#*------------------------------------------------------------------- * EMSO Model Library (EML) Copyright (C) 2004 - 2007 ALSOC. * * This LIBRARY is free software; you can distribute it and/or modify * it under the therms of the ALSOC FREE LICENSE as available at * http://www.enq.ufrgs.br/alsoc. * * EMSO Copyright (C) 2004 - 2007 ALSOC, original code * from http://www.rps.eng.br Copyright (C) 2002-2004. * All rights reserved. * * EMSO is distributed under the therms of the ALSOC LICENSE as * available at http://www.enq.ufrgs.br/alsoc. *-------------------------------------------------------------------- * Author: Gerson Balbueno Bicca * $Id: DoublePipe.mso 551 2008-07-08 20:51:28Z bicca $ *------------------------------------------------------------------*# using "HEX_Engine"; Model DoublePipe_Geometry ATTRIBUTES Pallete = false; Brief = "double pipe geometrical parameters."; PARAMETERS outer PP as Plugin (Brief="External Physical Properties", Type="PP"); outer NComp as Integer (Brief="Number of Components",Hidden=true); M(NComp) as molweight (Brief="Component Mol Weight",Hidden=true); Pi as constant (Brief="Pi Number",Default=3.14159265, Symbol = "\pi",Hidden=true); DoInner as length (Brief="Outside Diameter of Inner Pipe",Lower=1e-6); DiInner as length (Brief="Inside Diameter of Inner Pipe",Lower=1e-10); DiOuter as length (Brief="Inside Diameter of Outer pipe",Lower=1e-10); Lpipe as length (Brief="Effective Tube Length of one segment of Pipe",Lower=0.1, Symbol = "L_{pipe}"); Kwall as conductivity (Brief="Tube Wall Material Thermal Conductivity",Default=1.0, Symbol = "K_{wall}"); Rfi as positive (Brief="Inside Fouling Resistance",Unit='m^2*K/kW',Default=1e-6,Lower=0); Rfo as positive (Brief="Outside Fouling Resistance",Unit='m^2*K/kW',Default=1e-6,Lower=0); SET #"Component Molecular Weight" M = PP.MolecularWeight(); #"Pi Number" Pi = 3.14159265; end Model DoublePipe_Basic ATTRIBUTES Pallete = false; Brief = "Basic Equations for rigorous double pipe heat exchanger model."; Info = "Thermal analysis of double pipe heat exchanger using the NTU or LMTD Method. == References == [1] E.A.D. Saunders, Heat Exchangers: Selection, Design and Construction, Longman, Harlow, 1988. [2] Serth, Robert W., Process Heat Transfer: Principles and Applications, Elsevier, 2007. [3] Gnielinski, V., Forced convection in ducts, in Heat Exchanger Design Handbook, Vol. 2 Hemisphere Publishing Corp., New York, 1988."; PARAMETERS outer PP as Plugin (Brief="External Physical Properties", Type="PP"); outer NComp as Integer (Brief="Number of Components",Hidden=true); M(NComp) as molweight (Brief="Component Mol Weight",Hidden=true); HotSide as Switcher (Brief="Flag for Fluid Alocation ",Valid=["outer","inner"],Default="outer",Hidden=true); innerFlowRegime as Switcher (Brief="Inner Flow Regime ",Valid=["laminar","transition","turbulent"],Default="laminar",Hidden=true); outerFlowRegime as Switcher (Brief="Outer Flow Regime ",Valid=["laminar","transition","turbulent"],Default="laminar",Hidden=true); InnerLaminarCorrelation as Switcher (Brief="Heat Transfer Correlation in Laminar Flow for the Inner Side",Valid=["Hausen","Schlunder"],Default="Hausen"); InnerTransitionCorrelation as Switcher (Brief="Heat Transfer Correlation in Transition Flow for the Inner Side",Valid=["Gnielinski","Hausen"],Default="Gnielinski"); InnerTurbulentCorrelation