#*------------------------------------------------------------------- * EMSO Model Library (EML) Copyright (C) 2004 - 2007 ALSOC. * * This LIBRARY is free software; you can distribute it and/or modify * it under the therms of the ALSOC FREE LICENSE as available at * http://www.enq.ufrgs.br/alsoc. * * EMSO Copyright (C) 2004 - 2007 ALSOC, original code * from http://www.rps.eng.br Copyright (C) 2002-2004. * All rights reserved. * * EMSO is distributed under the therms of the ALSOC LICENSE as * available at http://www.enq.ufrgs.br/alsoc. * *-------------------------------------------------------------------- * Sample file for model tray *-------------------------------------------------------------------- * * This sample file needs VRTherm DEMO (www.vrtech.com.br) to run. * *---------------------------------------------------------------------- * Author: Paula B. Staudt * $Id: sample_tray.mso 498 2008-04-11 18:21:24Z paula $ *--------------------------------------------------------------------*# using "stage_separators/tray"; FlowSheet tray_Test_1 PARAMETERS PP as Plugin(Brief="Physical Properties", Type="PP", Components = [ "n-pentane", "benzene"], LiquidModel = "PR", VapourModel = "PR" ); NComp as Integer; SET NComp = PP.NumberOfComponents; VARIABLES deltaP as pressure; phiL as Real; DEVICES t1 as tray; feed as source; inL as liquid_stream; inV as vapour_stream; CONNECTIONS feed.Outlet to t1.Inlet; inL to t1.InletL; inV to t1.InletV; EQUATIONS deltaP = t1.InletV.P - t1.OutletV.P; phiL = t1.ML*t1.vL / t1.V; SPECIFY feed.Outlet.F = 113.4 * 'kmol/h'; feed.Outlet.T = 291 * 'K'; feed.Outlet.P = 1.66 * 'atm'; feed.Outlet.z = [0.5, 0.5]; inL.P = 165 * 'kPa'; inL.T = 310 * 'K'; inL.F = 61.99 * 'kmol/h'; inL.z = [0.1641, 0.8359]; inV.P = 150 * 'kPa'; inV.T = 321 * 'K'; inV.z = [0.0584, 0.9416]; t1.Emv = 1; t1.OutletV.F = 147.1 * 'kmol/h'; SET t1.V = 4 * 'ft^3'; t1.Ah = 0.394 * 'ft^2'; t1.lw = 20.94 * 'in'; t1.hw = 0.125 * 'ft'; t1.Q = 0 * 'kW'; t1.beta = 0.6; t1.alfa = 4; t1.Ap = 3.94 * 'ft^2'; INITIAL t1.OutletL.T = 320 *'K'; t1.Level = 1.2 * t1.hw; t1.OutletL.z(1) = 0.5; OPTIONS InitialFile = "/home/paula/tray_Test.rlt"; TimeStep = 10; TimeEnd = 100; end FlowSheet tray_Test_2 PARAMETERS PP as Plugin(Brief="Physical Properties", Type="PP", Components = [ "isobutane", "n-pentane", "propylene", "benzene", "isobutene" ], LiquidModel = "PR", VapourModel = "PR" ); NComp as Integer; SET NComp = PP.NumberOfComponents; VARIABLES deltaP as pressure (Lower=-10); phiL as volume; DEVICES t1 as tray; feed as source; inL as liquid_stream; inV as vapour_stream; CONNECTIONS feed.Outlet to t1.Inlet; inL to t1.InletL; inV to t1.InletV; EQUATIONS deltaP = t1.InletV.P - t1.OutletV.P; phiL = t1.ML*t1.vL; SPECIFY feed.Outlet.F = 0 * 'kmol/h'; feed.Outlet.T = 300 * 'K'; feed.Outlet.P = 1.66 * 'atm'; feed.Outlet.z = [0.2, 0.2, 0.2, 0.2, 0.2]; inL.P = 2.22 * 'atm'; inL.T = 297.6 * 'K'; inL.F = 71.21 * 'kmol/h'; inL.z = [0.226, 0.425, 0.035, 0.025, 0.289]; #inV.F = 175.3 * 'kmol/h'; inV.P = 2.3062 * 'atm'; inV.T = 308.3 * 'K'; inV.z = [0.265, 0.233, 0.150, 0.014, 0.338]; t1.OutletV.F = 178 * 'kmol/h'; t1.Emv = 1; SET t1.V = 4 * 'ft^3'; t1.Ah = 0.394 * 'ft^2'; t1.lw = 20.94 * 'in'; t1.hw = 0.125 * 'ft'; t1.Q = 0 * 'kW'; t1.beta = 0.6; t1.alfa = 4; t1.Ap = 3.94 * 'ft^2'; INITIAL t1.OutletL.T = 304 *'K'; t1.Level = 1.2 * t1.hw; t1.OutletL.z([1:4]) = [0.2, 0.2, 0.2, 0.2]; OPTIONS #InitialFile = "/home/paula/tray_Test.rlt"; TimeStep = 10; TimeEnd = 100; end #to compare with tray_Test_1 FlowSheet packedStage_BilletSchultes_Test_1 PARAMETERS PP as Plugin(Brief="Physical Properties", Type="PP", Components = [ "n-pentane", "benzene"], LiquidModel = "PR", VapourModel = "PR" ); NComp as Integer; SET NComp = PP.NumberOfComponents; VARIABLES deltaP as Real (Unit='atm/m'); DEVICES t1 as packedStage_BilletSchultes; feed as source; inL as liquid_stream; inV as vapour_stream; CONNECTIONS feed.Outlet to t1.Inlet; inL to t1.InletL; inV to t1.InletV; EQUATIONS deltaP = (t1.InletV.P - t1.OutletV.P)/t1.hs; SPECIFY feed.Outlet.F = 113.4 * 'kmol/h'; feed.Outlet.T = 291 * 'K'; feed.Outlet.P = 1.66 * 'atm'; feed.Outlet.z = [0.5, 0.5]; inL.P = 165 * 'kPa'; inL.T = 310 * 'K'; inL.F = 61.99 * 'kmol/h'; inL.z = [0.1641, 0.8359]; inV.F = 201.25 * 'kmol/h'; inV.P = 150 * 'kPa'; inV.T = 321 * 'K'; inV.z = [0.0584, 0.9416]; SET #Metal Pall Ring - nominal packing size 50 mm - Billet and Schultes, 1999. t1.Q = 0 * 'kW'; t1.Ap = 0.8 * 'm^2'; t1.V = 0.8 * 'm^2' * 0.4 * 'm'; t1.ds = 1.009 * 'm'; t1.Cpo = 0.763; t1.e = 0.951; t1.a = 112.6 * 'm^2/m^3'; t1.hs = 0.4 * 'm'; t1.Qsio = 1; INITIAL t1.OutletL.T = 320 *'K'; t1.ML = 0.25 * 'kmol'; t1.OutletL.z(1) = 0.5; OPTIONS InitialFile = "packedStage_BilletSchultes_Test_1.rlt"; DAESolver(File="sundials"); TimeStep = 100; TimeEnd = 1000; end #to compare with tray_Test_2 FlowSheet packedStage_BilletSchultes_Test_2 PARAMETERS PP as Plugin(Brief="Physical Properties", Type="PP", Components = [ "isobutane", "n-pentane", "propylene", "benzene", "isobutene" ], LiquidModel = "PR", VapourModel = "PR" ); NComp as Integer; SET NComp = PP.NumberOfComponents; VARIABLES deltaP as Real (Unit='atm/m'); phiL as volume; DEVICES t1 as packedStage_BilletSchultes; feed as source; inL as liquid_stream; inV as vapour_stream; CONNECTIONS feed.Outlet to t1.Inlet; inL to t1.InletL; inV to t1.InletV; EQUATIONS