#*------------------------------------------------------------------- * Model of a dynamic reboiler *-------------------------------------------------------------------- * * Streams: * * a liquid inlet stream * * a liquid outlet stream * * a vapour outlet stream * * a feed stream * * Assumptions: * * perfect mixing of both phases * * thermodynamics equilibrium * * no liquid entrainment in the vapour stream * * Specify: * * the Feed stream * * the Liquid inlet stream * * the outlet flows: OutletV.F and OutletL.F * * Initial: * * the reboiler temperature (OutletL.T) * * the reboiler liquid level (Ll) * * (NoComps - 1) OutletL (OR OutletV) compositions * * *---------------------------------------------------------------------- * Author: Paula B. Staudt * $Id: reboiler.mso 46 2006-11-07 16:47:55Z paula $ *--------------------------------------------------------------------*# using "streams"; Model reboiler PARAMETERS ext PP as CalcObject; ext NComp as Integer; Across as area (Brief="Cross Section Area of reboiler"); V as volume (Brief="Total volume of reboiler"); VARIABLES in Inlet as stream; # (Brief="Feed Stream"); in InletL as stream; # (Brief="Liquid inlet stream"); out OutletL as stream_therm; # (Brief="Liquid outlet stream"); out OutletV as stream_therm; # (Brief="Vapour outlet stream"); in Q as heat_rate (Brief="Heat supplied"); M(NComp) as mol (Brief="Molar Holdup in the tray"); ML as mol (Brief="Molar liquid holdup"); MV as mol (Brief="Molar vapour holdup"); E as energy (Brief="Total Energy Holdup on tray"); vL as volume_mol (Brief="Liquid Molar Volume"); vV as volume_mol (Brief="Vapour Molar volume"); Level as length (Brief="Level of liquid phase"); rhoV as dens_mass (Brief="Vapour Density"); EQUATIONS "Component Molar Balance" diff(M)= Inlet.F*Inlet.z + InletL.F*InletL.z - OutletL.F*OutletL.z - OutletV.F*OutletV.z; "Energy Balance" diff(E) = Inlet.F*Inlet.h + InletL.F*InletL.h - OutletL.F*OutletL.h - OutletV.F*OutletV.h + Q; "Molar Holdup" M = ML*OutletL.z + MV*OutletV.z; "Energy Holdup" E = ML*OutletL.h + MV*OutletV.h - OutletL.P*V; "Mol fraction normalisation" sum(OutletL.z)=1.0; sum(OutletL.z)=sum(OutletV.z); "Vapour Density" rhoV = PP.VapourDensity(OutletV.T, OutletV.P, OutletV.z); "Liquid Volume" vL = PP.LiquidVolume(OutletL.T, OutletL.P, OutletL.z); "Vapour Volume" vV = PP.VapourVolume(OutletV.T, OutletV.P, OutletV.z); "Chemical Equilibrium" PP.LiquidFugacityCoefficient(OutletL.T, OutletL.P, OutletL.z)*OutletL.z = PP.VapourFugacityCoefficient(OutletV.T, OutletV.P, OutletV.z)*OutletV.z; "Mechanical Equilibrium" OutletL.P = OutletV.P; "Thermal Equilibrium" OutletL.T = OutletV.T; "Geometry Constraint" V = ML*vL + MV*vV; "Level of liquid phase" Level = ML*vL/Across; "vaporization fraction" OutletV.v = 1.0; OutletL.v = 0.0; end #*---------------------------------------------------------------------- * Model of a Steady State reboiler with no thermodynamics equilibrium *---------------------------------------------------------------------*# Model reboilerSteady PARAMETERS ext PP as CalcObject; ext NComp as Integer; DP as press_delta (Brief="Pressure Drop in the reboiler"); VARIABLES in InletL as stream; #(Brief="Liquid inlet stream"); out OutletV as stream_therm; #(Brief="Vapour outlet stream"); in Q as heat_rate (Brief="Heat supplied"); vV as volume_mol (Brief="Vapour Molar volume"); rhoV as dens_mass (Brief="Vapour Density"); EQUATIONS "Molar