as Switcher (Brief="Heat Transfer Correlation in Turbulent Flow for the Inner Side",Valid=["Petukhov","SiederTate"],Default="Petukhov"); OuterLaminarCorrelation as Switcher (Brief="Heat Transfer Correlation in Laminar Flow for the Outer Side",Valid=["Hausen","Schlunder"],Default="Hausen"); OuterTransitionCorrelation as Switcher (Brief="Heat Transfer Correlation in Transition Flow for the OuterSide",Valid=["Gnielinski","Hausen"],Default="Gnielinski"); OuterTurbulentCorrelation as Switcher (Brief="Heat Transfer Correlation in Turbulent Flow for the Outer Side",Valid=["Petukhov","SiederTate"],Default="Petukhov"); CalculationApproach as Switcher (Brief="Options for convergence Calculations ",Valid=["Simplified","Full"],Default="Full"); Qestimated as power (Brief="Estimated Duty", Default=70, Lower=1e-6, Upper=1e10); VARIABLES Geometry as DoublePipe_Geometry (Brief="Double pipe geometry",Symbol=" "); in InletInner as stream (Brief="Inlet Inner Stream", PosX=0, PosY=0.5225, Symbol="_{inInner}"); in InletOuter as stream (Brief="Inlet Outer Stream", PosX=0.2805, PosY=0, Symbol="_{inOuter}"); out OutletInner as streamPH (Brief="Outlet Inner Stream", PosX=1, PosY=0.5225, Symbol="_{outInner}"); out OutletOuter as streamPH (Brief="Outlet Outer Stream", PosX=0.7264, PosY=1, Symbol="_{outOuter}"); Details as Details_Main (Brief="Some Details in the Heat Exchanger", Symbol=" "); Inner as Main_DoublePipe (Brief="Inner Side of the Heat Exchanger", Symbol="_{Inner}"); Outer as Main_DoublePipe (Brief="Outer Side of the Heat Exchanger", Symbol="_{Outer}"); SET #"Inner Pipe Cross Sectional Area for Flow" Inner.HeatTransfer.As = 0.25*Geometry.Pi*Geometry.DiInner*Geometry.DiInner; #"Outer Pipe Cross Sectional Area for Flow" Outer.HeatTransfer.As = 0.25*Geometry.Pi*(Geometry.DiOuter*Geometry.DiOuter - Geometry.DoInner*Geometry.DoInner); #"Inner Pipe Hydraulic Diameter for Heat Transfer" Inner.HeatTransfer.Dh = Geometry.DiInner; #"Outer Pipe Hydraulic Diameter for Heat Transfer" Outer.HeatTransfer.Dh = (Geometry.DiOuter*Geometry.DiOuter-Geometry.DoInner*Geometry.DoInner)/Geometry.DoInner; #"Inner Pipe Hydraulic Diameter for Pressure Drop" Inner.PressureDrop.Dh = Geometry.DiInner; #"Outer Pipe Hydraulic Diameter for Pressure Drop" Outer.PressureDrop.Dh=Geometry.DiOuter-Geometry.DoInner; EQUATIONS "Outer Stream Average Temperature" Outer.Properties.Average.T = 0.5*InletOuter.T + 0.5*OutletOuter.T; "Inner Stream Average Temperature" Inner.Properties.Average.T = 0.5*InletInner.T + 0.5*OutletInner.T; "Outer Stream Average Pressure" Outer.Properties.Average.P = 0.5*InletOuter.P+0.5*OutletOuter.P; "Inner Stream Average Pressure" Inner.Properties.Average.P = 0.5*InletInner.P+0.5*OutletInner.P; "Inner Stream Wall Temperature" Inner.Properties.Wall.Twall = 0.5*Outer.Properties.Average.T + 0.5*Inner.Properties.Average.T; "Outer Stream Wall Temperature" Outer.Properties.Wall.Twall = 0.5*Outer.Properties.Average.T + 0.5*Inner.Properties.Average.T; "Outer Stream Average Molecular Weight" Outer.Properties.Average.Mw = sum(M*InletOuter.z); "Inner Stream Average Molecular Weight" Inner.Properties.Average.Mw = sum(M*InletInner.z); "Flow Mass Inlet Inner Stream" Inner.Properties.Inlet.Fw = sum(M*InletInner.z)*InletInner.F; "Flow Mass Outlet Inner Stream" Inner.Properties.Outlet.Fw = sum(M*OutletInner.z)*OutletInner.F; "Flow