#*--------------------------------------------------------------------* * * * * * * * * * * *---------------------------------------------------------------------- * Author: Gerson Balbueno Bicca * $Id: HeatExchangerDiscretized.mso 1 2006-06-20 17:33:53Z rafael $ *--------------------------------------------------------------------*# using "HEX_Engine"; #===================================================================== # Basic Model for Discretized Heat Exchangers #===================================================================== Model HeatExchangerDiscretized_Basic PARAMETERS ext PP as CalcObject(Brief="External Physical Properties"); ext HE as CalcObject(Brief="STHE Calculations",File="heatex.dll"); ext NComp as Integer (Brief="Number of Components"); M(NComp) as molweight (Brief="Component Mol Weight"); VARIABLES in Inlet as Inlet_Main_Stream; # Hot and Cold Inlets out Outlet as Outlet_Main_Stream; # Hot and Cold Outlets Properties as Main_Properties; # Hot and Cold Properties Details as Details_Main; Tubes as Tube_Side_Main_Disc; Shell as Shell_Side_Main_Disc; Resistances as Main_Resistances; Baffles as Baffles_Main; SET M = PP.MolecularWeight(); EQUATIONS "Hot Stream Average Temperature" Properties.Hot.Average.T = 0.5*Inlet.Hot.T + 0.5*Outlet.Hot.T; "Cold Stream Average Temperature" Properties.Cold.Average.T = 0.5*Inlet.Cold.T + 0.5*Outlet.Cold.T; "Hot Stream Average Pressure" Properties.Hot.Average.P = 0.5*Inlet.Hot.P+0.5*Outlet.Hot.P; "Cold Stream Average Pressure" Properties.Cold.Average.P = 0.5*Inlet.Cold.P+0.5*Outlet.Cold.P; "Hot Stream Average Molecular Weight" Properties.Hot.Average.Mw = sum(M*Inlet.Hot.z); "Cold Stream Average Molecular Weight" Properties.Cold.Average.Mw = sum(M*Inlet.Cold.z); if Inlet.Cold.v equal 0 then "Heat Capacity Cold Stream" Properties.Cold.Average.Cp = PP.LiquidCp(Properties.Cold.Average.T,Properties.Cold.Average.P,Inlet.Cold.z); Properties.Cold.Inlet.Cp = PP.LiquidCp(Inlet.Cold.T,Inlet.Cold.P,Inlet.Cold.z); Properties.Cold.Outlet.Cp = PP.LiquidCp(Outlet.Cold.T,Outlet.Cold.P,Outlet.Cold.z); "Mass Density Cold Stream" Properties.Cold.Average.rho = PP.LiquidDensity(Properties.Cold.Average.T,Properties.Cold.Average.P,Inlet.Cold.z); Properties.Cold.Inlet.rho = PP.LiquidDensity(Inlet.Cold.T,Inlet.Cold.P,Inlet.Cold.z); Properties.Cold.Outlet.rho = PP.LiquidDensity(Outlet.Cold.T,Outlet.Cold.P,Outlet.Cold.z); "Viscosity Cold Stream" Properties.Cold.Average.Mu = PP.LiquidViscosity(Properties.Cold.Average.T,Properties.Cold.Average.P,Inlet.Cold.z); Properties.Cold.Inlet.Mu = PP.LiquidViscosity(Inlet.Cold.T,Inlet.Cold.P,Inlet.Cold.z); Properties.Cold.Outlet.Mu = PP.LiquidViscosity(Outlet.Cold.T,Outlet.Cold.P,Outlet.Cold.z); "Conductivity Cold Stream" Properties.Cold.Average.K = PP.LiquidThermalConductivity(Properties.Cold.Average.T,Properties.Cold.Average.P,Inlet.Cold.z); Properties.Cold.Inlet.K = PP.LiquidThermalConductivity(Inlet.Cold.T,Inlet.Cold.P,Inlet.Cold.z); Properties.Cold.Outlet.K = PP.LiquidThermalConductivity(Outlet.Cold.T,Outlet.Cold.P,Outlet.Cold.z); "Heat Capacity Cold Stream" Properties.Cold.Wall.Cp = PP.LiquidCp(Properties.Cold.Wall.Twall,Properties.Cold.Average.P,Inlet.Cold.z); "Viscosity Cold Stream" Properties.Cold.Wall.Mu = PP.LiquidViscosity(Properties.Cold.Wall.Twall,Properties.Cold.Average.P,Inlet.Cold.z); "Conductivity Cold Stream" Properties.Cold.Wall.K = PP.LiquidThermalConductivity(Properties.Cold.Wall.Twall,Properties.Cold.Average.P,Inlet.Cold.z); else "Heat Capacity Cold Stream" Properties.Cold.Average.Cp = PP.VapourCp(Properties.Cold.Average.T,Properties.Cold.Average.P,Inlet.Cold.z); Properties.Cold.Inlet.Cp = PP.VapourCp(Inlet.Cold.T,Inlet.Cold.P,Inlet.Cold.z); Properties.Cold.Outlet.Cp = PP.VapourCp(Outlet.Cold.T,Outlet.Cold.P,Outlet.Cold.z); "Mass Density Cold Stream" Properties.Cold.Average.rho = PP.VapourDensity(Properties.Cold.Average.T,Properties.Cold.Average.P,Inlet.Cold.z); Properties.Cold.Inlet.rho = PP.VapourDensity(Inlet.Cold.T,Inlet.Cold.P,Inlet.Cold.z); Properties.Cold.Outlet.rho = PP.VapourDensity(Outlet.Cold.T,Outlet.Cold.P,Outlet.Cold.z); "Viscosity Cold Stream" Properties.Cold.Average.Mu = PP.VapourViscosity(Properties.Cold.Average.T,Properties.Cold.Average.P,Inlet.Cold.z); Properties.Cold.Inlet.Mu = PP.VapourViscosity(Inlet.Cold.T,Inlet.Cold.P,Inlet.Cold.z); Properties.Cold.Outlet.Mu = PP.VapourViscosity(Outlet.Cold.T,Outlet.Cold.P,Outlet.Cold.z); "Conductivity Cold Stream" Properties.Cold.Average.K = PP.VapourThermalConductivity(Properties.Cold.Average.T,Properties.Cold.Average.P,Inlet.Cold.z); Properties.Cold.Inlet.K = PP.VapourThermalConductivity(Inlet.Cold.T,Inlet.Cold.P,Inlet.Cold.z); Properties.Cold.Outlet.K = PP.VapourThermalConductivity(Outlet.Cold.T,Outlet.Cold.P,Outlet.Cold.z); "Heat Capacity Cold Stream" Properties.Cold.Wall.Cp = PP.VapourCp(Properties.Cold.Wall.Twall,Properties.Cold.Average.P,Inlet.Cold.z); "Viscosity Cold Stream" Properties.Cold.Wall.Mu = PP.VapourViscosity(Properties.Cold.Wall.Twall,Properties.Cold.Average.P,Inlet.Cold.z); "Conductivity Cold Stream" Properties.Cold.Wall.K = PP.VapourThermalConductivity(Properties.Cold.Wall.Twall,Properties.Cold.Average.P,Inlet.Cold.z); end if Inlet.Hot.v equal 0 then "Heat Capacity Hot Stream" Properties.Hot.Average.Cp = PP.LiquidCp(Properties.Hot.Average.T,Properties.Hot.Average.P,Inlet.Hot.z); Properties.Hot.Inlet.Cp = PP.LiquidCp(Inlet.Hot.T,Inlet.Hot.P,Inlet.Hot.z); Properties.Hot.Outlet.Cp = PP.LiquidCp(Outlet.Hot.T,Outlet.Hot.P,Outlet.Hot.z); "Mass Density Hot Stream" Properties.Hot.Average.rho = PP.LiquidDensity(Properties.Hot.Average.T,Properties.Hot.Average.P,Inlet.Hot.z); Properties.Hot.Inlet.rho = PP.LiquidDensity(Inlet.Hot.T,Inlet.Hot.P,Inlet.Hot.z); Properties.Hot.Outlet.rho = PP.LiquidDensity(Outlet.Hot.T,Outlet.Hot.P,Outlet.Hot.z); "Viscosity Hot Stream" Properties.Hot.Average.Mu = PP.LiquidViscosity(Properties.Hot.Average.T,Properties.Hot.Average.P,Inlet.Hot.z); Properties.Hot.Inlet.Mu = PP.LiquidViscosity(Inlet.Hot.T,Inlet.Hot.P,Inlet.Hot.z); Properties.Hot.Outlet.Mu = PP.LiquidViscosity(Outlet.Hot.T,Outlet.Hot.P,Outlet.Hot.z); "Conductivity Hot Stream" Properties.Hot.Average.K = PP.LiquidThermalConductivity(Properties.Hot.Average.T,Properties.Hot.Average.P,Inlet.Hot.z); Properties.Hot.Inlet.K = PP.LiquidThermalConductivity(Inlet.Hot.T,Inlet.Hot.P,Inlet.Hot.z); Properties.Hot.Outlet.K = PP.LiquidThermalConductivity(Outlet.Hot.T,Outlet.Hot.P,Outlet.Hot.z); "Heat Capacity Hot Stream" Properties.Hot.Wall.Cp = PP.LiquidCp(Properties.Hot.Wall.Twall,Properties.Hot.Average.P,Inlet.Hot.z); "Viscosity Hot Stream" Properties.Hot.Wall.Mu = PP.LiquidViscosity(Properties.Hot.Wall.Twall,Properties.Hot.Average.P,Inlet.Hot.z); "Conductivity Hot Stream" Properties.Hot.Wall.K = PP.LiquidThermalConductivity(Properties.Hot.Wall.Twall,Properties.Hot.Average.P,Inlet.Hot.z); else "Heat Capacity Hot Stream" Properties.Hot.Average.Cp = PP.VapourCp(Properties.Hot.Average.T,Properties.Hot.Average.P,Inlet.Hot.z); Properties.Hot.Inlet.Cp = PP.VapourCp(Inlet.Hot.T,Inlet.Hot.P,Inlet.Hot.z); Properties.Hot.Outlet.Cp = PP.VapourCp(Outlet.Hot.T,Outlet.Hot.P,Outlet.Hot.z); "Mass Density Hot Stream" Properties.Hot.Average.rho = PP.VapourDensity(Properties.Hot.Average.T,Properties.Hot.Average.P,Inlet.Hot.z); Properties.Hot.Inlet.rho = PP.VapourDensity(Inlet.Hot.T,Inlet.Hot.P,Inlet.Hot.z); Properties.Hot.Outlet.rho = PP.VapourDensity(Outlet.Hot.T,Outlet.Hot.P,Outlet.Hot.z); "Viscosity Hot Stream" Properties.Hot.Average.Mu = PP.VapourViscosity(Properties.Hot.Average.T,Properties.Hot.Average.P,Inlet.Hot.z); Properties.Hot.Inlet.Mu = PP.VapourViscosity(Inlet.Hot.T,Inlet.Hot.P,Inlet.Hot.z); Properties.Hot.Outlet.Mu = PP.VapourViscosity(Outlet.Hot.T,Outlet.Hot.P,Outlet.Hot.z); "Conductivity Hot Stream" Properties.Hot.Average.K = PP.VapourThermalConductivity(Properties.Hot.Average.T,Properties.Hot.Average.P,Inlet.Hot.z); Properties.Hot.Inlet.K = PP.VapourThermalConductivity(Inlet.Hot.T,Inlet.Hot.P,Inlet.Hot.z); Properties.Hot.Outlet.K = PP.VapourThermalConductivity(Outlet.Hot.T,Outlet.Hot.P,Outlet.Hot.z); "Heat Capacity Hot Stream" Properties.Hot.Wall.Cp = PP.VapourCp(Properties.Hot.Wall.Twall,Properties.Hot.Average.P,Inlet.Hot.z); "Viscosity Hot Stream" Properties.Hot.Wall.Mu = PP.VapourViscosity(Properties.Hot.Wall.Twall,Properties.Hot.Average.P,Inlet.Hot.z); "Conductivity Hot Stream" Properties.Hot.Wall.K = PP.VapourThermalConductivity(Properties.Hot.Wall.Twall,Properties.Hot.Average.P,Inlet.Hot.z); end #===================================================================== # Thermal Details #===================================================================== "Hot Stream Heat Capacity" Details.Ch =Inlet.Hot.F*Properties.Hot.Average.Cp; "Cold Stream Heat Capacity" Details.Cc =Inlet.Cold.F*Properties.Cold.Average.Cp; "Heat Capacity Ratio" [Details.Cmin,Details.Cmax,Details.Cr] = HE.HeatCapacityRatio(Details.Ch,Details.Cc); #===================================================================== # Energy Balance #===================================================================== "Energy Balance Hot Stream" Details.Q = Inlet.Hot.F*(Inlet.Hot.h-Outlet.Hot.h); "Energy Balance Cold Stream" Details.Q =-Inlet.Cold.F*(Inlet.Cold.h-Outlet.Cold.h); #===================================================================== # Material Balance #===================================================================== "Flow Mass Inlet Cold Stream" Properties.Cold.Inlet.Fw = sum(M*Inlet.Cold.z)*Inlet.Cold.F; "Flow Mass Outlet Cold Stream" Properties.Cold.Outlet.Fw = sum(M*Outlet.Cold.z)*Outlet.Cold.F; "Flow Mass Inlet Hot Stream" Properties.Hot.Inlet.Fw = sum(M*Inlet.Hot.z)*Inlet.Hot.F; "Flow Mass Outlet Hot Stream" Properties.Hot.Outlet.Fw = sum(M*Outlet.Hot.z)*Outlet.Hot.F; "Molar Balance Hot Stream" Inlet.Hot.F = Outlet.Hot.F; "Molar Balance Cold Stream" Inlet.Cold.F = Outlet.Cold.F; #====================================== # Constraints #====================================== "Hot Stream Molar Fraction Constraint" Outlet.Hot.z=Inlet.Hot.z; "Cold Stream Molar Fraction Constraint" Outlet.Cold.z=Inlet.Cold.z; "No Phase Change In Cold Stream" Inlet.Cold.v=Outlet.Cold.v; "No Phase Change In Hot Stream" Inlet.Hot.v=Outlet.Hot.v; end Model Heatex_Discretized_LMTD as HeatExchangerDiscretized_Basic VARIABLES LMTD as temp_delta (Brief="Logarithmic Mean Temperature Difference",Lower=5); Fc as positive (Brief="LMTD Correction Factor",Lower=0.1); MTD as temp_delta (Brief="Mean Temperature Difference",Lower=5); EQUATIONS "Exchange Surface Area" Details.Q = Details.U*Details.A*MTD; "Mean