Energy Holdup on tray"); vL as volume_mol (Brief="Liquid Molar Volume"); vV as volume_mol (Brief="Vapour Molar volume"); Level as length (Brief="Level of liquid phase"); Vol as volume; r3 as reaction_mol (Brief="Reaction Rates", DisplayUnit = 'mol/l/s'); C(NComp) as conc_mol (Brief="Molar concentration", Lower = -1); INITIAL Level = Initial_Level; OutletLiquid.T = Initial_Temperature; OutletLiquid.z(1:NComp-1) = Initial_Composition(1:NComp-1)/sum(Initial_Composition); EQUATIONS "Molar Concentration" OutletLiquid.z = vL * C; "Reaction" r3 = exp(-7150*'K'/OutletLiquid.T)*(4.85e4*C(1)*C(2) - 1.23e4*C(3)*C(4)) * 'l/mol/s'; "Component Molar Balance" diff(M) = InletVapour.F*InletVapour.z - OutletLiquid.F*OutletLiquid.z - OutletVapour.F*OutletVapour.z + stoic*r3*ML*vL; "Energy Balance" diff(E) = InletVapour.F*InletVapour.h - OutletLiquid.F*OutletLiquid.h- OutletVapour.F*OutletVapour.h + InletQ + Hr * r3 * ML*vL; "Molar Holdup" M = ML*OutletLiquid.z + MV*OutletVapour.z; "Energy Holdup" E = ML*OutletLiquid.h + MV*OutletVapour.h - OutletVapour.P*V; "Mol fraction normalisation" sum(OutletLiquid.z)=1.0; "Liquid Volume" vL = PP.LiquidVolume(OutletLiquid.T, OutletLiquid.P, OutletLiquid.z); "Vapour Volume" vV = PP.VapourVolume(OutletVapour.T, OutletVapour.P, OutletVapour.z); "Thermal Equilibrium" OutletLiquid.T = OutletVapour.T; "Mechanical Equilibrium" OutletVapour.P = OutletLiquid.P; "Geometry Constraint" V = ML*vL + MV*vV; Vol = ML*vL; "Level of liquid phase" Level = ML*vL/Across; "Chemical Equilibrium" PP.LiquidFugacityCoefficient(OutletLiquid.T, OutletLiquid.P, OutletLiquid.z)*OutletLiquid.z = PP.VapourFugacityCoefficient(OutletVapour.T, OutletVapour.P, OutletVapour.z)*OutletVapour.z; sum(OutletLiquid.z)=sum(OutletVapour.z); end