Mass Inlet Outer Stream" Outer.Properties.Inlet.Fw = sum(M*InletOuter.z)*InletOuter.F; "Flow Mass Outlet Outer Stream" Outer.Properties.Outlet.Fw = sum(M*OutletOuter.z)*OutletOuter.F; "Molar Balance Outer Stream" OutletOuter.F = InletOuter.F; "Molar Balance Inner Stream" OutletInner.F = InletInner.F; "Outer Stream Molar Fraction Constraint" OutletOuter.z=InletOuter.z; "Inner Stream Molar Fraction Constraint" OutletInner.z=InletInner.z; "Exchange Surface Area for one segment of pipe" Details.A=Geometry.Pi*Geometry.DoInner*Geometry.Lpipe; if InletInner.v equal 0 then "Average Heat Capacity Inner Stream" Inner.Properties.Average.Cp = PP.LiquidCp(Inner.Properties.Average.T,Inner.Properties.Average.P,InletInner.z); "Average Mass Density Inner Stream" Inner.Properties.Average.rho = PP.LiquidDensity(Inner.Properties.Average.T,Inner.Properties.Average.P,InletInner.z); "Inlet Mass Density Inner Stream" Inner.Properties.Inlet.rho = PP.LiquidDensity(InletInner.T,InletInner.P,InletInner.z); "Outlet Mass Density Inner Stream" Inner.Properties.Outlet.rho = PP.LiquidDensity(OutletInner.T,OutletInner.P,OutletInner.z); "Average Viscosity Inner Stream" Inner.Properties.Average.Mu = PP.LiquidViscosity(Inner.Properties.Average.T,Inner.Properties.Average.P,InletInner.z); "Average Conductivity Inner Stream" Inner.Properties.Average.K = PP.LiquidThermalConductivity(Inner.Properties.Average.T,Inner.Properties.Average.P,InletInner.z); "Viscosity Inner Stream at wall temperature" Inner.Properties.Wall.Mu = PP.LiquidViscosity(Inner.Properties.Wall.Twall,Inner.Properties.Average.P,InletInner.z); else "Average Heat Capacity InnerStream" Inner.Properties.Average.Cp = PP.VapourCp(Inner.Properties.Average.T,Inner.Properties.Average.P,InletInner.z); "Average Mass Density Inner Stream" Inner.Properties.Average.rho = PP.VapourDensity(Inner.Properties.Average.T,Inner.Properties.Average.P,InletInner.z); "Inlet Mass Density Inner Stream" Inner.Properties.Inlet.rho = PP.VapourDensity(InletInner.T,InletInner.P,InletInner.z); "Outlet Mass Density Inner Stream" Inner.Properties.Outlet.rho = PP.VapourDensity(OutletInner.T,OutletInner.P,OutletInner.z); "Average Viscosity Inner Stream" Inner.Properties.Average.Mu = PP.VapourViscosity(Inner.Properties.Average.T,Inner.Properties.Average.P,InletInner.z); "Average Conductivity Inner Stream" Inner.Properties.Average.K = PP.VapourThermalConductivity(Inner.Properties.Average.T,Inner.Properties.Average.P,InletInner.z); "Viscosity Inner Stream at wall temperature" Inner.Properties.Wall.Mu = PP.VapourViscosity(Inner.Properties.Wall.Twall,Inner.Properties.Average.P,InletInner.z); end if InletOuter.v equal 0 then "Average Heat Capacity Outer Stream" Outer.Properties.Average.Cp = PP.LiquidCp(Outer.Properties.Average.T,Outer.Properties.Average.P,InletOuter.z); "Average Mass Density Outer Stream" Outer.Properties.Average.rho = PP.LiquidDensity(Outer.Properties.Average.T,Outer.Properties.Average.P,InletOuter.z); "Inlet Mass Density Outer Stream" Outer.Properties.Inlet.rho = PP.LiquidDensity(InletOuter.T,InletOuter.P,InletOuter.z); "Outlet Mass Density Outer Stream" Outer.Properties.Outlet.rho = PP.LiquidDensity(OutletOuter.T,OutletOuter.P,OutletOuter.z); "Average Viscosity Outer Stream" Outer.Properties.Average.Mu = PP.LiquidViscosity(Outer.Properties.Average.T,Outer.Properties.Average.P,InletOuter.z); "Average