Temperature Difference" MTD = Fc*LMTD; "LMTD Correction Factor" Fc = HE.EshellCorrectionFactor(Inlet.Hot.T,Outlet.Hot.T,Inlet.Cold.T,Outlet.Cold.T); "LMTD" LMTD = HE.CounterLMTD(Inlet.Hot.T,Outlet.Hot.T,Inlet.Cold.T,Outlet.Cold.T); end Model Heatex_Discretized_NTU as HeatExchangerDiscretized_Basic VARIABLES Eft as positive (Brief="Effectiveness",Default=0.05,Lower=1e-8); EQUATIONS "Exchange Surface Area" Details.Q = Eft*Details.Cmin*(Inlet.Hot.T-Inlet.Cold.T); "TEMA E Shell Effectiveness" # Eft = HE.EshellEffectiveness(Details.Cr,Details.NTU); Eft = 0.10; end Model Profiles PARAMETERS Zones as Integer; VARIABLES Lz(Zones) as length; Lpos(Zones) as length; Area as area; Q as power; PdropShellTotal as pressure; PdropTubesTotal as pressure; PdropWinTotal as pressure; PdropCrossTotal as pressure; PdropEndsTotal as pressure; Uaverage as heat_trans_coeff (Brief="Overall Heat Transfer Coefficient",Default=1,Lower=1e-6,Upper=1e10); hshellaverage as heat_trans_coeff (Brief="Shell Side Film Coefficient",Default=1,Lower=1e-12, Upper=1e6); htubeaverage as heat_trans_coeff (Brief="Shell Side Film Coefficient",Default=1,Lower=1e-12, Upper=1e6); Thot(Zones) as temperature(Lower = 70, Upper = 500); Tcold(Zones) as temperature(Lower = 70, Upper = 500); Phot(Zones) as pressure(Lower = 0.8, Upper = 30); Pcold(Zones) as pressure(Lower = 0.8, Upper = 30); end Model E_Shell_LMTD_Disc #============================================================================ # Shell and Tubes Heat Exchanger In Series with 1 shell pass - LMTD Method #============================================================================ PARAMETERS ext HE as CalcObject (Brief="STHE Calculations",File="heatex.dll"); ext PP as CalcObject; side as Integer (Brief="Fluid Alocation",Lower=0,Upper=1); Pi as constant (Brief="Pi Number",Default=3.14159265); #===================================================================== # Shell Geometrical Parameters #===================================================================== Tpass as Integer (Brief="Number of Tube Passes",Lower=1); Nss as Integer (Brief="Number of Sealing Strips pairs",Lower=1); Dishell as length (Brief="Inside Shell Diameter",Lower=10e-6); Donozzle_Shell as length (Brief="Shell Outlet Nozzle Diameter",Lower=10e-6); Dinozzle_Shell as length (Brief="Shell Inlet Nozzle Diameter",Lower=10e-6); Hinozzle_Shell as length (Brief="Height Under Shell Inlet Nozzle",Lower=10e-6); Honozzle_Shell as length (Brief="Height Under Shell Outlet Nozzle",Lower=10e-6); Lcf as length (Brief="Bundle-to-Shell Clearance",Lower=10e-8); #===================================================================== # Tubes Geometrical Parameters #===================================================================== Ntt as Integer (Brief="Total Number of Tubes in Shell",Default=100,Lower=1); Pattern as Integer (Brief="Tube Layout Characteristic Angle",Lower=30); Ltube as length (Brief="Effective Tube Length",Lower=0.1); pitch as length (Brief="Tube Pitch",Lower=1e-8); Kwall as conductivity (Brief="Tube Wall Material Thermal Conductivity"); Dotube as length (Brief="Tube Outside Diameter",Lower=10e-6); Ditube as length (Brief="Tube Inside Diameter",Lower=10e-6); Donozzle_Tube as length (Brief="Tube Outlet Nozzle Diameter",Lower=10e-6); Dinozzle_Tube as length (Brief="Tube Inlett Nozzle Diameter",Lower=10e-6); #===================================================================== # Baffles Geometrical Parameters #===================================================================== Bc as Integer (Brief="Baffle Cut",Default=25,Lower=25); Nb as Integer (Brief="Number of Baffles",Default=4); Lcd as length (Brief="Baffle-to-Shell Clearance",Lower=10e-8); Ltd as length (Brief="Tube-to-Bafflehole Clearance",Lower=10e-8); #===================================================================== VARIABLES PdropNozzles as Pdrop_Nozzles_Main; Unity(Nb+1) as Heatex_Discretized_LMTD; Sumary as Profiles; CONNECTIONS Unity([1:Nb]).Outlet.Hot to Unity([2:Nb+1]).Inlet.Hot; Unity([2:Nb+1]).Outlet.Cold to Unity([1:Nb]).Inlet.Cold; EQUATIONS "Outlet Hot Temperature" Sumary.Thot = Unity.Outlet.Hot.T ; "Outlet Cold Temperature" Sumary.Tcold = Unity.Outlet.Cold.T ; Sumary.Phot = Unity.Outlet.Hot.P ; Sumary.Pcold = Unity.Outlet.Cold.P ; Sumary.hshellaverage = sum(Unity.Shell.HeatTransfer.hshell)/Sumary.Zones; Sumary.htubeaverage = sum(Unity.Tubes.HeatTransfer.htube)/Sumary.Zones; Sumary.Uaverage = sum(Unity.Details.U)/Sumary.Zones; Sumary.Area = sum(Unity.Details.A); Sumary.Q = sum(Unity.Details.Q); Sumary.PdropShellTotal = sum(Unity.Shell.PressureDrop.Pdtotal)+PdropNozzles.Shell.Pdnozzle_in + PdropNozzles.Shell.Pdnozzle_out; Sumary.PdropTubesTotal = sum(Unity.Tubes.PressureDrop.Pdtotal)+PdropNozzles.Tubes.Pdnozzle_in + PdropNozzles.Tubes.Pdnozzle_out; Sumary.PdropWinTotal = sum(Unity.Shell.PressureDrop.Pdwindow); Sumary.PdropCrossTotal = sum(Unity.Shell.PressureDrop.PdCross); Sumary.PdropEndsTotal = sum(Unity.Shell.PressureDrop.PdEndZones); Sumary.Lz(1) = Unity(1).Baffles.Lsi; "Shell Side Cross Flow Area" Unity(1).Shell.HeatTransfer.Sm = HE.CrossFlowArea(Unity(1).Baffles.Lsi); "Shell Side Cross Flow Area" Unity(Nb+1).Shell.HeatTransfer.Sm = HE.CrossFlowArea(Unity(Nb+1).Baffles.Lso); Sumary.Lz(Nb+1) = Unity(1).Baffles.Lso; if