deltaP = (t1.InletV.P - t1.OutletV.P)/t1.hs; phiL = t1.vL * t1.ML; SPECIFY feed.Outlet.F = 0 * 'kmol/h'; feed.Outlet.T = 300 * 'K'; feed.Outlet.P = 1.66 * 'atm'; feed.Outlet.z = [0.2, 0.2, 0.2, 0.2, 0.2]; inL.F = 71.21 * 'kmol/h'; inL.P = 2.22 * 'atm'; inL.T = 297.6 * 'K'; inL.z = [0.226, 0.425, 0.035, 0.025, 0.289]; inV.F = 175.3 * 'kmol/h'; inV.P = 2.3062 * 'atm'; inV.T = 308.3 * 'K'; inV.z = [0.265, 0.233, 0.150, 0.014, 0.338]; #t1.OutletV.F = 177.9 * 'kmol/h'; SET #Metal Pall Ring - nominal packing size 50 mm - Billet and Schultes, 1999. t1.Q = 0 * 'kW'; #t1.Ap = 0.8 * 'm^2'; #t1.V = 0.8 * 'm^2' * 0.4 * 'm'; # t1.ds = 1.009 * 'm'; t1.Cpo = 0.763; t1.e = 0.951; t1.a = 112.6 * 'm^2/m^3'; # t1.hs = 0.4 * 'm'; t1.Qsio = 1; t1.V = 4 * 'ft^2' * 1 * 'ft'; t1.Ap = 4 * 'ft^2'; t1.hs = 1 * 'ft'; t1.ds = 2.26 * 'ft'; INITIAL t1.OutletL.T = 304 *'K'; t1.ML = 0.18 * 'kmol'; t1.OutletL.z([1:4]) = [0.2, 0.2, 0.2, 0.2]; OPTIONS DAESolver(File="sundials"); #InitialFile = "packedStage_BilletSchultes_Test.rlt"; InitialFile = "/home/paula/tray_Test_2.rlt"; TimeStep = 5; TimeEnd = 60; end #to compare with tray_Test_1 FlowSheet packedStage_Test_1 PARAMETERS PP as Plugin(Brief="Physical Properties", Type="PP", Components = [ "n-pentane", "benzene"], LiquidModel = "PR", VapourModel = "PR" ); NComp as Integer; SET NComp = PP.NumberOfComponents; VARIABLES deltaP as Real (Unit='atm/m'); DEVICES t1 as packedStage; feed as source; inL as liquid_stream; inV as vapour_stream; CONNECTIONS feed.Outlet to t1.Inlet; inL to t1.InletL; inV to t1.InletV; EQUATIONS deltaP = (t1.InletV.P - t1.OutletV.P)/t1.hs; SPECIFY feed.Outlet.F = 113.4 * 'kmol/h'; feed.Outlet.T = 291 * 'K'; feed.Outlet.P = 1.66 * 'atm'; feed.Outlet.z = [0.5, 0.5]; inL.P = 165 * 'kPa'; inL.T = 315 * 'K'; #310 * 'K'; inL.F = 61.99 * 'kmol/h'; inL.z = [0.1641, 0.8359];#[0.5, 0.5];# inV.F = 201.25 * 'kmol/h'; inV.P = 150 * 'kPa'; inV.T = 315 * 'K'; #321 * 'K'; inV.z = [0.0584, 0.9416];#[0.5, 0.5];# t1.OutletV.P = 145 * 'kPa'; #t1.OutletV.F = 190 * 'kmol/h'; SET #Metal Pall Ring - nominal packing size 50 mm - Billet and Schultes, 1999. t1.Q = 0 * 'kW'; t1.V = 0.8 * 'm^2' * 0.4 * 'm'; t1.d = 1.009 * 'm'; t1.Cpo = 0.763; t1.e = 0.951; t1.a = 112.6 * 'm^2/m^3'; t1.hs = 0.4 * 'm'; t1.Qsil = 10; INITIAL t1.OutletL.T = 315 *'K'; t1.ML = 0.25 * 'kmol'; t1.OutletL.z(1) = 0.1641; OPTIONS DAESolver(File="sundials"); TimeStep = 0.001; TimeEnd = 0.1; end #to compare with tray_Test_2 FlowSheet packedStage_Test_2 PARAMETERS PP as Plugin(Brief="Physical Properties", Type="PP", Components = [ "isobutane", "n-pentane", "propylene", "benzene", "isobutene" ], LiquidModel = "PR", VapourModel = "PR" ); NComp as