Conductivity Outer Stream" Outer.Properties.Average.K = PP.LiquidThermalConductivity(Outer.Properties.Average.T,Outer.Properties.Average.P,InletOuter.z); "Viscosity Outer Stream at wall temperature" Outer.Properties.Wall.Mu = PP.LiquidViscosity(Outer.Properties.Wall.Twall,Outer.Properties.Average.P,InletOuter.z); else "Average Heat Capacity Outer Stream" Outer.Properties.Average.Cp = PP.VapourCp(Outer.Properties.Average.T,Outer.Properties.Average.P,InletOuter.z); "Average Mass Density Outer Stream" Outer.Properties.Average.rho = PP.VapourDensity(Outer.Properties.Average.T,Outer.Properties.Average.P,InletOuter.z); "Inlet Mass Density Outer Stream" Outer.Properties.Inlet.rho = PP.VapourDensity(InletOuter.T,InletOuter.P,InletOuter.z); "Outlet Mass Density Outer Stream" Outer.Properties.Outlet.rho = PP.VapourDensity(OutletOuter.T,OutletOuter.P,OutletOuter.z); "Average Viscosity Outer Stream" Outer.Properties.Average.Mu = PP.VapourViscosity(Outer.Properties.Average.T,Outer.Properties.Average.P,InletOuter.z); "Average Conductivity Outer Stream" Outer.Properties.Average.K = PP.VapourThermalConductivity(Outer.Properties.Average.T,Outer.Properties.Average.P,InletOuter.z); "Viscosity Outer Stream at wall temperature" Outer.Properties.Wall.Mu = PP.VapourViscosity(Outer.Properties.Wall.Twall,Outer.Properties.Average.P,InletOuter.z); end switch HotSide case "outer": "Energy Balance Outer Stream" Details.Q = InletOuter.F*(InletOuter.h-OutletOuter.h); "Energy Balance Inner Stream" Details.Q = InletInner.F*(OutletInner.h-InletInner.h); when InletInner.T > InletOuter.T switchto "inner"; case "inner": "Energy Balance Hot Stream" Details.Q = InletInner.F*(InletInner.h-OutletInner.h); "Energy Balance Cold Stream" Details.Q = InletOuter.F*(OutletOuter.h - InletOuter.h); when InletInner.T < InletOuter.T switchto "outer"; end switch innerFlowRegime case "laminar": "Inner Side Friction Factor for Pressure Drop - laminar Flow" Inner.PressureDrop.fi*Inner.PressureDrop.Re = 16; when Inner.PressureDrop.Re > 2300 switchto "transition"; case "transition": "using Turbulent Flow" (Inner.PressureDrop.fi-0.0035)*(Inner.PressureDrop.Re^0.42) = 0.264; when Inner.PressureDrop.Re < 2300 switchto "laminar"; when Inner.PressureDrop.Re > 10000 switchto "turbulent"; case "turbulent": "Inner Side Friction Factor" (Inner.PressureDrop.fi-0.0035)*(Inner.PressureDrop.Re^0.42) = 0.264; when Inner.PressureDrop.Re < 10000 switchto "transition"; end switch outerFlowRegime case "laminar": "Outer Side Friction Factor - laminar Flow" Outer.PressureDrop.fi*Outer.PressureDrop.Re = 16; when Outer.PressureDrop.Re > 2300 switchto "transition"; case "transition": "using Turbulent Flow" (Outer.PressureDrop.fi-0.0035)*(Outer.PressureDrop.Re^0.42) = 0.264; when Outer.PressureDrop.Re < 2300 switchto "laminar"; when Outer.PressureDrop.Re > 10000 switchto "turbulent"; case "turbulent": "Outer Side Friction Factor" (Outer.PressureDrop.fi-0.0035)*(Outer.PressureDrop.Re^0.42) = 0.264; when Outer.PressureDrop.Re < 10000 switchto "transition"; end switch innerFlowRegime case "laminar": "Inner Side Friction Factor for Heat Transfer - laminar Flow" Inner.HeatTransfer.fi = 1/(0.79*ln(Inner.HeatTransfer.Re)-1.64)^2; switch InnerLaminarCorrelation case "Hausen": "Nusselt Number" Inner.HeatTransfer.Nu = 3.665 + ((0.19*((Geometry.DiInner/Geometry.Lpipe)*Inner.HeatTransfer.Re*Inner.HeatTransfer.PR)^0.8)/(1+0.117*((Geometry.DiInner/Geometry.Lpipe)*Inner.HeatTransfer.Re*Inner.HeatTransfer.PR)^0.467)); case "Schlunder": "Nusselt Number" Inner.HeatTransfer.Nu = (49.027896+4.173281*Inner.HeatTransfer.Re*Inner.HeatTransfer.PR*(Geometry.DiInner/Geometry.Lpipe))^(1/3); end when Inner.HeatTransfer.Re > 2300 switchto "transition"; case "transition": "Inner Side Friction Factor for Heat Transfer - transition Flow" Inner.HeatTransfer.fi = 1/(0.79*ln(Inner.HeatTransfer.Re)-1.64)^2; switch InnerTransitionCorrelation case "Gnielinski": "Nusselt Number" Inner.HeatTransfer.Nu*(1+(12.7*sqrt(0.125*Inner.HeatTransfer.fi)*((Inner.HeatTransfer.PR)^(2/3) -1))) = 0.125*Inner.HeatTransfer.fi*(Inner.HeatTransfer.Re-1000)*Inner.HeatTransfer.PR; case "Hausen": "Nusselt Number" Inner.HeatTransfer.Nu =0.116*(Inner.HeatTransfer.Re^(0.667)-125)*Inner.HeatTransfer.PR^(0.333)*(1+(Geometry.DiInner/Geometry.Lpipe)^0.667); end when Inner.HeatTransfer.Re < 2300 switchto "laminar"; when Inner.HeatTransfer.Re > 10000 switchto "turbulent"; case "turbulent": switch InnerTurbulentCorrelation case "Petukhov": "Inner Side Friction Factor for Heat Transfer - turbulent Flow" Inner.HeatTransfer.fi = 1/(1.82*log(Inner.HeatTransfer.Re)-1.64)^2; "Nusselt Number" Inner.HeatTransfer.Nu*(1.07+(12.7*sqrt(0.125*Inner.HeatTransfer.fi)*((Inner.HeatTransfer.PR)^(2/3) -1))) = 0.125*Inner.HeatTransfer.fi*Inner.HeatTransfer.Re*Inner.HeatTransfer.PR; case "SiederTate": "Nusselt Number" Inner.HeatTransfer.Nu = 0.027*(Inner.HeatTransfer.PR)^(1/3)*(Inner.HeatTransfer.Re)^(4/5); "Inner Side Friction Factor for Heat Transfer - turbulent Flow" Inner.HeatTransfer.fi = 1/(1.82*log(Inner.HeatTransfer.Re)-1.64)^2; end when Inner.HeatTransfer.Re < 10000 switchto "transition"; end switch outerFlowRegime case "laminar": "Outer Side Friction Factor for Heat Transfer - laminar Flow" Outer.HeatTransfer.fi = 1/(0.79*ln(Outer.HeatTransfer.Re)-1.64)^2; switch OuterLaminarCorrelation case "Hausen": "Nusselt Number" Outer.HeatTransfer.Nu = 3.665 + ((0.19*((Outer.HeatTransfer.Dh/Geometry.Lpipe)*Outer.HeatTransfer.Re*Outer.HeatTransfer.PR)^0.8)/(1+0.117*((Outer.HeatTransfer.Dh/Geometry.Lpipe)*Outer.HeatTransfer.Re*Outer.HeatTransfer.PR)^0.467)); case "Schlunder": "Nusselt Number" Outer.HeatTransfer.Nu = (49.027896+4.173281*Outer.HeatTransfer.Re*Outer.HeatTransfer.PR*(Outer.HeatTransfer.Dh/Geometry.Lpipe))^(1/3); end when Outer.HeatTransfer.Re > 2300 switchto "transition"; case "transition": switch OuterTransitionCorrelation case "Gnielinski": "Outer Side Friction Factor for Heat Transfer - transition Flow" Outer.HeatTransfer.fi = 1/(0.79*ln(Outer.HeatTransfer.Re)-1.64)^2; "Nusselt Number" Outer.HeatTransfer.Nu*(1+(12.7*sqrt(0.125*Outer.HeatTransfer.fi)*((Outer.HeatTransfer.PR)^(2/3) -1))) = 0.125*Outer.HeatTransfer.fi*(Outer.HeatTransfer.Re-1000)*Outer.HeatTransfer.PR; case "Hausen": "Nusselt Number" Outer.HeatTransfer.Nu = 0.116*(Outer.HeatTransfer.Re^(0.667)-125)*Outer.HeatTransfer.PR^(0.333)*(1+(Outer.HeatTransfer.Dh/Geometry.Lpipe)^0.667); "Outer Side Friction Factor for Heat Transfer - transition Flow" Outer.HeatTransfer.fi = 1/(0.79*ln(Outer.HeatTransfer.Re)-1.64)^2; end when Outer.HeatTransfer.Re < 2300 switchto "laminar"; when Outer.HeatTransfer.Re > 10000 switchto "turbulent"; case "turbulent": switch