#*--------------------------------------------------------------------- * EMSO Model Library (EML) Copyright (C) 2004 - 2007 ALSOC. * * This LIBRARY is free software; you can distribute it and/or modify * it under the therms of the ALSOC FREE LICENSE as available at * http://www.enq.ufrgs.br/alsoc. * * EMSO Copyright (C) 2004 - 2007 ALSOC, original code * from http://www.rps.eng.br Copyright (C) 2002-2004. * All rights reserved. * * EMSO is distributed under the therms of the ALSOC LICENSE as * available at http://www.enq.ufrgs.br/alsoc. * *---------------------------------------------------------------------- * Model of an equilibrium reactor *---------------------------------------------------------------------- * * Description: * Thermodynamic equilibrium modeling of a reactor based on * equilibrium constants approach. * * Assumptions: * * single- and two-phases involved * * thermodynamic equilibrium * * steady-state * * Specify: * * inlet stream * * stoichiometric matrix * * equilibrium temperature * *---------------------------------------------------------------------- * Author: Rodolfo Rodrigues * $Id$ *--------------------------------------------------------------------*# using "tank_basic"; #*--------------------------------------------------------------------- * only vapour phase *--------------------------------------------------------------------*# Model equil_vap as tank_vap ATTRIBUTES Pallete = true; Icon = "icon/cstr"; Brief = "Model of a generic vapour-phase equilibrium CSTR"; Info = " == Assumptions == * only vapour-phase * thermodynamic equilibrium * steady-state == Specify == * inlet stream * stoichiometric matrix * equilibrium temperature "; PARAMETERS NReac as Integer (Brief="Number of reactions", Default=1); stoic(NComp,NReac) as Real (Brief="Stoichiometric matrix", Symbol="\nu"); Rg as Real (Brief="Universal gas constant", Unit='J/mol/K', Default=8.314); fs(NComp) as pressure (Brief="Fugacity in standard state", Default=1, DisplayUnit='atm'); To as temperature (Brief="Reference temperature", Default=298.15); VARIABLES out Outlet as vapour_stream(Brief="Outlet stream", PosX=1, PosY=1, Symbol="_{out}"); G(NComp) as energy_mol (Brief="Gibbs free-energy of formation"); K(NReac) as Real (Brief="Equillibrium constant", Lower=0, Default=1.5); activ(NComp)as Real (Brief="Activity", Symbol="\hat{a}", Lower=0, Default=0.2); rate(NComp) as reaction_mol (Brief="Overall component rate of reaction"); extent(NReac) as flow_mol (Brief="Extent of reaction", Symbol="\xi"); conv(NComp) as Real (Brief="Fractional conversion of component", Symbol="X", Default=0); # Lower=-1e3, Upper=1e3); EQUATIONS "Outlet stream" Outlet.F*Outlet.z = Outletm.F*Outletm.z + rate*Tank.V; "Mechanical equilibrium" Outlet.P = Outletm.P; "Energy balance" Outlet.F*Outlet.h = Outletm.F*Outletm.h; "Steady-state" Outlet.F = Inlet.F + sum(sumt(stoic*extent)); "Gibbs free-energy of formation" G = PP.IdealGasGibbsOfFormation(Outlet.T); # "Gibbs free-energy of formation without Cp correction" # G = PP.IdealGasGibbsOfFormationAt25C()*Outlet.T/To # + PP.IdealGasEnthalpyOfFormationAt25C()*(1 - Outlet.T/To); "Gibbs free energy of