#*------------------------------------------------------------------- * EMSO Model Library (EML) Copyright (C) 2004 - 2007 ALSOC. * * This LIBRARY is free software; you can distribute it and/or modify * it under the therms of the ALSOC FREE LICENSE as available at * http://www.enq.ufrgs.br/alsoc. * * EMSO Copyright (C) 2004 - 2007 ALSOC, original code * from http://www.rps.eng.br Copyright (C) 2002-2004. * All rights reserved. * * EMSO is distributed under the therms of the ALSOC LICENSE as * available at http://www.enq.ufrgs.br/alsoc. *-------------------------------------------------------------------- * Author: Gerson Balbueno Bicca * $Id: PHE.mso 250 2007-04-27 16:32:02Z bicca $ *------------------------------------------------------------------*# using "HEX_Engine"; Model PHE_PressureDrop ATTRIBUTES Pallete = false; Brief = "to be documented"; Info = "to be documented"; VARIABLES DPchannel as press_delta (Brief="Channel Pressure Drop",Default=0.01, Lower=1E10,DisplayUnit='kPa', Symbol ="\Delta P^{channel}"); DPports as press_delta (Brief="Ports Pressure Drop",Default=0.01, Lower=1E-10,DisplayUnit='kPa', Symbol ="\Delta P^{ports}"); Pdrop as press_delta (Brief="Total Pressure Drop",Default=0.01, Lower=1E-10,DisplayUnit='kPa', Symbol ="\Delta P"); fi as fricfactor (Brief="Friction Factor", Default=0.05, Lower=1E-10, Upper=2000); Vchannel as velocity (Brief="Stream Velocity in Channel",Lower=1E-8, Symbol ="V^{channel}"); Vports as velocity (Brief="Stream Velocity in Ports",Lower=1E-8, Symbol ="V^{ports}"); Npassage as positive (Brief="Number of Channels per Pass", Symbol ="N^{passage}"); end Model PHE_HeatTransfer ATTRIBUTES Pallete = false; Brief = "to be documented"; Info = "to be documented"; VARIABLES Re as positive (Brief="Reynolds Number",Default=100,Lower=1); PR as positive (Brief="Prandtl Number",Default=0.5,Lower=1e-8); NTU as positive (Brief="Number of Units Transference",Default=0.05,Lower=1E-10); WCp as positive (Brief="Stream Heat Capacity",Lower=1E-3,Default=1E3,Unit='W/K'); hcoeff as heat_trans_coeff (Brief="Film Coefficient",Default=1,Lower=1E-12, Upper=1E6); Gchannel as flux_mass (Brief ="Channel Mass Flux", Default=1, Lower=1E-6, Symbol ="G^{channel}"); Gports as flux_mass (Brief ="Ports Mass Flux", Default=1, Lower=1E-6, Symbol ="G^{ports}"); Phi as positive (Brief="Viscosity Correction",Default=1,Lower=1E-6, Symbol="\phi"); end Model Main_PHE ATTRIBUTES Pallete = false; Brief = "to be documented"; Info = "to be documented"; VARIABLES HeatTransfer as PHE_HeatTransfer (Brief="PHE Heat Transfer", Symbol = " "); PressureDrop as PHE_PressureDrop (Brief="PHE Pressure Drop", Symbol = " "); Properties as Physical_Properties (Brief="PHE Properties", Symbol = " "); end Model Thermal_PHE ATTRIBUTES Pallete = false; Brief = "to be documented"; Info = "to be documented"; VARIABLES Cr as positive (Brief="Heat Capacity Ratio",Default=0.5,Lower=1E-6); Cmin as positive (Brief="Minimum Heat Capacity",Lower=1E-10,Default=1E3,Unit='W/K'); Cmax as positive (Brief="Maximum Heat Capacity",Lower=1E-10,Default=1E3,Unit='W/K'); NTU as positive (Brief="Number of Units Transference",Default=0.05,Lower=1E-10); Eft as positive (Brief="Effectiveness",Default=0.5,Lower=0.1,Upper=1.1, Symbol = "\varepsilon"); Q as power (Brief="Heat Transfer", Default=7000, Lower=1E-6, Upper=1E10); Uc as heat_trans_coeff (Brief="Overall Heat Transfer Coefficient Clean",Default=1,Lower=1E-6,Upper=1E10); Ud as heat_trans_coeff (Brief="Overall Heat Transfer Coefficient Dirty",Default=1,Lower=1E-6,Upper=1E10); end Model PHE_Geometry ATTRIBUTES Pallete = false; Brief = "Parameters for a gasketed plate heat exchanger."; PARAMETERS outer PP as Plugin (Brief="External Physical Properties", Type="PP"); outer NComp as