OuterTurbulentCorrelation case "Petukhov": "Outer Side Friction Factor for Heat Transfer - turbulent Flow" Outer.HeatTransfer.fi = 1/(1.82*log(Outer.HeatTransfer.Re)-1.64)^2; "Nusselt Number" Outer.HeatTransfer.Nu*(1.07+(12.7*sqrt(0.125*Outer.HeatTransfer.fi)*((Outer.HeatTransfer.PR)^(2/3) -1))) = 0.125*Outer.HeatTransfer.fi*Outer.HeatTransfer.Re*Outer.HeatTransfer.PR; case "SiederTate": "Nusselt Number" Outer.HeatTransfer.Nu = 0.027*(Outer.HeatTransfer.PR)^(1/3)*(Outer.HeatTransfer.Re)^(4/5); "Outer Side Friction Factor for Heat Transfer - turbulent Flow" Outer.HeatTransfer.fi = 1/(1.82*log(Outer.HeatTransfer.Re)-1.64)^2; end when Outer.HeatTransfer.Re < 10000 switchto "transition"; end switch CalculationApproach case "Full": "Total Pressure Drop Outer Stream" Outer.PressureDrop.Pdrop = Outer.PressureDrop.Pd_fric; "Total Pressure Drop Inner Stream" Inner.PressureDrop.Pdrop = Inner.PressureDrop.Pd_fric; "Pressure Drop Outer Stream" OutletOuter.P = InletOuter.P - Outer.PressureDrop.Pdrop; "Pressure Drop Inner Stream" OutletInner.P = InletInner.P - Inner.PressureDrop.Pdrop; "Outer Pipe Pressure Drop for friction" Outer.PressureDrop.Pd_fric = (2*Outer.PressureDrop.fi*Geometry.Lpipe*Outer.Properties.Average.rho*Outer.HeatTransfer.Vmean^2)/(Outer.PressureDrop.Dh*Outer.HeatTransfer.Phi); "Inner Pipe Pressure Drop for friction" Inner.PressureDrop.Pd_fric = (2*Inner.PressureDrop.fi*Geometry.Lpipe*Inner.Properties.Average.rho*Inner.HeatTransfer.Vmean^2)/(Geometry.DiInner*Inner.HeatTransfer.Phi); case "Simplified": "Total Pressure Drop Outer Stream" Outer.PressureDrop.Pdrop = Outer.PressureDrop.Pd_fric; "Total Pressure Drop Inner Stream" Inner.PressureDrop.Pdrop = Inner.PressureDrop.Pd_fric; "Pressure Drop Outer Stream" OutletOuter.P = InletOuter.P - Outer.PressureDrop.Pdrop; "Pressure Drop Inner Stream" OutletInner.P = InletInner.P - Inner.PressureDrop.Pdrop; "Outer Pipe Pressure Drop for friction" Outer.PressureDrop.Pd_fric = 0.01*InletOuter.P; "Inner Pipe Pressure Drop for friction" Inner.PressureDrop.Pd_fric = 0.01*InletInner.P; end "Inner Pipe Film Coefficient" Inner.HeatTransfer.hcoeff = (Inner.HeatTransfer.Nu*Inner.Properties.Average.K/Geometry.DiInner)*Inner.HeatTransfer.Phi; "Outer Pipe Film Coefficient" Outer.HeatTransfer.hcoeff= (Outer.HeatTransfer.Nu*Outer.Properties.Average.K/Outer.HeatTransfer.Dh)*Outer.HeatTransfer.Phi; "Outer Pipe Pressure Drop due to return" Outer.PressureDrop.Pd_ret = 0*'kPa'; "Inner Pipe Pressure Drop due to return" Inner.PressureDrop.Pd_ret = 0*'kPa'; "Outer Pipe Phi correction" Outer.HeatTransfer.Phi = (Outer.Properties.Average.Mu/Outer.Properties.Wall.Mu)^0.14; "Inner Pipe Phi correction" Inner.HeatTransfer.Phi = (Inner.Properties.Average.Mu/Inner.Properties.Wall.Mu)^0.14; "Outer Pipe Prandtl Number" Outer.HeatTransfer.PR = ((Outer.Properties.Average.Cp/Outer.Properties.Average.Mw)*Outer.Properties.Average.Mu)/Outer.Properties.Average.K; "Inner Pipe Prandtl Number" Inner.HeatTransfer.PR = ((Inner.Properties.Average.Cp/Inner.Properties.Average.Mw)*Inner.Properties.Average.Mu)/Inner.Properties.Average.K; "Outer Pipe Reynolds Number for Heat Transfer" Outer.HeatTransfer.Re = (Outer.Properties.Average.rho*Outer.HeatTransfer.Vmean*Outer.HeatTransfer.Dh)/Outer.Properties.Average.Mu; "Outer Pipe Reynolds Number for Pressure Drop" Outer.PressureDrop.Re = (Outer.Properties.Average.rho*Outer.HeatTransfer.Vmean*Outer.PressureDrop.Dh)/Outer.Properties.Average.Mu; "Inner Pipe Reynolds Number for Heat Transfer" Inner.HeatTransfer.Re = (Inner.Properties.Average.rho*Inner.HeatTransfer.Vmean*Inner.HeatTransfer.Dh)/Inner.Properties.Average.Mu; "Inner Pipe Reynolds Number for Pressure Drop" Inner.PressureDrop.Re = Inner.HeatTransfer.Re; "Outer Pipe Velocity" Outer.HeatTransfer.Vmean*(Outer.HeatTransfer.As*Outer.Properties.Average.rho) = Outer.Properties.Inlet.Fw; "Inner Pipe Velocity" Inner.HeatTransfer.Vmean*(Inner.HeatTransfer.As*Inner.Properties.Average.rho) = Inner.Properties.Inlet.Fw; "Overall Heat Transfer Coefficient Clean" Details.Uc*((Geometry.DoInner/(Inner.HeatTransfer.hcoeff*Geometry.DiInner) )+(Geometry.DoInner*ln(Geometry.DoInner/Geometry.DiInner)/(2*Geometry.Kwall))+(1/(Outer.HeatTransfer.hcoeff)))=1; "Overall Heat Transfer Coefficient Dirty" Details.Ud*(Geometry.Rfi*(Geometry.DoInner/Geometry.DiInner) + Geometry.Rfo + (Geometry.DoInner/(Inner.HeatTransfer.hcoeff*Geometry.DiInner) )+(Geometry.DoInner*ln(Geometry.DoInner/Geometry.DiInner)/(2*Geometry.Kwall))+(1/(Outer.HeatTransfer.hcoeff)))=1; end Model DoublePipe_NTU as DoublePipe_Basic ATTRIBUTES Icon = "icon/DoublePipe"; Pallete = true; Brief = "Double Pipe Heat Exchanger - NTU Method"; Info = "Thermal analysis of double pipe heat exchanger using the NTU Method. == Specify == * The Inlet Inner stream * The Inlet Outer stream == Setting Parameters == * Flow Direction: ** counter flow ** cocurrent flow (Default) * Heat Transfer Correlations: ** Laminar flow *** Hausen (Default) *** Schlunder ** Transition flow *** Gnielinski (Default) *** Hausen ** Turbulent flow *** Petukhov (Default) *** Sieder Tate * Geometrical Parameters: ** DoInner - Outside Diameter of Inner Pipe ** DiInner - Inside Diameter of Inner Pipe ** DiOuter - Inside Diameter of Outer pipe ** Lpipe - Effective Tube Length of one segment of Pipe ** Kwall - Tube Wall Material Thermal Conductivity * Fouling: **Rfi - Inside Fouling Resistance **Rfo - Outside Fouling Resistance "; PARAMETERS FlowDirection as Switcher (Brief="Flow Direction",Valid=["counter","cocurrent"],Default="cocurrent"); Eftestimated as positive (Brief="Effectiveness estimate",Default=0.5); VARIABLES Method as NTU_Basic (Brief="NTU Method of Calculation", Symbol=" "); EQUATIONS "Effectiveness Correction" Method.Eft1 = 1; switch CalculationApproach case "Full": "Number of Units Transference" Method.NTU*Method.Cmin = Details.Ud*Geometry.Pi*Geometry.DoInner*Geometry.Lpipe; "Minimum Heat Capacity" Method.Cmin = min([Method.Ch,Method.Cc]); "Maximum Heat Capacity" Method.Cmax = max([Method.Ch,Method.Cc]); "Thermal Capacity Ratio" Method.Cr = Method.Cmin/Method.Cmax; if Method.Cr equal 0 then "Effectiveness" Method.Eft = 1-exp(-Method.NTU); else switch FlowDirection case "cocurrent": "Effectiveness in Cocurrent Flow" Method.Eft = (1-exp(-Method.NTU*(1+Method.Cr)))/(1+Method.Cr); case "counter": if Method.Cr equal 1 then "Effectiveness in Counter Flow" Method.Eft = Method.NTU/(1+Method.NTU); else "Effectiveness in Counter Flow" Method.Eft = (1-exp(-Method.NTU*(1-Method.Cr)))/(1-Method.Cr*exp(-Method.NTU*(1-Method.Cr))); end end end case "Simplified": "Number of Units Transference" Method.NTU = 1; "Minimum Heat Capacity" Method.Cmin = min([Method.Ch,Method.Cc]); "Maximum