reaction" sumt(G*stoic) = -Rg*Outlet.T*ln(K); # K = exp(-sumt(G*stoic)/(Rg*Outlet.T)); for j in [1:NReac] "Equilibrium constant" K(j) = prod(activ^stoic(:,j)); end for i in [1:NComp] "Outlet molar fraction" Outlet.F*Outlet.z(i) = (Inlet.F*Inlet.z(i) + sumt(stoic(i,:)*extent)); end for i in [1:NComp] if (Outletm.z(i) > 0) then "Molar conversion" Outlet.F*Outlet.z(i) = Outletm.F*Outletm.z(i)*(1 - conv(i)); else if (Outlet.z(i) > 0) then "Molar conversion" conv(i) = 1; # ? else "Molar conversion" conv(i) = 0; # ? end end end "Activity" activ = PP.VapourFugacityCoefficient(Outlet.T,Outlet.P,Outlet.z)*Outlet.P*Outlet.z/fs; end #*--------------------------------------------------------------------- * only liquid-phase *--------------------------------------------------------------------*# Model equil_liq as tank_liq ATTRIBUTES Pallete = true; Icon = "icon/cstr"; Brief = "Model of a generic liquid-phase equilibrium CSTR"; Info = " == Assumptions == * only liquid-phase * thermodynamic equilibrium * steady-state == Specify == * inlet stream * stoichiometric matrix * equilibrium temperature "; PARAMETERS NReac as Integer (Brief="Number of reactions", Default=1); stoic(NComp,NReac) as Real (Brief="Stoichiometric matrix", Symbol="\nu"); Rg as Real (Brief="Universal gas constant", Unit='J/mol/K', Default=8.314); Ps as pressure (Brief="Standard pressure", Default=1, DisplayUnit='bar'); To as temperature (Brief="Reference temperature", Default=298.15); VARIABLES out Outlet as liquid_stream(Brief="Outlet stream", PosX=1, PosY=1, Symbol="_{out}"); G(NReac) as enth_mol (Brief="Gibbs free-energy of formation"); K(NReac) as fraction (Brief="Equillibrium constant"); activ(NComp)as Real (Brief="Activity", Symbol="\hat{a}"); rate(NComp) as reaction_mol (Brief="Overall component rate of reaction"); extent(NReac)as flow_mol (Brief="Extent of reaction", Symbol="\xi"); conv(NComp) as Real (Brief="Fractional conversion of component", Symbol="X", Default=0); EQUATIONS "Outlet stream" Outlet.F*Outlet.z = Outletm.F*Outletm.z + rate*Tank.V; "Mechanical equilibrium" Outlet.P = Outletm.P; "Energy balance" Outlet.F*Outlet.h = Outletm.F*Outletm.h; "Steady-state" Outlet.F = Inlet.F + sum(sumt(stoic*extent)); "Gibbs free-energy of formation" G = PP.IdealGasGibbsOfFormation(Outlet.T); # "Gibbs free-energy of formation without Cp correction" # G = PP.IdealGasGibbsOfFormationAt25C()*Outlet.T/To # + PP.IdealGasEnthalpyOfFormationAt25C()*(1 - Outlet.T/To); "Gibbs free energy of reaction" sumt(G*stoic) = -Rg*Outlet.T*ln(K); # K = exp(-sumt(G*stoic)/(Rg*Outlet.T)); for j in [1:NReac] "Equilibrium constant" K(j) = prod(activ^stoic(:,j)); end for i in [1:NComp] "Outlet molar fraction" Outlet.F*Outlet.z(i) = (Inlet.F*Inlet.z(i) + sumt(stoic(i,:)*extent)); end for i in [1:NComp] if (Outletm.z(i) > 0) then "Molar conversion" Outlet.F*Outlet.z(i) = Outletm.F*Outletm.z(i)*(1 - conv(i)); else if (Outlet.z(i) > 0) then "Molar conversion" conv(i) = 1; # ? else "Molar conversion" conv(i) = 0; # ? end end end "Activity" activ = PP.LiquidFugacityCoefficient(Outlet.T,Outlet.P,Outlet.z)*Outlet.z *exp(PP.LiquidVolume(Outlet.T,Outlet.P,Outlet.z)*(Outlet.P - Ps)/Rg/Outlet.T); end