Integer (Brief="Number of Chemical Components",Hidden=true); Pi as constant (Brief="Pi Number",Default=3.14159265, Hidden=true,Symbol = "\pi"); N1 as Integer (Brief="Auxiliar Constant", Hidden=true,Default = 15); N2 as Integer (Brief="Auxiliar Constant",Hidden=true,Default = 14); Kp1(N1) as constant (Brief="First constant in Kumar calculation for Pressure Drop", Hidden=true); Kp2(N1) as constant (Brief="Second constant in Kumar calculation for Pressure Drop", Hidden=true); Kc1(N2) as constant (Brief="First constant in Kumar calculation for Heat Transfer", Hidden=true); Kc2(N2) as constant (Brief="Second constant Kumar calculation for Heat Transfer", Hidden=true); M(NComp) as molweight (Brief="Component Mol Weight", Hidden=true); Lv as length (Brief="Vertical Ports Distance",Lower=0.1); Nplates as Integer (Brief="Total Number of Plates in The Whole Heat Exchanger",Default=25, Symbol ="N_{plates}"); NpassHot as Integer (Brief="Number of Passes for Hot Side", Symbol ="Npasshot"); NpassCold as Integer (Brief="Number of Passes for Cold Side", Symbol ="Npasscold"); Dports as length (Brief="Ports Diameter",Lower=1e-6, Symbol ="D_{ports}"); Lw as length (Brief="Plate Width",Lower=0.1); pitch as length (Brief="Plate Pitch",Lower=0.1); pt as length (Brief="Plate Thickness",Lower=0.1); Kwall as conductivity (Brief="Plate Thermal Conductivity",Default=1.0, Symbol ="K_{wall}"); Rfh as positive (Brief="Hot Side Fouling Resistance",Unit='m^2*K/kW',Default=1e-6,Lower=0); Rfc as positive (Brief="Cold Side Fouling Resistance",Unit='m^2*K/kW',Default=1e-6,Lower=0); PhiFactor as Real (Brief="Enlargement Factor",Lower=1e-6, Symbol ="\phi"); Atotal as area (Brief="Total Effective Area",Lower=1e-6, Symbol ="A_{total}", Protected=true); Aports as area (Brief="Port Opening Area of Plate",Lower=1e-6, Symbol ="A_{ports}", Protected=true); Achannel as area (Brief="Cross-Sectional Area for Channel Flow",Lower=1e-6, Symbol ="A_{channel}", Protected=true); Dh as length (Brief="Equivalent Diameter of Channel",Lower=1e-6, Protected=true); Depth as length (Brief="Corrugation Depth",Lower=1e-6, Protected=true); Nchannels as Integer (Brief="Total Number of Channels in The Whole Heat Exchanger", Protected=true); Lp as length (Brief="Plate Vertical Distance between Port Centers",Lower=0.1, Protected=true); Lpack as length (Brief="Compact Plate Pack Length",Lower=0.1, Protected=true); Lh as length (Brief="Plate Horizontal Distance between Port Centers",Lower=0.1, Protected=true); SET #"Vector Length of constants for Kumar's calculating Pressure Drop" N1 = 15; #"Vector Length of constants for Kumar's calculating Heat Transfer" N2 = 14; #"First constant for Kumar's calculating Pressure Drop" Kp1 = [50,19.40,2.990,47,18.290,1.441,34,11.250,0.772,24,3.240,0.760,24,2.80,0.639]; #"Second constant for Kumar's calculating Pressure Drop" Kp2 = [1,0.589,0.183,1,0.652,0.206,1,0.631,0.161,1,0.457,0.215,1,0.451,0.213]; #"First constant for Kumar's calculating Heat Transfer" Kc1 = [0.718,0.348,0.718,0.400,0.300,0.630,0.291,0.130,0.562,0.306,0.108,0.562,0.331,0.087]; #"Second constant for Kumar's calculating Heat Transfer" Kc2 = [0.349,0.663,0.349,0.598,0.663,0.333,0.591,0.732,0.326,0.529,0.703,0.326,0.503,0.718]; #"Component Molecular Weight" M = PP.MolecularWeight(); #"Pi Number" Pi = 3.14159265; #"Plate Vertical Distance between Port Centers" Lp = Lv - Dports; #"Corrugation Depth" Depth=pitch-pt; #"Plate Horizontal Distance between Port Centers" Lh=Lw-Dports; #"Hydraulic Diameter" Dh=2*Depth/PhiFactor; #"Ports Area" Aports=0.25*Pi*Dports*Dports; #"Channel Area" Achannel=Depth*Lw; #"Pack Length" Lpack=Depth*(Nplates-1)+Nplates*pt; #"Total Number of Channels" Nchannels = Nplates -1; #"Exchange Surface Area" Atotal =(Nplates-2)*Lw*Lp*PhiFactor; end