Heat Capacity" Method.Cmax = max([Method.Ch,Method.Cc]); "Thermal Capacity Ratio" Method.Cr = 1; "Effectiveness" Method.Eft = Eftestimated; end switch HotSide case "outer": switch CalculationApproach case "Full": "Duty" Details.Q = Method.Eft*Method.Cmin*(InletOuter.T-InletInner.T); case "Simplified": "Duty" Details.Q = Qestimated; end "Hot Stream Heat Capacity" Method.Ch = InletOuter.F*Outer.Properties.Average.Cp; "Cold Stream Heat Capacity" Method.Cc = InletInner.F*Inner.Properties.Average.Cp; when InletInner.T > InletOuter.T switchto "inner"; case "inner": switch CalculationApproach case "Full": "Duty" Details.Q = Method.Eft*Method.Cmin*(InletInner.T-InletOuter.T); case "Simplified": "Duty" Details.Q = Qestimated; end "Cold Stream Heat Capacity" Method.Cc = InletOuter.F*Outer.Properties.Average.Cp; "Hot Stream Heat Capacity" Method.Ch = InletInner.F*Inner.Properties.Average.Cp; when InletInner.T < InletOuter.T switchto "outer"; end end Model DoublePipe_LMTD as DoublePipe_Basic ATTRIBUTES Icon = "icon/DoublePipe"; Pallete = true; Brief = "Double Pipe Heat Exchanger - LMTD Method"; Info = "Thermal analysis of double pipe heat exchanger using the LMTD Method. == Specify == * The Inlet Inner stream * The Inlet Outer stream == Setting Parameters == * Flow Direction: ** counter flow ** cocurrent flow (Default) * Heat Transfer Correlations: ** Laminar flow *** Hausen (Default) *** Schlunder ** Transition flow *** Gnielinski (Default) *** Hausen ** Turbulent flow *** Petukhov (Default) *** Sieder Tate * Geometrical Parameters: ** DoInner - Outside Diameter of Inner Pipe ** DiInner - Inside Diameter of Inner Pipe ** DiOuter - Inside Diameter of Outer pipe ** Lpipe - Effective Tube Length of one segment of Pipe ** Kwall - Tube Wall Material Thermal Conductivity * Fouling: **Rfi - Inside Fouling Resistance **Rfo - Outside Fouling Resistance "; PARAMETERS FlowDirection as Switcher (Brief="Flow Direction",Valid=["counter","cocurrent"],Default="cocurrent"); VARIABLES Method as LMTD_Basic (Brief="LMTD Method of Calculation", Symbol=" "); EQUATIONS switch CalculationApproach case "Full": "Duty" Details.Q = Details.Ud*Geometry.Pi*Geometry.DoInner*Geometry.Lpipe*Method.LMTD; case "Simplified": "Duty" Details.Q = Qestimated; end "LMTD Correction Factor - True counter ou cocurrent flow" Method.Fc = 1; switch HotSide case "outer": switch FlowDirection case "cocurrent": "Temperature Difference at Inlet - Cocurrent Flow" Method.DT0 = InletOuter.T - InletInner.T; "Temperature Difference at Outlet - Cocurrent Flow" Method.DTL = OutletOuter.T - OutletInner.T; case "counter": "Temperature Difference at Inlet - Counter Flow" Method.DT0 = InletOuter.T - OutletInner.T; "Temperature Difference at Outlet - Counter Flow" Method.DTL = OutletOuter.T - InletInner.T; end when InletInner.T > InletOuter.T switchto "inner"; case "inner": switch FlowDirection case "cocurrent": "Temperature Difference at Inlet - Cocurrent Flow" Method.DT0 = InletInner.T - InletOuter.T; "Temperature Difference at Outlet - Cocurrent Flow" Method.DTL = OutletInner.T - OutletOuter.T; case "counter": "Temperature Difference at Inlet - Counter Flow" Method.DT0 = InletInner.T - OutletOuter.T; "Temperature Difference at Outlet - Counter Flow" Method.DTL = OutletInner.T - InletOuter.T; end when InletInner.T < InletOuter.T switchto "outer"; end end