side equal 1 then "Pressure Drop Hot Stream" Unity(1).Outlet.Hot.P = Unity(1).Inlet.Hot.P - Unity(1).Shell.PressureDrop.Pdtotal - PdropNozzles.Shell.Pdnozzle_in; Unity(Nb+1).Outlet.Hot.P = Unity(Nb+1).Inlet.Hot.P - Unity(Nb+1).Shell.PressureDrop.Pdtotal - PdropNozzles.Shell.Pdnozzle_out; "Pressure Drop Cold Stream" Unity(1).Outlet.Cold.P = Unity(1).Inlet.Cold.P - Unity(1).Tubes.PressureDrop.Pdtotal - PdropNozzles.Tubes.Pdnozzle_in; Unity(Nb+1).Outlet.Cold.P = Unity(Nb+1).Inlet.Cold.P - Unity(Nb+1).Tubes.PressureDrop.Pdtotal - PdropNozzles.Tubes.Pdnozzle_out; "Pressure Drop Tube Side Inlet Nozzle" PdropNozzles.Tubes.Pdnozzle_in = HE.DeltaPtubeNozzlein(Unity(1).Properties.Cold.Inlet.rho,Unity(1).Properties.Cold.Inlet.Fw); "Velocity Tube Side Inlet Nozzle" PdropNozzles.Tubes.Vnozzle_in = HE.TubeVelocityNozzlein(Unity(1).Properties.Cold.Inlet.rho,Unity(1).Properties.Cold.Inlet.Fw); "Pressure Drop Tube Side Outlet Nozzle" PdropNozzles.Tubes.Pdnozzle_out = HE.DeltaPtubeNozzleout(Unity(Nb+1).Properties.Cold.Outlet.rho,Unity(Nb+1).Properties.Cold.Inlet.Fw); "Velocity Tube Side Outlet Nozzle" PdropNozzles.Tubes.Vnozzle_out = HE.TubeVelocityNozzleout(Unity(Nb+1).Properties.Cold.Outlet.rho,Unity(Nb+1).Properties.Cold.Inlet.Fw); "Shell Pressure Drop Inlet Nozzle" PdropNozzles.Shell.Pdnozzle_in = HE.DeltaPshellNozzleIn(Unity(1).Properties.Hot.Inlet.rho,Unity(1).Properties.Hot.Inlet.Fw); "Velocity Shell Side Inlet Nozzle" PdropNozzles.Shell.Vnozzle_in = HE.ShellVelocityNozzleIn(Unity(1).Properties.Hot.Inlet.rho,Unity(1).Properties.Hot.Inlet.Fw); "Shell Pressure Drop Outlet Nozzle" PdropNozzles.Shell.Pdnozzle_out =HE.DeltaPshellNozzleOut(Unity(Nb+1).Properties.Hot.Outlet.rho,Unity(Nb+1).Properties.Hot.Inlet.Fw); "Velocity Shell Side Outlet Nozzle" PdropNozzles.Shell.Vnozzle_out =HE.ShellVelocityNozzleOut(Unity(Nb+1).Properties.Hot.Outlet.rho,Unity(Nb+1).Properties.Hot.Inlet.Fw); else "Pressure Drop Hot Stream" Unity(1).Outlet.Hot.P = Unity(1).Inlet.Hot.P- Unity(1).Tubes.PressureDrop.Pdtotal - PdropNozzles.Tubes.Pdnozzle_in; Unity(Nb+1).Outlet.Hot.P = Unity(Nb+1).Inlet.Hot.P- Unity(Nb+1).Tubes.PressureDrop.Pdtotal - PdropNozzles.Tubes.Pdnozzle_out; "Pressure Drop Cold Stream" Unity(1).Outlet.Cold.P = Unity(1).Inlet.Cold.P - Unity(1).Shell.PressureDrop.Pdtotal- PdropNozzles.Shell.Pdnozzle_in; Unity(Nb+1).Outlet.Cold.P = Unity(Nb+1).Inlet.Cold.P - Unity(Nb+1).Shell.PressureDrop.Pdtotal- PdropNozzles.Shell.Pdnozzle_out; "Pressure Drop Tube Side Inlet Nozzle" PdropNozzles.Tubes.Pdnozzle_in = HE.DeltaPtubeNozzlein(Unity(1).Properties.Hot.Inlet.rho,Unity(1).Properties.Hot.Inlet.Fw); "Velocity Tube Side Inlet Nozzle" PdropNozzles.Tubes.Vnozzle_in = HE.TubeVelocityNozzlein(Unity(1).Properties.Hot.Inlet.rho,Unity(1).Properties.Hot.Inlet.Fw); "Pressure Drop Tube Side Outlet Nozzle" PdropNozzles.Tubes.Pdnozzle_out = HE.DeltaPtubeNozzleout(Unity(Nb+1).Properties.Hot.Outlet.rho,Unity(Nb+1).Properties.Hot.Inlet.Fw); "Velocity Tube Side Outlet Nozzle" PdropNozzles.Tubes.Vnozzle_out = HE.TubeVelocityNozzleout(Unity(Nb+1).Properties.Hot.Outlet.rho,Unity(Nb+1).Properties.Hot.Inlet.Fw); "Shell Pressure Drop Inlet Nozzle" PdropNozzles.Shell.Pdnozzle_in = HE.DeltaPshellNozzleIn(Unity(1).Properties.Cold.Inlet.rho,Unity(1).Properties.Cold.Inlet.Fw); "Velocity Shell Side Inlet Nozzle" PdropNozzles.Shell.Vnozzle_in = HE.ShellVelocityNozzleIn(Unity(1).Properties.Cold.Inlet.rho,Unity(1).Properties.Cold.Inlet.Fw); "Shell Pressure Drop Outlet Nozzle" PdropNozzles.Shell.Pdnozzle_out = HE.DeltaPshellNozzleOut(Unity(Nb+1).Properties.Cold.Outlet.rho,Unity(Nb+1).Properties.Cold.Inlet.Fw); "Velocity Shell Side Outlet Nozzle" PdropNozzles.Shell.Vnozzle_out = HE.ShellVelocityNozzleOut(Unity(Nb+1).Properties.Cold.Outlet.rho,Unity(Nb+1).Properties.Cold.Inlet.Fw); end for i in [2:Nb] if side equal 1 then "Pressure Drop Hot Stream" Unity(i).Outlet.Hot.P = Unity(i).Inlet.Hot.P - Unity(i).Shell.PressureDrop.Pdtotal; "Pressure Drop Cold Stream" Unity(i).Outlet.Cold.P = Unity(i).Inlet.Cold.P - Unity(i).Tubes.PressureDrop.Pdtotal; else "Pressure Drop Hot Stream" Unity(i).Outlet.Hot.P = Unity(i).Inlet.Hot.P- Unity(i).Tubes.PressureDrop.Pdtotal; "Pressure Drop Cold Stream" Unity(i).Outlet.Cold.P = Unity(i).Inlet.Cold.P - Unity(i).Shell.PressureDrop.Pdtotal; end "Position for discretization" Sumary.Lz(i) = Unity(1).Baffles.Ls; "Shell Side Cross Flow Area" Unity(i).Shell.HeatTransfer.Sm = HE.CrossFlowArea(Unity(i).Baffles.Ls); end for i in [1:Nb+1] "Js Factor" Unity(i).Shell.HeatTransfer.Js = HE.JsFactor(Unity(i).Shell.HeatTransfer.Re,Unity(i).Baffles.Lsi,Unity(i).Baffles.Lso,Unity(i).Baffles.Ls); "Position for discretization" Sumary.Lpos(i) = sum(Sumary.Lz([1:i])); "Ji Factor" Unity(i).Shell.HeatTransfer.Ji = HE.JiFactor(Unity(i).Shell.HeatTransfer.Re); "Jc Factor" Unity(i).Shell.HeatTransfer.Jc = HE.JcFactor(); "Jl Factor" Unity(i).Shell.HeatTransfer.Jl = HE.JlFactor(Unity(i).Shell.HeatTransfer.Sm); "Jb Factor" Unity(i).Shell.HeatTransfer.Jb = HE.JbFactor(Unity(i).Shell.HeatTransfer.Re,Unity(i).Baffles.Ls,Unity(i).Shell.HeatTransfer.Sm); "Jr Factor" Unity(i).Shell.HeatTransfer.Jr = HE.JrFactor(Unity(i).Shell.HeatTransfer.Re); "Total J Factor" Unity(i).Shell.HeatTransfer.Jtotal = Unity(i).Shell.HeatTransfer.Jc*Unity(i).Shell.HeatTransfer.Jl*Unity(i).Shell.HeatTransfer.Jb*Unity(i).Shell.HeatTransfer.Jr*Unity(i).Shell.HeatTransfer.Js; if side equal 1 then "Shell Side Reynolds Number" Unity(i).Shell.HeatTransfer.Re = HE.ShellReynoldsNumber(Unity(i).Properties.Hot.Inlet.Fw,Unity(i).Shell.HeatTransfer.Sm,Unity(i).Properties.Hot.Average.Mu); "Shell Heat Transfer Coefficient" Unity(i).Shell.HeatTransfer.hshell = HE.ShellFilmCoeff(Unity(i).Shell.HeatTransfer.Ji,Unity(i).Properties.Hot.Average.Cp,Unity(i).Properties.Hot.Average.Mw,Unity(i).Properties.Hot.Inlet.Fw,Unity(i).Shell.HeatTransfer.Sm,Unity(i).Shell.HeatTransfer.PR,Unity(i).Shell.HeatTransfer.Jtotal,Unity(i).Shell.HeatTransfer.Phi); "Shell Pressure Drop Cross Flow" Unity(i).Shell.PressureDrop.PdCross = HE.DeltaPcrossIncremental(Unity(i).Shell.HeatTransfer.Re,Unity(i).Baffles.Ls,Unity(i).Baffles.Lso,Unity(i).Baffles.Lsi,Unity(i).Properties.Hot.Inlet.Fw,Unity(i).Shell.HeatTransfer.Phi,Unity(i).Properties.Hot.Average.rho); "Shell Pressure Baffle Window" Unity(i).Shell.PressureDrop.Pdwindow = HE.DeltaPwindowIncremental(Unity(i).Properties.Hot.Inlet.Fw,Unity(i).Shell.HeatTransfer.Sm,Unity(i).Properties.Hot.Average.rho,Unity(i).Properties.Hot.Average.Mu,Unity(i).Baffles.Ls); "Shell Pressure End Zones" Unity(i).Shell.PressureDrop.PdEndZones = HE.DeltaPendZonesIncremental(Unity(i).Shell.HeatTransfer.Re,Unity(i).Baffles.Ls,Unity(i).Baffles.Lso,Unity(i).Baffles.Lsi,Unity(i).Properties.Hot.Inlet.Fw,Unity(i).Shell.HeatTransfer.Phi,Unity(i).Properties.Hot.Average.rho); # Tubes.HeatTransfer.Twall = HE.WallTemperature(Properties.Hot.Average.T,Properties.Cold.Average.T,Tubes.HeatTransfer.htube,Shell.HeatTransfer.hshell); "Wall Temperature for Cold Side" Unity(i).Properties.Cold.Wall.Twall = (Unity(i).Properties.Hot.Average.T+Unity(i).Properties.Cold.Average.T)/2; "Wall Temperature for Hot Side" Unity(i).Properties.Hot.Wall.Twall = (Unity(i).Properties.Hot.Average.T+Unity(i).Properties.Cold.Average.T)/2; "Tube Side Velocity" Unity(i).Tubes.HeatTransfer.Vtube = HE.TubeVelocity(Unity(i).Properties.Cold.Inlet.Fw,Unity(i).Properties.Cold.Average.rho); "Tube Side Reynolds Number" Unity(i).Tubes.HeatTransfer.Re = HE.TubeReynoldsNumber(Unity(i).Properties.Cold.Average.rho,Unity(i).Tubes.HeatTransfer.Vtube,Unity(i).Properties.Cold.Average.Mu); "Tube Side Prandtl Number" Unity(i).Tubes.HeatTransfer.PR = HE.PrandtlNumber(Unity(i).Properties.Cold.Average.K,Unity(i).Properties.Cold.Average.Cp,Unity(i).Properties.Cold.Average.Mw,Unity(i).Properties.Cold.Average.Mu); "Tube Side Prandtl Number at Wall" Unity(i).Tubes.HeatTransfer.PRw = HE.PrandtlNumber(Unity(i).Properties.Cold.Wall.K,Unity(i).Properties.Cold.Wall.Cp,Unity(i).Properties.Cold.Average.Mw,Unity(i).Properties.Cold.Wall.Mu); "Tube Side Film Coefficient" Unity(i).Tubes.HeatTransfer.htube = HE.TubeFilmCoeffIncremental(Unity(i).Tubes.HeatTransfer.Re,Unity(i).Tubes.HeatTransfer.PR,Unity(i).Properties.Cold.Average.K, Unity(i).Tubes.HeatTransfer.Phi,Sumary.Lpos(i)); "Shell Side Prandtl Number" Unity(i).Shell.HeatTransfer.PR = HE.PrandtlNumber(Unity(i).Properties.Hot.Average.K,Unity(i).Properties.Hot.Average.Cp,Unity(i).Properties.Hot.Average.Mw,Unity(i).Properties.Hot.Average.Mu); "Shell Side Prandtl Number at Wall" Unity(i).Shell.HeatTransfer.PRw = HE.PrandtlNumber(Unity(i).Properties.Hot.Wall.K,Unity(i).Properties.Hot.Wall.Cp,Unity(i).Properties.Hot.Average.Mw,Unity(i).Properties.Hot.Wall.Mu); "Tube Side Pressure Drop" Unity(i).Tubes.PressureDrop.PdTube = HE.DeltaPtubeIncremental(Unity(i).Tubes.HeatTransfer.Re,Unity(i).Properties.Cold.Average.rho,Unity(i).Tubes.HeatTransfer.Vtube, Unity(i).Tubes.HeatTransfer.Phi,Sumary.Lz(i)); "Shell Side Phi correction for viscosity" Unity(i).Shell.HeatTransfer.Phi = HE.PhiCorrection(Unity(i).Properties.Hot.Average.Mu,Unity(i).Properties.Hot.Wall.Mu); "Tube Side Phi correction for viscosity" Unity(i).Tubes.HeatTransfer.Phi = HE.PhiCorrection(Unity(i).Properties.Cold.Average.Mu,Unity(i).Properties.Cold.Wall.Mu); else "Shell Side Reynolds Number" Unity(i).Shell.HeatTransfer.Re = HE.ShellReynoldsNumber(Unity(i).Properties.Cold.Inlet.Fw,Unity(i).Shell.HeatTransfer.Sm,Unity(i).Properties.Cold.Average.Mu); "Shell Heat Transfer Coefficient" Unity(i).Shell.HeatTransfer.hshell = HE.ShellFilmCoeff(Unity(i).Shell.HeatTransfer.Ji,Unity(i).Properties.Cold.Average.Cp,Unity(i).Properties.Cold.Average.Mw,Unity(i).Properties.Cold.Inlet.Fw,Unity(i).Shell.HeatTransfer.Sm,Unity(i).Shell.HeatTransfer.PR,Unity(i).Shell.HeatTransfer.Jtotal,Unity(i).Shell.HeatTransfer.Phi); "Shell Pressure Drop Cross Flow" Unity(i).Shell.PressureDrop.PdCross = HE.DeltaPcrossIncremental(Unity(i).Shell.HeatTransfer.Re,Unity(i).Baffles.Ls,Unity(i).Baffles.Lso,Unity(i).Baffles.Lsi,Unity(i).Properties.Cold.Inlet.Fw,Unity(i).Shell.HeatTransfer.Phi,Unity(i).Properties.Cold.Average.rho); "Shell Pressure Baffle Window" Unity(i).Shell.PressureDrop.Pdwindow = HE.DeltaPwindowIncremental(Unity(i).Properties.Cold.Inlet.Fw,Unity(i).Shell.HeatTransfer.Sm,Unity(i).Properties.Cold.Average.rho,Unity(i).Properties.Cold.Average.Mu,Unity(i).Baffles.Ls); "Shell Pressure End Zones" Unity(i).Shell.PressureDrop.PdEndZones = HE.DeltaPendZonesIncremental(Unity(i).Shell.HeatTransfer.Re,Unity(i).Baffles.Ls,Unity(i).Baffles.Lso,Unity(i).Baffles.Lsi,Unity(i).Properties.Cold.Inlet.Fw,Unity(i).Shell.HeatTransfer.Phi,Unity(i).Properties.Cold.Average.rho); # Tubes.HeatTransfer.Twall = HE.WallTemperature(Properties.Cold.Average.T,Properties.Hot.Average.T,Tubes.HeatTransfer.htube,Shell.HeatTransfer.hshell); "Wall Temperature for Cold Side" Unity(i).Properties.Cold.Wall.Twall = (Unity(i).Properties.Hot.Average.T+Unity(i).Properties.Cold.Average.T)/2; "Wall Temperature for Hot Side" Unity(i).Properties.Hot.Wall.Twall = (Unity(i).Properties.Hot.Average.T+Unity(i).Properties.Cold.Average.T)/2; "Tube Side Velocity" Unity(i).Tubes.HeatTransfer.Vtube = HE.TubeVelocity(Unity(i).Properties.Hot.Inlet.Fw,Unity(i).Properties.Hot.Average.rho); "Tube Side Reynolds Number" Unity(i).Tubes.HeatTransfer.Re = HE.TubeReynoldsNumber(Unity(i).Properties.Hot.Average.rho,Unity(i).Tubes.HeatTransfer.Vtube,Unity(i).Properties.Hot.Average.Mu); "Tube Side Prandtl Number" Unity(i).Tubes.HeatTransfer.PR = HE.PrandtlNumber(Unity(i).Properties.Hot.Average.K,Unity(i).Properties.Hot.Average.Cp,Unity(i).Properties.Hot.Average.Mw,Unity(i).Properties.Hot.Average.Mu); "Tube Side Prandtl Number at Wall" Unity(i).Tubes.HeatTransfer.PRw = HE.PrandtlNumber(Unity(i).Properties.Hot.Wall.K,Unity(i).Properties.Hot.Wall.Cp,Unity(i).Properties.Hot.Average.Mw,Unity(i).Properties.Hot.Wall.Mu); "Tube Side Film Coefficient" Unity(i).Tubes.HeatTransfer.htube = HE.TubeFilmCoeffIncremental(Unity(i).Tubes.HeatTransfer.Re,Unity(i).Tubes.HeatTransfer.PR,Unity(i).Properties.Hot.Average.K, Unity(i).Tubes.HeatTransfer.Phi,Sumary.Lpos(i)); "Shell Side Prandtl Number" Unity(i).Shell.HeatTransfer.PR = HE.PrandtlNumber(Unity(i).Properties.Cold.Average.K,Unity(i).Properties.Cold.Average.Cp,Unity(i).Properties.Cold.Average.Mw,Unity(i).Properties.Cold.Average.Mu); "Shell Side Prandtl Number at Wall" Unity(i).Shell.HeatTransfer.PRw = HE.PrandtlNumber(Unity(i).Properties.Cold.Wall.K,Unity(i).Properties.Cold.Wall.Cp,Unity(i).Properties.Cold.Average.Mw,Unity(i).Properties.Cold.Wall.Mu); "Tube Side Pressure Drop" Unity(i).Tubes.PressureDrop.PdTube = HE.DeltaPtubeIncremental(Unity(i).Tubes.HeatTransfer.Re,Unity(i).Properties.Hot.Average.rho,Unity(i).Tubes.HeatTransfer.Vtube, Unity(i).Tubes.HeatTransfer.Phi,Sumary.Lz(i)); "Shell Side Phi correction for viscosity" Unity(i).Shell.HeatTransfer.Phi = HE.PhiCorrection(Unity(i).Properties.Cold.Average.Mu,Unity(i).Properties.Cold.Wall.Mu); "Tube Side Phi correction for viscosity" Unity(i).Tubes.HeatTransfer.Phi = HE.PhiCorrection(Unity(i).Properties.Hot.Average.Mu,Unity(i).Properties.Hot.Wall.Mu); end "Tube Resistance" Unity(i).Resistances.Rtube*(Unity(i).Tubes.HeatTransfer.htube*Ditube) = Dotube; "Wall Resistance" Unity(i).Resistances.Rwall = Dotube*ln(Dotube/Ditube)/(2*Kwall); "Shell Resistance" Unity(i).Resistances.Rshell*(Unity(i).Shell.HeatTransfer.hshell) = 1; "Overall Heat Transfer Coefficient" Unity(i).Details.U = 1/(Dotube/(Unity(i).Tubes.HeatTransfer.htube*Ditube)+(Dotube*ln(Dotube/Ditube)/(2*Kwall))+(1/(Unity(i).Shell.HeatTransfer.hshell))); "Exchange Surface Area" Unity(i).Details.A = Pi*Dotube*Ntt*Sumary.Lz(i); "Baffles Spacing" Ltube = Unity(i).Baffles.Lsi+Unity(i).Baffles.Lso+Unity(i).Baffles.Ls*(Nb-1); end SET #===================================================================== # Set Parameters for External Object Calculation - HE #===================================================================== Sumary.Zones = Nb+1; Pi = 3.14159265; HE.Tpass = Tpass; HE.Nss = Nss; HE.Ntt = Ntt; HE.Pattern = Pattern; HE.Bc = Bc; HE.Donozzle_Shell = Donozzle_Shell; HE.Dinozzle_Shell = Dinozzle_Shell; HE.Honozzle_Shell = Honozzle_Shell; HE.Hinozzle_Shell = Hinozzle_Shell; HE.Donozzle_Tube = Donozzle_Tube; HE.Dinozzle_Tube = Dinozzle_Tube; HE.Nb = Nb; HE.Dishell = Dishell; HE.Lcf = Lcf; HE.pitch = pitch; HE.Dotube = Dotube; HE.Ditube = Ditube; HE.Lcd = Lcd; HE.Ltd = Ltd; side = HE.FluidAlocation(); end Model E_Shell_NTU_Disc #============================================================================ # Shell and Tubes Heat Exchanger In Series with 1 shell pass - LMTD Method #============================================================================ PARAMETERS ext HE as CalcObject (Brief="STHE Calculations",File="heatex.dll"); ext PP as CalcObject; side as Integer (Brief="Fluid Alocation",Lower=0,Upper=1); Pi as constant (Brief="Pi Number",Default=3.14159265); #===================================================================== # Shell Geometrical Parameters #===================================================================== Tpass as Integer (Brief="Number of Tube Passes",Lower=1); Nss as Integer (Brief="Number of Sealing Strips pairs",Lower=1); Dishell as length (Brief="Inside Shell Diameter",Lower=10e-6); Donozzle_Shell as length (Brief="Shell Outlet Nozzle Diameter",Lower=10e-6); Dinozzle_Shell as length (Brief="Shell Inlet Nozzle Diameter",Lower=10e-6); Hinozzle_Shell as length (Brief="Height Under Shell Inlet Nozzle",Lower=10e-6); Honozzle_Shell as length (Brief="Height Under Shell Outlet Nozzle",Lower=10e-6); Lcf as length (Brief="Bundle-to-Shell Clearance",Lower=10e-8); #===================================================================== # Tubes Geometrical Parameters #===================================================================== Ntt as Integer (Brief="Total Number of Tubes in