Model PHE ATTRIBUTES Icon = "icon/phe"; Pallete = true; Brief = "Shortcut model for Plate and Frame heat exchanger."; Info = "Model of a gasketed plate heat exchanger. The heat transfer and pressure loss calculations are based on Kumar [1] work. The following assumptions are considered in order to derive the mathematical model [2]: == Assumptions == * Steady-State operation; * No phase changes; * No heat loss to the surroundings. * Uniform distribution of flow through the channels of a pass. == Specify == * The Inlet streams: Hot and Cold; == Setting The PHE Parameters == *ChevronAngle *Nplates *NpassHot *NpassCold *Dports *PhiFactor *Lv *Lw *pitch *pt *Kwall *Rfc *Rfh == Setting The PHE Option Parameters == *SideOne: cold or hot == References == [1] E.A.D. Saunders, Heat Exchangers: Selection, Design and Construction, Longman, Harlow, 1988. [2] J.A.W. Gut, J.M. Pinto, Modeling of plate heat exchangers with generalized configurations, Int. J. Heat Mass Transfer 46 (14) (2003) 2571\2585. "; PARAMETERS outer PP as Plugin (Brief="External Physical Properties", Type="PP"); outer NComp as Integer (Brief="Number of Chemical Components"); ChevronAngle as Switcher (Brief="Chevron Corrugation Inclination Angle in Degrees ",Valid=["A30_Deg","A45_Deg","A50_Deg","A60_Deg","A65_Deg"],Default="A30_Deg"); SideOne as Switcher (Brief="Fluid Alocation in the Side I - (The odd channels)",Valid=["hot","cold"],Default="hot"); VARIABLES Geometry as PHE_Geometry (Brief="Plate Heat Exchanger Geometrical Parameters", Symbol=" "); in InletHot as stream (Brief="Inlet Hot Stream", PosX=0, PosY=0.75, Symbol="^{inHot}"); in InletCold as stream (Brief="Inlet Cold Stream", PosX=0, PosY=0.25, Symbol="^{inCold}"); out OutletHot as streamPH (Brief="Outlet Hot Stream", PosX=1, PosY=0.25, Symbol="^{outHot}"); out OutletCold as streamPH (Brief="Outlet Cold Stream", PosX=1, PosY=0.75, Symbol="^{outCold}"); HotSide as Main_PHE (Brief="Plate Heat Exchanger Hot Side", Symbol="_{hot}"); ColdSide as Main_PHE (Brief="Plate Heat Exchanger Cold Side", Symbol="_{cold}"); Thermal as Thermal_PHE (Brief="Thermal Results", Symbol = " "); EQUATIONS "Hot Stream Average Temperature" HotSide.Properties.Average.T = 0.5*InletHot.T + 0.5*OutletHot.T; "Cold Stream Average Temperature" ColdSide.Properties.Average.T = 0.5*InletCold.T + 0.5*OutletCold.T; "Hot Stream Average Pressure" HotSide.Properties.Average.P = 0.5*InletHot.P+0.5*OutletHot.P; "Cold Stream Average Pressure" ColdSide.Properties.Average.P = 0.5*InletCold.P+0.5*OutletCold.P; "Cold Stream Wall Temperature" ColdSide.Properties.Wall.Twall = 0.5*HotSide.Properties.Average.T + 0.5*ColdSide.Properties.Average.T; "Hot Stream Wall Temperature" HotSide.Properties.Wall.Twall = 0.5*HotSide.Properties.Average.T + 0.5*ColdSide.Properties.Average.T; "Hot Stream Average Molecular Weight" HotSide.Properties.Average.Mw = sum(Geometry.M*InletHot.z); "Cold Stream Average Molecular Weight" ColdSide.Properties.Average.Mw = sum(Geometry.M*InletCold.z); if InletCold.v equal 0 then "Average Heat Capacity Cold Stream" ColdSide.Properties.Average.Cp = PP.LiquidCp(ColdSide.Properties.Average.T,ColdSide.Properties.Average.P,InletCold.z); "Average Mass Density Cold Stream" ColdSide.Properties.Average.rho = PP.LiquidDensity(ColdSide.Properties.Average.T,ColdSide.Properties.Average.P,InletCold.z); "Inlet Mass Density Cold Stream" ColdSide.Properties.Inlet.rho = PP.LiquidDensity(InletCold.T,InletCold.P,InletCold.z); "Outlet Mass Density Cold Stream" ColdSide.Properties.Outlet.rho = PP.LiquidDensity(OutletCold.T,OutletCold.P,OutletCold.z); "Average Viscosity Cold Stream" ColdSide.Properties.Average.Mu = PP.LiquidViscosity(ColdSide.Properties.Average.T,ColdSide.Properties.Average.P,InletCold.z); "Average