#*--------------------------------------------------------------------- * EMSO Model Library (EML) Copyright (C) 2004 - 2007 ALSOC. * * This LIBRARY is free software; you can distribute it and/or modify * it under the therms of the ALSOC FREE LICENSE as available at * http://www.enq.ufrgs.br/alsoc. * * EMSO Copyright (C) 2004 - 2007 ALSOC, original code * from http://www.rps.eng.br Copyright (C) 2002-2004. * All rights reserved. * * EMSO is distributed under the therms of the ALSOC LICENSE as * available at http://www.enq.ufrgs.br/alsoc. * *---------------------------------------------------------------------- * 5. Terminal velocity of falling particles *---------------------------------------------------------------------- * * Description: * This problem is part of a collection of 10 representative * problems in Chemical Engineering for solution by numerical methods * developed for Cutlip (1998). * * Subject: * * Fluid Dynamics * * Concepts utilized: * Calculation of terminal velocity of solid particles falling in * fluids under the force of gravity. * * Numerical method: * * Single nonlinear algebraic equation * * Reference: * * CUTLIP et al. A collection of 10 numerical problems in * chemical engineering solved by various mathematical software * packages. Comp. Appl. in Eng. Education. v. 6, 169-180, 1998. * * More informations and a detailed description of all problems * is available online in http://www.polymath-software.com/ASEE * *---------------------------------------------------------------------- * Author: Rodolfo Rodrigues * GIMSCOP/UFRGS - Group of Integration, Modeling, Simulation, * Control, and Optimization of Processes * $Id$ *--------------------------------------------------------------------*# using "types"; Model problem PARAMETERS g as acceleration (Brief="Accelaration of gravity", Default=9.80665); VARIABLES vt as velocity (Brief="Terminal velocity"); rho_p as dens_mass (Brief="Particle density"); rho as dens_mass (Brief="Fluid density"); Dp as length (Brief="Diameter of the spherical particle", Lower=1e-6); CD as Real (Brief="Dimensionless drag coefficient", Lower=1e-6); # 1e-9 Re as Real (Brief="Reynolds number", Lower=1e-6); # 1e-9 mu as viscosity (Brief="Viscosity", DisplayUnit='kg/m/s'); EQUATIONS "Force balance" vt = sqrt(4*g*(rho_p - rho)*Dp/(3*CD*rho)); "Reynolds number" Re = (Dp*vt*rho)/mu; if Re < 0.1 then "Drag coefficient" CD = 24/Re; # Re < 0.1 else if Re <= 1e3 then "Drag coefficient" CD = (24/Re)*(1 + 0.14*Re^0.7); # 0.1 =< Re =< 1000 else if Re <= 3.5e5 then "Drag coefficient" CD = 0.44; # 1000 < Re =< 3.5e5 else "Drag coefficient" CD = 0.19 - 8e4/Re; # 3.5e5 < Re end end end end FlowSheet solution DEVICES vel as problem; #* Hard convergence to 30*g! It needs to change the limits of CD and Re. Try to change lower limits to 1e-9. *# # SET # vel.g = 30*(9.80665*'m/s^2'); # Problem b SPECIFY vel.rho_p = 1800*'kg/m^3'; vel.Dp = 0.208e-3*'m'; vel.rho = 994.6*'kg/m^3'; # at 298.15*'K' vel.mu = 8.931e-4*'kg/m/s'; # at 298.15*'K' OPTIONS Dynamic = false; end