Shell",Default=100,Lower=1); Pattern as Integer (Brief="Tube Layout Characteristic Angle",Lower=30); Ltube as length (Brief="Effective Tube Length",Lower=0.1); pitch as length (Brief="Tube Pitch",Lower=1e-8); Kwall as conductivity (Brief="Tube Wall Material Thermal Conductivity"); Dotube as length (Brief="Tube Outside Diameter",Lower=10e-6); Ditube as length (Brief="Tube Inside Diameter",Lower=10e-6); Donozzle_Tube as length (Brief="Tube Outlet Nozzle Diameter",Lower=10e-6); Dinozzle_Tube as length (Brief="Tube Inlett Nozzle Diameter",Lower=10e-6); #===================================================================== # Baffles Geometrical Parameters #===================================================================== Bc as Integer (Brief="Baffle Cut",Default=25,Lower=25); Nb as Integer (Brief="Number of Baffles",Default=4); Lcd as length (Brief="Baffle-to-Shell Clearance",Lower=10e-8); Ltd as length (Brief="Tube-to-Bafflehole Clearance",Lower=10e-8); #===================================================================== VARIABLES PdropNozzles as Pdrop_Nozzles_Main; Unity(Nb+1) as Heatex_Discretized_NTU; Sumary as Profiles; CONNECTIONS Unity([1:Nb]).Outlet.Hot to Unity([2:Nb+1]).Inlet.Hot; Unity([2:Nb+1]).Outlet.Cold to Unity([1:Nb]).Inlet.Cold; EQUATIONS Sumary.Thot = Unity.Outlet.Hot.T ; Sumary.Tcold = Unity.Outlet.Cold.T ; Sumary.Phot = Unity.Outlet.Hot.P ; Sumary.Pcold = Unity.Outlet.Cold.P ; Sumary.hshellaverage = sum(Unity.Shell.HeatTransfer.hshell)/Sumary.Zones; Sumary.htubeaverage = sum(Unity.Tubes.HeatTransfer.htube)/Sumary.Zones; Sumary.Uaverage = sum(Unity.Details.U)/Sumary.Zones; Sumary.Area = sum(Unity.Details.A); Sumary.Q = sum(Unity.Details.Q); Sumary.Lz(1) = Unity(1).Baffles.Lsi; Sumary.Lz(Nb+1) = Unity(1).Baffles.Lso; Sumary.PdropShellTotal = sum(Unity.Shell.PressureDrop.Pdtotal)+PdropNozzles.Shell.Pdnozzle_in + PdropNozzles.Shell.Pdnozzle_out; Sumary.PdropTubesTotal = sum(Unity.Tubes.PressureDrop.Pdtotal)+PdropNozzles.Tubes.Pdnozzle_in + PdropNozzles.Tubes.Pdnozzle_out; Sumary.PdropWinTotal = sum(Unity.Shell.PressureDrop.Pdwindow); Sumary.PdropCrossTotal = sum(Unity.Shell.PressureDrop.PdCross); Sumary.PdropEndsTotal = sum(Unity.Shell.PressureDrop.PdEndZones); "Shell Side Cross Flow Area" Unity(1).Shell.HeatTransfer.Sm = HE.CrossFlowArea(Unity(1).Baffles.Lsi); "Shell Side Cross Flow Area" Unity(Nb+1).Shell.HeatTransfer.Sm = HE.CrossFlowArea(Unity(Nb+1).Baffles.Lso); if side equal 1 then "Pressure Drop Tube Side Inlet Nozzle" PdropNozzles.Tubes.Pdnozzle_in = HE.DeltaPtubeNozzlein(Unity(1).Properties.Cold.Inlet.rho,Unity(1).Properties.Cold.Inlet.Fw); "Velocity Tube Side Inlet Nozzle" PdropNozzles.Tubes.Vnozzle_in = HE.TubeVelocityNozzlein(Unity(1).Properties.Cold.Inlet.rho,Unity(1).Properties.Cold.Inlet.Fw); "Pressure Drop Tube Side Outlet Nozzle" PdropNozzles.Tubes.Pdnozzle_out = HE.DeltaPtubeNozzleout(Unity(Nb+1).Properties.Cold.Outlet.rho,Unity(Nb+1).Properties.Cold.Inlet.Fw); "Velocity Tube Side Outlet Nozzle" PdropNozzles.Tubes.Vnozzle_out = HE.TubeVelocityNozzleout(Unity(Nb+1).Properties.Cold.Outlet.rho,Unity(Nb+1).Properties.Cold.Inlet.Fw); "Shell Pressure Drop Inlet Nozzle" PdropNozzles.Shell.Pdnozzle_in = HE.DeltaPshellNozzleIn(Unity(1).Properties.Hot.Inlet.rho,Unity(1).Properties.Hot.Inlet.Fw); "Velocity Shell Side Inlet Nozzle" PdropNozzles.Shell.Vnozzle_in = HE.ShellVelocityNozzleIn(Unity(1).Properties.Hot.Inlet.rho,Unity(1).Properties.Hot.Inlet.Fw); "Shell Pressure Drop Outlet Nozzle" PdropNozzles.Shell.Pdnozzle_out =HE.DeltaPshellNozzleOut(Unity(Nb+1).Properties.Hot.Outlet.rho,Unity(Nb+1).Properties.Hot.Inlet.Fw); "Velocity Shell Side Outlet Nozzle" PdropNozzles.Shell.Vnozzle_out =HE.ShellVelocityNozzleOut(Unity(Nb+1).Properties.Hot.Outlet.rho,Unity(Nb+1).Properties.Hot.Inlet.Fw); "Pressure Drop Hot Stream" Unity(1).Outlet.Hot.P = Unity(1).Inlet.Hot.P - Unity(1).Shell.PressureDrop.Pdtotal - PdropNozzles.Shell.Pdnozzle_in; Unity(Nb+1).Outlet.Hot.P = Unity(Nb+1).Inlet.Hot.P - Unity(Nb+1).Shell.PressureDrop.Pdtotal - PdropNozzles.Shell.Pdnozzle_out; "Pressure Drop Cold Stream" Unity(1).Outlet.Cold.P = Unity(1).Inlet.Cold.P - Unity(1).Tubes.PressureDrop.Pdtotal - PdropNozzles.Tubes.Pdnozzle_in; Unity(Nb+1).Outlet.Cold.P = Unity(Nb+1).Inlet.Cold.P - Unity(Nb+1).Tubes.PressureDrop.Pdtotal - PdropNozzles.Tubes.Pdnozzle_out; else "Pressure Drop Tube Side Inlet Nozzle" PdropNozzles.Tubes.Pdnozzle_in = HE.DeltaPtubeNozzlein(Unity(1).Properties.Hot.Inlet.rho,Unity(1).Properties.Hot.Inlet.Fw); "Velocity Tube Side Inlet Nozzle" PdropNozzles.Tubes.Vnozzle_in = HE.TubeVelocityNozzlein(Unity(1).Properties.Hot.Inlet.rho,Unity(1).Properties.Hot.Inlet.Fw); "Pressure Drop Tube Side Outlet Nozzle" PdropNozzles.Tubes.Pdnozzle_out = HE.DeltaPtubeNozzleout(Unity(Nb+1).Properties.Hot.Outlet.rho,Unity(Nb+1).Properties.Hot.Inlet.Fw); "Velocity Tube Side Outlet Nozzle" PdropNozzles.Tubes.Vnozzle_out = HE.TubeVelocityNozzleout(Unity(Nb+1).Properties.Hot.Outlet.rho,Unity(Nb+1).Properties.Hot.Inlet.Fw); "Shell Pressure Drop Inlet Nozzle" PdropNozzles.Shell.Pdnozzle_in = HE.DeltaPshellNozzleIn(Unity(1).Properties.Cold.Inlet.rho,Unity(1).Properties.Cold.Inlet.Fw); "Velocity Shell Side Inlet Nozzle" PdropNozzles.Shell.Vnozzle_in = HE.ShellVelocityNozzleIn(Unity(1).Properties.Cold.Inlet.rho,Unity(1).Properties.Cold.Inlet.Fw); "Shell