Integer; SET NComp = PP.NumberOfComponents; VARIABLES deltaP as Real (Unit='atm/m'); #(Unit='inH2O/m*mm/in'); phiL as Real; DEVICES t1 as packedStage; feed as source; inL as liquid_stream; inV as vapour_stream; CONNECTIONS feed.Outlet to t1.Inlet; inL to t1.InletL; inV to t1.InletV; EQUATIONS deltaP = (t1.InletV.P - t1.OutletV.P)/t1.hs; phiL = t1.vL * t1.ML/t1.V; SPECIFY feed.Outlet.F = 0 * 'kmol/h'; feed.Outlet.T = 300 * 'K'; feed.Outlet.P = 1.66 * 'atm'; feed.Outlet.z = [0.226, 0.425, 0.035, 0.025, 0.289]; inL.F = 71.21 * 'kmol/h'; inL.P = 2.22 * 'atm'; inL.T = 297.6 * 'K'; inL.z = [0.226, 0.425, 0.035, 0.025, 0.289]; inV.F = 175.3 * 'kmol/h'; inV.P = 2.3062 * 'atm'; inV.T = 308.3 * 'K'; inV.z = [0.265, 0.233, 0.150, 0.014, 0.338]; t1.deltaP = 0.01 * 'atm'; #t1.OutletV.F = 165 * 'kmol/h'; SET #Metal Pall Ring - nominal packing size 50 mm - Billet and Schultes, 1999. t1.Q = 0 * 'kW'; #t1.Ap = 0.8 * 'm^2'; #t1.V = 0.8 * 'm^2' * 0.4 * 'm'; # t1.ds = 1.009 * 'm'; t1.Cpo = 0.763; t1.e = 0.951; t1.a = 112.6 * 'm^2/m^3'; # t1.hs = 0.4 * 'm'; t1.V = 4 * 'ft^2' * 1 * 'ft'; t1.hs = 1 * 'ft'; t1.d = 2.26 * 'ft'; t1.Qsil = 10; INITIAL t1.OutletL.T = 290 *'K'; t1.ML = 0.02 * 'kmol'; t1.OutletL.z([1:4]) = [0.226, 0.425, 0.035, 0.025]; #[0.022, 0.0425, 0.0035, 0.95]; OPTIONS DAESolver(File="sundials"); #InitialFile = "/home/paula/tray_Test_2.rlt"; TimeStep = 10; TimeEnd = 100; end FlowSheet packedStageAirWater_Test PARAMETERS PP as Plugin(Brief="Physical Properties", Type="PP", Components = [ "nitrogen", "water"], LiquidModel = "IdealLiquid", VapourModel = "Ideal" ); NComp as Integer; SET NComp = PP.NumberOfComponents; VARIABLES deltaP as Real (Unit='inH2O/m*mm/in'); DEVICES t1 as packedStage_AirWater; feed as source; inL as liquid_stream; inV as vapour_stream; CONNECTIONS feed.Outlet to t1.Inlet; inL to t1.InletL; inV to t1.InletV; EQUATIONS deltaP = (t1.InletV.P - t1.OutletV.P)/t1.hs; SPECIFY feed.Outlet.F = 0 * 'kmol/h'; feed.Outlet.T = 293 * 'K'; feed.Outlet.P = 1 * 'atm'; feed.Outlet.z = [0 1]; inL.F = 100 * 'kmol/h'; #71.21 * 'kmol/h'; inL.P = 1 * 'atm'; inL.T = 293 * 'K'; inL.z = [0 1]; inV.F = 175.3 * 'kmol/h'; inV.P = 1.1 * 'atm'; inV.T = 295 * 'K'; inV.z = [1 0]; t1.OutletV.P = 1.08 * 'atm'; SET #Metal Bialecki Ring - nominal packing size 25 mm - Billet and Schultes, 1999. t1.Cpo = 0.891; t1.Ch = 0.692; t1.e = 0.956; t1.a = 210 * 'm^2/m^3'; t1.Q = 0 * 'kW'; t1.V = 0.018 * 'm^2' * 1.4 * 'm'; t1.Ap = 0.018 * 'm^2'; t1.hs = 1.4 * 'm'; t1.ds = 0.15 * 'm'; INITIAL t1.OutletL.T = 293 *'K'; t1.ML = 0.002 * 'kmol'; OPTIONS #InitialFile = "/home/paula/packedStageAirWater_Test.rlt"; DAESolver(File="dassl"); TimeStep = 10; TimeEnd = 100; end