Conductivity Cold Stream" ColdSide.Properties.Average.K = PP.LiquidThermalConductivity(ColdSide.Properties.Average.T,ColdSide.Properties.Average.P,InletCold.z); "Viscosity Cold Stream at wall temperature" ColdSide.Properties.Wall.Mu = PP.LiquidViscosity(ColdSide.Properties.Wall.Twall,ColdSide.Properties.Average.P,InletCold.z); else "Average Heat Capacity ColdStream" ColdSide.Properties.Average.Cp = PP.VapourCp(ColdSide.Properties.Average.T,ColdSide.Properties.Average.P,InletCold.z); "Average Mass Density Cold Stream" ColdSide.Properties.Average.rho = PP.VapourDensity(ColdSide.Properties.Average.T,ColdSide.Properties.Average.P,InletCold.z); "Inlet Mass Density Cold Stream" ColdSide.Properties.Inlet.rho = PP.VapourDensity(InletCold.T,InletCold.P,InletCold.z); "Outlet Mass Density Cold Stream" ColdSide.Properties.Outlet.rho = PP.VapourDensity(OutletCold.T,OutletCold.P,OutletCold.z); "Average Viscosity Cold Stream" ColdSide.Properties.Average.Mu = PP.VapourViscosity(ColdSide.Properties.Average.T,ColdSide.Properties.Average.P,InletCold.z); "Average Conductivity Cold Stream" ColdSide.Properties.Average.K = PP.VapourThermalConductivity(ColdSide.Properties.Average.T,ColdSide.Properties.Average.P,InletCold.z); "Viscosity Cold Stream at wall temperature" ColdSide.Properties.Wall.Mu = PP.VapourViscosity(ColdSide.Properties.Wall.Twall,ColdSide.Properties.Average.P,InletCold.z); end if InletHot.v equal 0 then "Average Heat Capacity Hot Stream" HotSide.Properties.Average.Cp = PP.LiquidCp(HotSide.Properties.Average.T,HotSide.Properties.Average.P,InletHot.z); "Average Mass Density Hot Stream" HotSide.Properties.Average.rho = PP.LiquidDensity(HotSide.Properties.Average.T,HotSide.Properties.Average.P,InletHot.z); "Inlet Mass Density Hot Stream" HotSide.Properties.Inlet.rho = PP.LiquidDensity(InletHot.T,InletHot.P,InletHot.z); "Outlet Mass Density Hot Stream" HotSide.Properties.Outlet.rho = PP.LiquidDensity(OutletHot.T,OutletHot.P,OutletHot.z); "Average Viscosity Hot Stream" HotSide.Properties.Average.Mu = PP.LiquidViscosity(HotSide.Properties.Average.T,HotSide.Properties.Average.P,InletHot.z); "Average Conductivity Hot Stream" HotSide.Properties.Average.K = PP.LiquidThermalConductivity(HotSide.Properties.Average.T,HotSide.Properties.Average.P,InletHot.z); "Viscosity Hot Stream at wall temperature" HotSide.Properties.Wall.Mu = PP.LiquidViscosity(HotSide.Properties.Wall.Twall,HotSide.Properties.Average.P,InletHot.z); else "Average Heat Capacity Hot Stream" HotSide.Properties.Average.Cp = PP.VapourCp(HotSide.Properties.Average.T,HotSide.Properties.Average.P,InletHot.z); "Average Mass Density Hot Stream" HotSide.Properties.Average.rho = PP.VapourDensity(HotSide.Properties.Average.T,HotSide.Properties.Average.P,InletHot.z); "Inlet Mass Density Hot Stream" HotSide.Properties.Inlet.rho = PP.VapourDensity(InletHot.T,InletHot.P,InletHot.z); "Outlet Mass Density Hot Stream" HotSide.Properties.Outlet.rho = PP.VapourDensity(OutletHot.T,OutletHot.P,OutletHot.z); "Average Viscosity Hot Stream" HotSide.Properties.Average.Mu = PP.VapourViscosity(HotSide.Properties.Average.T,HotSide.Properties.Average.P,InletHot.z); "Average Conductivity Hot Stream" HotSide.Properties.Average.K = PP.VapourThermalConductivity(HotSide.Properties.Average.T,HotSide.Properties.Average.P,InletHot.z); "Viscosity Hot Stream at wall temperature" HotSide.Properties.Wall.Mu = PP.VapourViscosity(HotSide.Properties.Wall.Twall,HotSide.Properties.Average.P,InletHot.z); end "Energy Balance Hot Stream" Thermal.Q = InletHot.F*(InletHot.h-OutletHot.h); "Energy Balance Cold Stream" Thermal.Q = InletCold.F*(OutletCold.h - InletCold.h); "Flow Mass Inlet Cold Stream" ColdSide.Properties.Inlet.Fw = sum(Geometry.M*InletCold.z)*InletCold.F; "Flow Mass