#*------------------------------------------------------------------- * EMSO Model Library (EML) Copyright (C) 2004 - 2007 ALSOC. * * This LIBRARY is free software; you can distribute it and/or modify * it under the therms of the ALSOC FREE LICENSE as available at * http://www.enq.ufrgs.br/alsoc. * * EMSO Copyright (C) 2004 - 2007 ALSOC, original code * from http://www.rps.eng.br Copyright (C) 2002-2004. * All rights reserved. * * EMSO is distributed under the therms of the ALSOC LICENSE as * available at http://www.enq.ufrgs.br/alsoc. * *---------------------------------------------------------------------- * Author: Marcos L. Alencastro, Estefane S. Horn * $Id: compressor.mso 393 2007-10-17 23:50:09Z arge $ *--------------------------------------------------------------------*# using "streams"; Model centrifugal_compressor ATTRIBUTES Pallete = true; Icon = "icon/CentrifugalCompressor"; Brief = "Model of a centrifugal compressor."; Info = "== Assumptions == * Steady State; * Only Vapor; * Adiabatic. == Specify == * the inlet stream; * the outlet pressure (Outlet.P); * the Isentropic efficiency (Effs). "; PARAMETERS outer PP as Plugin (Brief = "External Physical Properties", Type="PP"); outer NComp as Integer (Brief = "Number of chemical components", Lower = 1); R as positive (Default = 8.31451, Brief = "Constant of Gases", Unit= 'kJ/kmol/K'); Mw(NComp) as molweight (Brief = "Molar Weight"); VARIABLES n as positive (Brief = "Politropic Coefficient", Lower=0); k as positive (Brief = "Isentropic Coefficient", Lower=1e-3); Cp as cp_mol (Brief = "Heat Capacity"); Cv as cv_mol (Brief = "Heat Capacity"); Pratio as positive (Brief = "Pressure Ratio", Symbol ="P_{ratio}"); Pdrop as press_delta (Brief = "Pressure Drop", DisplayUnit = 'kPa', Symbol ="\Delta P"); Wp as energy_mol (Brief = "Politropic Head"); Ws as energy_mol (Brief = "Isentropic Head"); Tiso as temperature (Brief = "Isentropic Temperature"); Effp as positive (Brief = "Politropic efficiency"); Effs as efficiency (Brief = "Isentropic efficiency"); FPower as power (Brief = "Fluid Power"); Mwm as molweight (Brief = "Mixture Molar Weight"); in Inlet as stream (Brief = "Inlet stream", PosX=0, PosY=0.5086, Symbol="_{in}"); out Outlet as streamPH (Brief = "Outlet stream", PosX=1, PosY=0.5022, Symbol="_{out}"); SET Mw = PP.MolecularWeight(); EQUATIONS "Calculate Mwm for Inlet Mixture" Mwm = sum(Mw*Inlet.z); "Pressure Ratio" Outlet.P = Inlet.P * Pratio; "Pressure Drop" Outlet.P = Inlet.P - Pdrop; "Calculate Cp Using a External Physical Properties Routine" Cp = PP.VapourCp(Inlet.T,Inlet.P,Inlet.z); "Calculate Cv Using a External Physical Properties Routine" Cv = PP.VapourCv(Inlet.T,Inlet.P,Inlet.z); "Calculate Isentropic Coeficient" k * Cv = Cp; "Calculate Isentropic Head" Ws = (k/(k-1))*R*Inlet.T*((Outlet.P/Inlet.P)^((k-1)/k) - 1); "Calculate Isentropic Outlet Temperature" # Tiso = Inlet.T * (Outlet.P/Inlet.P)^((k-1)/k); PP.VapourEntropy(Tiso, Outlet.P, Outlet.z) = PP.VapourEntropy(Inlet.T, Inlet.P, Inlet.z); "Calculate Real Outlet Temperature" Effs * (Outlet.T- Inlet.T) = (Tiso - Inlet.T); "Calculate Politropic Coefficient" n*(ln(Outlet.T/Inlet.T)) = (n-1)*(ln(Outlet.P/Inlet.P)); "Calculate Politropic Efficiency" Effp * (n-1) * k = n * (k-1); "Calculate Politropic Head" Ws*Effp = Wp*Effs; "Calculate Fluid Power" FPower*Effs = Inlet.F*Ws; "Overall Molar Balance" Outlet.F = Inlet.F; "Component Molar Balance" Outlet.z = Inlet.z; end