Balance" InletL.F = OutletV.F; InletL.z = OutletV.z; "Vapour Volume" vV = PP.VapourVolume(OutletV.T, OutletV.P, OutletV.z); "Vapour Density" rhoV = PP.VapourDensity(OutletV.T, OutletV.P, OutletV.z); "Energy Balance" InletL.F*InletL.h + Q = OutletV.F*OutletV.h; "Pressure" DP = InletL.P - OutletV.P; "Vapourisation Fraction" OutletV.v = 1.0; end Model reboilerSteady_fakeH PARAMETERS ext PP as CalcObject; ext NComp as Integer; DP as press_delta (Brief="Pressure Drop in the reboiler"); k as Real (Brief = "Flow Constant", Unit="mol/J"); VARIABLES in InletL as stream; #(Brief="Liquid inlet stream"); out OutletV as stream; #(Brief="Vapour outlet stream"); in Q as heat_rate (Brief="Heat supplied"); EQUATIONS "Molar Balance" InletL.F = OutletV.F; InletL.z = OutletV.z; "Energy Balance" InletL.F*InletL.h + Q = OutletV.F*OutletV.h; "Pressure" DP = InletL.P - OutletV.P; "Fake Vapourisation Fraction" OutletV.v = 1.0; "Fake output temperature" OutletV.T = 300*"K"; "Pressure Drop through the reboiler" OutletV.F = k*Q; end #*------------------------------------------------------------------- * Model of a dynamic reboiler with reaction *-------------------------------------------------------------------*# Model reboilerReact PARAMETERS ext PP as CalcObject; ext NComp as Integer; Across as area (Brief="Cross Section Area of reboiler"); V as volume (Brief="Total volume of reboiler"); stoic(NComp) as Real(Brief="Stoichiometric matrix"); Hr as energy_mol; Pstartup as pressure; VARIABLES in Inlet as stream; #(Brief="Feed Stream"); in InletL as stream; #(Brief="Liquid inlet stream"); out OutletL as stream_therm; #(Brief="Liquid outlet stream"); out OutletV as stream_therm; #(Brief="Vapour outlet stream"); Q as heat_rate (Brief="Heat supplied"); M(NComp) as mol (Brief="Molar Holdup in the tray"); ML as mol (Brief="Molar liquid holdup"); MV as mol (Brief="Molar vapour holdup"); E as energy (Brief="Total Energy Holdup on tray"); vL as volume_mol (Brief="Liquid Molar Volume"); vV as volume_mol (Brief="Vapour Molar volume"); Level as length (Brief="Level of liquid phase"); Vol as volume; startup as Real; rhoV as dens_mass; r as reaction_mol (Brief = "Reaction resulting ethyl acetate", Unit = "mol/l/s"); C(NComp) as conc_mol (Brief = "Molar concentration", Lower = -1); EQUATIONS "Molar Concentration" OutletL.z = vL * C; "Component Molar Balance" diff(M)= Inlet.F*Inlet.z + InletL.F*InletL.z - OutletL.F*OutletL.z - OutletV.F*OutletV.z + stoic*r*ML*vL; "Energy Balance" diff(E) = Inlet.F*Inlet.h + InletL.F*InletL.h - OutletL.F*OutletL.h - OutletV.F*OutletV.h + Q + Hr * r * vL*ML; "Molar Holdup" M = ML*OutletL.z + MV*OutletV.z; "Energy Holdup" E = ML*OutletL.h + MV*OutletV.h - OutletL.P*V; "Mol fraction normalisation" sum(OutletL.z)=1.0; "Liquid Volume" vL = PP.LiquidVolume(OutletL.T, OutletL.P, OutletL.z); "Vapour Volume" vV = PP.VapourVolume(OutletV.T, OutletV.P, OutletV.z); "Vapour Density" rhoV = PP.VapourDensity(OutletV.T, OutletV.P, OutletV.z); "Level of liquid phase" Level = ML*vL/Across; Vol = ML*vL; "vaporization fraction " OutletV.v = 1.0; OutletL.v = 0.0; "Mechanical Equilibrium" OutletL.P = OutletV.P; "Thermal Equilibrium" OutletL.T = OutletV.T; "Geometry Constraint" V = ML*vL + MV*vV; "Chemical Equilibrium" PP.LiquidFugacityCoefficient(OutletL.T, OutletL.P, OutletL.z)*OutletL.z = PP.VapourFugacityCoefficient(OutletV.T, OutletV.P, OutletV.z)*OutletV.z; sum(OutletL.z)=sum(OutletV.z); end