Outlet Cold Stream" ColdSide.Properties.Outlet.Fw = sum(Geometry.M*OutletCold.z)*OutletCold.F; "Flow Mass Inlet Hot Stream" HotSide.Properties.Inlet.Fw = sum(Geometry.M*InletHot.z)*InletHot.F; "Flow Mass Outlet Hot Stream" HotSide.Properties.Outlet.Fw = sum(Geometry.M*OutletHot.z)*OutletHot.F; "Molar Balance Hot Stream" OutletHot.F = InletHot.F; "Molar Balance Cold Stream" OutletCold.F = InletCold.F; "Hot Stream Molar Fraction Constraint" OutletHot.z=InletHot.z; "Cold Stream Molar Fraction Constraint" OutletCold.z=InletCold.z; switch SideOne case "cold": "Total Number of Passages Cold Side" ColdSide.PressureDrop.Npassage = (2*Geometry.Nchannels+1+(-1)^(Geometry.Nchannels+1))/(4*Geometry.NpassCold); "Total Number of Passages Hot Side" HotSide.PressureDrop.Npassage = (2*Geometry.Nchannels-1+(-1)^(Geometry.Nchannels))/(4*Geometry.NpassHot); case "hot": "Total Number of Passages Cold Side" HotSide.PressureDrop.Npassage = (2*Geometry.Nchannels+1+(-1)^(Geometry.Nchannels+1))/(4*Geometry.NpassHot); "Total Number of Passages Hot Side" ColdSide.PressureDrop.Npassage = (2*Geometry.Nchannels-1+(-1)^(Geometry.Nchannels))/(4*Geometry.NpassCold); end "Hot Stream Mass Flux in the Channel" HotSide.HeatTransfer.Gchannel=HotSide.Properties.Inlet.Fw/(HotSide.PressureDrop.Npassage*Geometry.Achannel); "Hot Stream Mass Flux in the Ports" HotSide.HeatTransfer.Gports=HotSide.Properties.Inlet.Fw/Geometry.Aports; "Cold Stream Mass Flux in the Ports" ColdSide.HeatTransfer.Gports=ColdSide.Properties.Inlet.Fw/Geometry.Aports; "Cold Stream Mass Flux in the Channel" ColdSide.HeatTransfer.Gchannel=ColdSide.Properties.Inlet.Fw/(ColdSide.PressureDrop.Npassage*Geometry.Achannel); "Hot Stream Pressure Drop in Ports" HotSide.PressureDrop.DPports =1.5*Geometry.NpassHot*HotSide.HeatTransfer.Gports^2/(2*HotSide.Properties.Average.rho); "Cold Stream Pressure Drop in Ports" ColdSide.PressureDrop.DPports =1.5*Geometry.NpassCold*ColdSide.HeatTransfer.Gports^2/(2*ColdSide.Properties.Average.rho); "Hot Stream Pressure Drop in Channels" HotSide.PressureDrop.DPchannel =2*HotSide.PressureDrop.fi*Geometry.NpassHot*Geometry.Lv*HotSide.HeatTransfer.Gchannel^2/(HotSide.Properties.Average.rho*Geometry.Dh*HotSide.HeatTransfer.Phi^0.17); "Cold Stream Pressure Drop in Channels" ColdSide.PressureDrop.DPchannel =2*ColdSide.PressureDrop.fi*Geometry.NpassCold*Geometry.Lv*ColdSide.HeatTransfer.Gchannel^2/(ColdSide.Properties.Average.rho*Geometry.Dh*ColdSide.HeatTransfer.Phi^0.17); "Hot Stream Total Pressure Drop" HotSide.PressureDrop.Pdrop =HotSide.PressureDrop.DPchannel+HotSide.PressureDrop.DPports; "Cold Stream Total Pressure Drop" ColdSide.PressureDrop.Pdrop =ColdSide.PressureDrop.DPchannel+ColdSide.PressureDrop.DPports; switch ChevronAngle #Pressure Drop Friction Factor According to kumar's (1984) case "A30_Deg": # ChevronAngle <= 30 if HotSide.HeatTransfer.Re < 10 then HotSide.PressureDrop.fi = Geometry.Kp1(1)/HotSide.HeatTransfer.Re^Geometry.Kp2(1); ColdSide.PressureDrop.fi = Geometry.Kp1(1)/ColdSide.HeatTransfer.Re^Geometry.Kp2(1); else if HotSide.HeatTransfer.Re < 100 then HotSide.PressureDrop.fi = Geometry.Kp1(2)/HotSide.HeatTransfer.Re^Geometry.Kp2(2); ColdSide.PressureDrop.fi = Geometry.Kp1(2)/ColdSide.HeatTransfer.Re^Geometry.Kp2(2); else HotSide.PressureDrop.fi = Geometry.Kp1(3)/HotSide.HeatTransfer.Re^Geometry.Kp2(3); ColdSide.PressureDrop.fi = Geometry.Kp1(3)/ColdSide.HeatTransfer.Re^Geometry.Kp2(3); end end case "A45_Deg": if HotSide.HeatTransfer.Re < 15 then HotSide.PressureDrop.fi = Geometry.Kp1(4)/HotSide.HeatTransfer.Re^Geometry.Kp2(4); ColdSide.PressureDrop.fi = Geometry.Kp1(4)/ColdSide.HeatTransfer.Re^Geometry.Kp2(4); else if HotSide.HeatTransfer.Re < 300 then HotSide.PressureDrop.fi = Geometry.Kp1(5)/HotSide.HeatTransfer.Re^Geometry.Kp2(5); ColdSide.PressureDrop.fi = Geometry.Kp1(5)/ColdSide.HeatTransfer.Re^Geometry.Kp2(5); else HotSide.PressureDrop.fi = Geometry.Kp1(6)/HotSide.HeatTransfer.Re^Geometry.Kp2(6); ColdSide.PressureDrop.fi = Geometry.Kp1(6)/ColdSide.HeatTransfer.Re^Geometry.Kp2(6); end end case "A50_Deg": if HotSide.HeatTransfer.Re < 20 then HotSide.PressureDrop.fi = Geometry.Kp1(7)/HotSide.HeatTransfer.Re^Geometry.Kp2(7); ColdSide.PressureDrop.fi = Geometry.Kp1(7)/ColdSide.HeatTransfer.Re^Geometry.Kp2(7); else if HotSide.HeatTransfer.Re < 300 then HotSide.PressureDrop.fi = Geometry.Kp1(8)/HotSide.HeatTransfer.Re^Geometry.Kp2(8); ColdSide.PressureDrop.fi = Geometry.Kp1(8)/ColdSide.HeatTransfer.Re^Geometry.Kp2(8); else HotSide.PressureDrop.fi = Geometry.Kp1(9)/HotSide.HeatTransfer.Re^Geometry.Kp2(9); ColdSide.PressureDrop.fi = Geometry.Kp1(9)/ColdSide.HeatTransfer.Re^Geometry.Kp2(9); end end case "A60_Deg": if HotSide.HeatTransfer.Re < 40 then HotSide.PressureDrop.fi = Geometry.Kp1(10)/HotSide.HeatTransfer.Re^Geometry.Kp2(10); ColdSide.PressureDrop.fi = Geometry.Kp1(10)/ColdSide.HeatTransfer.Re^Geometry.Kp2(10); else if HotSide.HeatTransfer.Re < 400 then HotSide.PressureDrop.fi = Geometry.Kp1(11)/HotSide.HeatTransfer.Re^Geometry.Kp2(11); ColdSide.PressureDrop.fi = Geometry.Kp1(11)/ColdSide.HeatTransfer.Re^Geometry.Kp2(11); else HotSide.PressureDrop.fi = Geometry.Kp1(12)/HotSide.HeatTransfer.Re^Geometry.Kp2(12); ColdSide.PressureDrop.fi = Geometry.Kp1(12)/ColdSide.HeatTransfer.Re^Geometry.Kp2(12); end end case "A65_Deg": # ChevronAngle >= 65 if HotSide.HeatTransfer.Re < 50 then HotSide.PressureDrop.fi = Geometry.Kp1(13)/HotSide.HeatTransfer.Re^Geometry.Kp2(13); ColdSide.PressureDrop.fi = Geometry.Kp1(13)/ColdSide.HeatTransfer.Re^Geometry.Kp2(13); else if HotSide.HeatTransfer.Re < 500 then HotSide.PressureDrop.fi = Geometry.Kp1(14)/HotSide.HeatTransfer.Re^Geometry.Kp2(14); ColdSide.PressureDrop.fi = Geometry.Kp1(14)/ColdSide.HeatTransfer.Re^Geometry.Kp2(14); else HotSide.PressureDrop.fi = Geometry.Kp1(15)/HotSide.HeatTransfer.Re^Geometry.Kp2(15); ColdSide.PressureDrop.fi = Geometry.Kp1(15)/ColdSide.HeatTransfer.Re^Geometry.Kp2(15); end end end switch ChevronAngle # Heat Transfer Coefficient According to kumar's (1984) case "A30_Deg": # ChevronAngle <= 30 if HotSide.HeatTransfer.Re < 10 then HotSide.HeatTransfer.hcoeff=(HotSide.Properties.Average.K*HotSide.HeatTransfer.PR^(1/3)*HotSide.HeatTransfer.Phi^0.17*Geometry.Kc1(1)*HotSide.HeatTransfer.Re^Geometry.Kc2(1))/Geometry.Dh; ColdSide.HeatTransfer.hcoeff =(ColdSide.Properties.Average.K*ColdSide.HeatTransfer.PR^(1/3)*ColdSide.HeatTransfer.Phi^0.17*Geometry.Kc1(1)*ColdSide.HeatTransfer.Re^Geometry.Kc2(1))/Geometry.Dh; else HotSide.HeatTransfer.hcoeff=(HotSide.Properties.Average.K*HotSide.HeatTransfer.PR^(1/3)*HotSide.HeatTransfer.Phi^0.17*Geometry.Kc1(2)*HotSide.HeatTransfer.Re^Geometry.Kc2(2))/Geometry.Dh; ColdSide.HeatTransfer.hcoeff =(ColdSide.Properties.Average.K*ColdSide.HeatTransfer.PR^(1/3)*ColdSide.HeatTransfer.Phi^0.17*Geometry.Kc1(2)*ColdSide.HeatTransfer.Re^Geometry.Kc2(2))/Geometry.Dh; end case "A45_Deg": if HotSide.HeatTransfer.Re < 10 then HotSide.HeatTransfer.hcoeff=(HotSide.Properties.Average.K*HotSide.HeatTransfer.PR^(1/3)*HotSide.HeatTransfer.Phi^0.17*Geometry.Kc1(3)*HotSide.HeatTransfer.Re^Geometry.Kc2(3))/Geometry.Dh; ColdSide.HeatTransfer.hcoeff =(ColdSide.Properties.Average.K*ColdSide.HeatTransfer.PR^(1/3)*ColdSide.HeatTransfer.Phi^0.17*Geometry.Kc1(3)*ColdSide.HeatTransfer.Re^Geometry.Kc2(3))/Geometry.Dh; else if HotSide.HeatTransfer.Re < 100 then HotSide.HeatTransfer.hcoeff=(HotSide.Properties.Average.K*HotSide.HeatTransfer.PR^(1/3)*HotSide.HeatTransfer.Phi^0.17*Geometry.Kc1(4)*HotSide.HeatTransfer.Re^Geometry.Kc2(4))/Geometry.Dh; ColdSide.HeatTransfer.hcoeff =(ColdSide.Properties.Average.K*ColdSide.HeatTransfer.PR^(1/3)*ColdSide.HeatTransfer.Phi^0.17*Geometry.Kc1(4)*ColdSide.HeatTransfer.Re^Geometry.Kc2(4))/Geometry.Dh; else HotSide.HeatTransfer.hcoeff=(HotSide.Properties.Average.K*HotSide.HeatTransfer.PR^(1/3)*HotSide.HeatTransfer.Phi^0.17*Geometry.Kc1(5)*HotSide.HeatTransfer.Re^Geometry.Kc2(5))/Geometry.Dh; ColdSide.HeatTransfer.hcoeff =(ColdSide.Properties.Average.K*ColdSide.HeatTransfer.PR^(1/3)*ColdSide.HeatTransfer.Phi^0.17*Geometry.Kc1(5)*ColdSide.HeatTransfer.Re^Geometry.Kc2(5))/Geometry.Dh; end end case "A50_Deg": if HotSide.HeatTransfer.Re < 20 then HotSide.HeatTransfer.hcoeff=(HotSide.Properties.Average.K*HotSide.HeatTransfer.PR^(1/3)*HotSide.HeatTransfer.Phi^0.17*Geometry.Kc1(6)*HotSide.HeatTransfer.Re^Geometry.Kc2(6))/Geometry.Dh; ColdSide.HeatTransfer.hcoeff =(ColdSide.Properties.Average.K*ColdSide.HeatTransfer.PR^(1/3)*ColdSide.HeatTransfer.Phi^0.17*Geometry.Kc1(6)*ColdSide.HeatTransfer.Re^Geometry.Kc2(6))/Geometry.Dh; else if HotSide.HeatTransfer.Re < 300 then HotSide.HeatTransfer.hcoeff=(HotSide.Properties.Average.K*HotSide.HeatTransfer.PR^(1/3)*HotSide.HeatTransfer.Phi^0.17*Geometry.Kc1(7)*HotSide.HeatTransfer.Re^Geometry.Kc2(7))/Geometry.Dh; ColdSide.HeatTransfer.hcoeff =(ColdSide.Properties.Average.K*ColdSide.HeatTransfer.PR^(1/3)*ColdSide.HeatTransfer.Phi^0.17*Geometry.Kc1(7)*ColdSide.HeatTransfer.Re^Geometry.Kc2(7))/Geometry.Dh; else HotSide.HeatTransfer.hcoeff=(HotSide.Properties.Average.K*HotSide.HeatTransfer.PR^(1/3)*HotSide.HeatTransfer.Phi^0.17*Geometry.Kc1(8)*HotSide.HeatTransfer.Re^Geometry.Kc2(8))/Geometry.Dh; ColdSide.HeatTransfer.hcoeff =(ColdSide.Properties.Average.K*ColdSide.HeatTransfer.PR^(1/3)*ColdSide.HeatTransfer.Phi^0.17*Geometry.Kc1(8)*ColdSide.HeatTransfer.Re^Geometry.Kc2(8))/Geometry.Dh; end end case "A60_Deg": if HotSide.HeatTransfer.Re < 20 then HotSide.HeatTransfer.hcoeff=(HotSide.Properties.Average.K*HotSide.HeatTransfer.PR^(1/3)*HotSide.HeatTransfer.Phi^0.17*Geometry.Kc1(9)*HotSide.HeatTransfer.Re^Geometry.Kc2(9))/Geometry.Dh; ColdSide.HeatTransfer.hcoeff =(ColdSide.Properties.Average.K*ColdSide.HeatTransfer.PR^(1/3)*ColdSide.HeatTransfer.Phi^0.17*Geometry.Kc1(9)*ColdSide.HeatTransfer.Re^Geometry.Kc2(9))/Geometry.Dh; else if HotSide.HeatTransfer.Re < 400 then HotSide.HeatTransfer.hcoeff=(HotSide.Properties.Average.K*HotSide.HeatTransfer.PR^(1/3)*HotSide.HeatTransfer.Phi^0.17*Geometry.Kc1(10)*HotSide.HeatTransfer.Re^Geometry.Kc2(10))/Geometry.Dh; ColdSide.HeatTransfer.hcoeff =(ColdSide.Properties.Average.K*ColdSide.HeatTransfer.PR^(1/3)*ColdSide.HeatTransfer.Phi^0.17*Geometry.Kc1(10)*ColdSide.HeatTransfer.Re^Geometry.Kc2(10))/Geometry.Dh; else HotSide.HeatTransfer.hcoeff=(HotSide.Properties.Average.K*HotSide.HeatTransfer.PR^(1/3)*HotSide.HeatTransfer.Phi^0.17*Geometry.Kc1(11)*HotSide.HeatTransfer.Re^Geometry.Kc2(11))/Geometry.Dh; ColdSide.HeatTransfer.hcoeff =(ColdSide.Properties.Average.K*ColdSide.HeatTransfer.PR^(1/3)*ColdSide.HeatTransfer.Phi^0.17*Geometry.Kc1(11)*ColdSide.HeatTransfer.Re^Geometry.Kc2(11))/Geometry.Dh; end end case "A65_Deg": # ChevronAngle >= 65 if HotSide.HeatTransfer.Re < 20 then HotSide.HeatTransfer.hcoeff=(HotSide.Properties.Average.K*HotSide.HeatTransfer.PR^(1/3)*HotSide.HeatTransfer.Phi^0.17*Geometry.Kc1(12)*HotSide.HeatTransfer.Re^Geometry.Kc2(12))/Geometry.Dh; ColdSide.HeatTransfer.hcoeff =(ColdSide.Properties.Average.K*ColdSide.HeatTransfer.PR^(1/3)*ColdSide.HeatTransfer.Phi^0.17*Geometry.Kc1(12)*ColdSide.HeatTransfer.Re^Geometry.Kc2(12))/Geometry.Dh; else if HotSide.HeatTransfer.Re < 500 then HotSide.HeatTransfer.hcoeff=(HotSide.Properties.Average.K*HotSide.HeatTransfer.PR^(1/3)*HotSide.HeatTransfer.Phi^0.17*Geometry.Kc1(13)*HotSide.HeatTransfer.Re^Geometry.Kc2(13))/Geometry.Dh; ColdSide.HeatTransfer.hcoeff =(ColdSide.Properties.Average.K*ColdSide.HeatTransfer.PR^(1/3)*ColdSide.HeatTransfer.Phi^0.17*Geometry.Kc1(13)*ColdSide.HeatTransfer.Re^Geometry.Kc2(13))/Geometry.Dh; else HotSide.HeatTransfer.hcoeff=(HotSide.Properties.Average.K*HotSide.HeatTransfer.PR^(1/3)*HotSide.HeatTransfer.Phi^0.17*Geometry.Kc1(14)*HotSide.HeatTransfer.Re^Geometry.Kc2(14))/Geometry.Dh; ColdSide.HeatTransfer.hcoeff =(ColdSide.Properties.Average.K*ColdSide.HeatTransfer.PR^(1/3)*ColdSide.HeatTransfer.Phi^0.17*Geometry.Kc1(14)*ColdSide.HeatTransfer.Re^Geometry.Kc2(14))/Geometry.Dh; end end end "Hot Stream Velocity in Channels" HotSide.PressureDrop.Vchannel =HotSide.HeatTransfer.Gchannel/HotSide.Properties.Average.rho; "Cold Stream Velocity in Channels" ColdSide.PressureDrop.Vchannel =ColdSide.HeatTransfer.Gchannel/ColdSide.Properties.Average.rho; "Hot Stream Velocity in Ports" HotSide.PressureDrop.Vports =HotSide.Properties.Inlet.Fw/(Geometry.Aports*HotSide.Properties.Inlet.rho); "Cold Stream Velocity in Ports" ColdSide.PressureDrop.Vports =ColdSide.Properties.Inlet.Fw/(Geometry.Aports*ColdSide.Properties.Inlet.rho); "Hot Stream Reynolds Number" HotSide.HeatTransfer.Re =Geometry.Dh*HotSide.HeatTransfer.Gchannel/HotSide.Properties.Average.Mu; "Cold Stream Reynolds Number" ColdSide.HeatTransfer.Re =Geometry.Dh*ColdSide.HeatTransfer.Gchannel/ColdSide.Properties.Average.Mu; "Hot Stream Prandtl Number" HotSide.HeatTransfer.PR= ((HotSide.Properties.Average.Cp/HotSide.Properties.Average.Mw)*HotSide.Properties.Average.Mu)/HotSide.Properties.Average.K; "Cold Stream Prandtl Number" ColdSide.HeatTransfer.PR = ((ColdSide.Properties.Average.Cp/ColdSide.Properties.Average.Mw)*ColdSide.Properties.Average.Mu)/ColdSide.Properties.Average.K; "Hot Stream Viscosity Correction" HotSide.HeatTransfer.Phi= HotSide.Properties.Average.Mu/HotSide.Properties.Wall.Mu; "Cold Stream Viscosity Correction" ColdSide.HeatTransfer.Phi= ColdSide.Properties.Average.Mu/ColdSide.Properties.Wall.Mu; "Hot Stream Outlet Pressure" OutletHot.P = InletHot.P - HotSide.PressureDrop.Pdrop; "Cold Stream Outlet Pressure" OutletCold.P = InletCold.P - ColdSide.PressureDrop.Pdrop; "Overall Heat Transfer Coefficient Clean" Thermal.Uc/HotSide.HeatTransfer.hcoeff +Thermal.Uc*Geometry.pt/Geometry.Kwall+Thermal.Uc/ColdSide.HeatTransfer.hcoeff=1; "Overall Heat Transfer Coefficient Dirty" Thermal.Ud*(1/HotSide.HeatTransfer.hcoeff +Geometry.pt/Geometry.Kwall+1/ColdSide.HeatTransfer.hcoeff + Geometry.Rfc + Geometry.Rfh)=1; "Duty" Thermal.Q = Thermal.Eft*Thermal.Cmin*(InletHot.T-InletCold.T); "Heat Capacity Ratio" Thermal.Cr =Thermal.Cmin/Thermal.Cmax; "Minimum Heat Capacity" Thermal.Cmin = min([HotSide.HeatTransfer.WCp,ColdSide.HeatTransfer.WCp]); "Maximum Heat Capacity" Thermal.Cmax = max([HotSide.HeatTransfer.WCp,ColdSide.HeatTransfer.WCp]); "Hot Stream Heat Capacity" HotSide.HeatTransfer.WCp = InletHot.F*HotSide.Properties.Average.Cp; "Cold Stream Heat Capacity" ColdSide.HeatTransfer.WCp = InletCold.F*ColdSide.Properties.Average.Cp; "Number of Units Transference for the Whole Heat Exchanger" Thermal.NTU = max([HotSide.HeatTransfer.NTU,ColdSide.HeatTransfer.NTU]); "Number of Units Transference for Hot Side" HotSide.HeatTransfer.NTU*HotSide.HeatTransfer.WCp = Thermal.Ud*Geometry.Atotal; "Number of Units Transference for Cold Side" ColdSide.HeatTransfer.NTU*ColdSide.HeatTransfer.WCp = Thermal.Ud*Geometry.Atotal; if Thermal.Eft >= 1 #To be Fixed: Effectiveness in true counter flow ! then "Effectiveness in Counter Flow" Thermal.Eft = 1; else "Effectiveness in Counter Flow" Thermal.NTU*(Thermal.Cr-1.00001) = ln(abs((Thermal.Eft-1.00001))) - ln(abs((Thermal.Cr*Thermal.Eft-1.00001))); end end