Pressure Drop Outlet Nozzle" PdropNozzles.Shell.Pdnozzle_out = HE.DeltaPshellNozzleOut(Unity(Nb+1).Properties.Cold.Outlet.rho,Unity(Nb+1).Properties.Cold.Inlet.Fw); "Velocity Shell Side Outlet Nozzle" PdropNozzles.Shell.Vnozzle_out = HE.ShellVelocityNozzleOut(Unity(Nb+1).Properties.Cold.Outlet.rho,Unity(Nb+1).Properties.Cold.Inlet.Fw); "Pressure Drop Hot Stream" Unity(1).Outlet.Hot.P = Unity(1).Inlet.Hot.P- Unity(1).Tubes.PressureDrop.Pdtotal - PdropNozzles.Tubes.Pdnozzle_in; Unity(Nb+1).Outlet.Hot.P = Unity(Nb+1).Inlet.Hot.P- Unity(Nb+1).Tubes.PressureDrop.Pdtotal - PdropNozzles.Tubes.Pdnozzle_out; "Pressure Drop Cold Stream" Unity(1).Outlet.Cold.P = Unity(1).Inlet.Cold.P - Unity(1).Shell.PressureDrop.Pdtotal- PdropNozzles.Shell.Pdnozzle_in; Unity(Nb+1).Outlet.Cold.P = Unity(Nb+1).Inlet.Cold.P - Unity(Nb+1).Shell.PressureDrop.Pdtotal- PdropNozzles.Shell.Pdnozzle_out; end for i in [2:Nb] if side equal 1 then "Pressure Drop Hot Stream" Unity(i).Outlet.Hot.P = Unity(i).Inlet.Hot.P - Unity(i).Shell.PressureDrop.Pdtotal; "Pressure Drop Cold Stream" Unity(i).Outlet.Cold.P = Unity(i).Inlet.Cold.P - Unity(i).Tubes.PressureDrop.Pdtotal; else "Pressure Drop Hot Stream" Unity(i).Outlet.Hot.P = Unity(i).Inlet.Hot.P- Unity(i).Tubes.PressureDrop.Pdtotal; "Pressure Drop Cold Stream" Unity(i).Outlet.Cold.P = Unity(i).Inlet.Cold.P - Unity(i).Shell.PressureDrop.Pdtotal; end Sumary.Lz(i) = Unity(1).Baffles.Ls; "Shell Side Cross Flow Area" Unity(i).Shell.HeatTransfer.Sm = HE.CrossFlowArea(Unity(i).Baffles.Ls); end for i in [1:Nb+1] if side equal 1 then "Shell Side Reynolds Number" Unity(i).Shell.HeatTransfer.Re = HE.ShellReynoldsNumber(Unity(i).Properties.Hot.Inlet.Fw,Unity(i).Shell.HeatTransfer.Sm,Unity(i).Properties.Hot.Average.Mu); "Shell Heat Transfer Coefficient" Unity(i).Shell.HeatTransfer.hshell = HE.ShellFilmCoeff(Unity(i).Shell.HeatTransfer.Ji,Unity(i).Properties.Hot.Average.Cp,Unity(i).Properties.Hot.Average.Mw,Unity(i).Properties.Hot.Inlet.Fw,Unity(i).Shell.HeatTransfer.Sm,Unity(i).Shell.HeatTransfer.PR,Unity(i).Shell.HeatTransfer.Jtotal,Unity(i).Shell.HeatTransfer.Phi); "Shell Pressure Drop Cross Flow" Unity(i).Shell.PressureDrop.PdCross = HE.DeltaPcrossIncremental(Unity(i).Shell.HeatTransfer.Re,Unity(i).Baffles.Ls,Unity(i).Baffles.Lso,Unity(i).Baffles.Lsi,Unity(i).Properties.Hot.Inlet.Fw,Unity(i).Shell.HeatTransfer.Phi,Unity(i).Properties.Hot.Average.rho); "Shell Pressure Baffle Window" Unity(i).Shell.PressureDrop.Pdwindow = HE.DeltaPwindowIncremental(Unity(i).Properties.Hot.Inlet.Fw,Unity(i).Shell.HeatTransfer.Sm,Unity(i).Properties.Hot.Average.rho,Unity(i).Properties.Hot.Average.Mu,Unity(i).Baffles.Ls); "Shell Pressure End Zones" Unity(i).Shell.PressureDrop.PdEndZones = HE.DeltaPendZonesIncremental(Unity(i).Shell.HeatTransfer.Re,Unity(i).Baffles.Ls,Unity(i).Baffles.Lso,Unity(i).Baffles.Lsi,Unity(i).Properties.Hot.Inlet.Fw,Unity(i).Shell.HeatTransfer.Phi,Unity(i).Properties.Hot.Average.rho); "Wall Temperature" # Tubes.HeatTransfer.Twall = HE.WallTemperature(Properties.Hot.Average.T,Properties.Cold.Average.T,Tubes.HeatTransfer.htube,Shell.HeatTransfer.hshell); Unity(i).Properties.Hot.Wall.Twall = (Unity(i).Properties.Hot.Average.T+Unity(i).Properties.Cold.Average.T)/2; Unity(i).Properties.Cold.Wall.Twall = (Unity(i).Properties.Hot.Average.T+Unity(i).Properties.Cold.Average.T)/2; "Tube Side Velocity" Unity(i).Tubes.HeatTransfer.Vtube = HE.TubeVelocity(Unity(i).Properties.Cold.Inlet.Fw,Unity(i).Properties.Cold.Average.rho); "Tube Side Reynolds Number" Unity(i).Tubes.HeatTransfer.Re = HE.TubeReynoldsNumber(Unity(i).Properties.Cold.Average.rho,Unity(i).Tubes.HeatTransfer.Vtube,Unity(i).Properties.Cold.Average.Mu); "Tube Side Prandtl Number" Unity(i).Tubes.HeatTransfer.PR = HE.PrandtlNumber(Unity(i).Properties.Cold.Average.K,Unity(i).Properties.Cold.Average.Cp,Unity(i).Properties.Cold.Average.Mw,Unity(i).Properties.Cold.Average.Mu); "Tube Side Prandtl Number at Wall" Unity(i).Tubes.HeatTransfer.PRw = HE.PrandtlNumber(Unity(i).Properties.Cold.Wall.K,Unity(i).Properties.Cold.Wall.Cp,Unity(i).Properties.Cold.Average.Mw,Unity(i).Properties.Cold.Wall.Mu); "Tube Side Film Coefficient" Unity(i).Tubes.HeatTransfer.htube = HE.TubeFilmCoeffIncremental(Unity(i).Tubes.HeatTransfer.Re,Unity(i).Tubes.HeatTransfer.PR,Unity(i).Properties.Cold.Average.K, Unity(i).Tubes.HeatTransfer.Phi,Sumary.Lpos(i)); "Shell Side Prandtl Number" Unity(i).Shell.HeatTransfer.PR = HE.PrandtlNumber(Unity(i).Properties.Hot.Average.K,Unity(i).Properties.Hot.Average.Cp,Unity(i).Properties.Hot.Average.Mw,Unity(i).Properties.Hot.Average.Mu); "Shell Side Prandtl Number at Wall" Unity(i).Shell.HeatTransfer.PRw = HE.PrandtlNumber(Unity(i).Properties.Hot.Wall.K,Unity(i).Properties.Hot.Wall.Cp,Unity(i).Properties.Hot.Average.Mw,Unity(i).Properties.Hot.Wall.Mu); "Tube Side Pressure Drop" Unity(i).Tubes.PressureDrop.PdTube = HE.DeltaPtubeIncremental(Unity(i).Tubes.HeatTransfer.Re,Unity(i).Properties.Cold.Average.rho,Unity(i).Tubes.HeatTransfer.Vtube, Unity(i).Tubes.HeatTransfer.Phi,Sumary.Lz(i)); "Shell Side Phi correction for viscosity" Unity(i).Shell.HeatTransfer.Phi = HE.PhiCorrection(Unity(i).Properties.Hot.Average.Mu,Unity(i).Properties.Hot.Wall.Mu); "Tube Side Phi correction for viscosity" Unity(i).Tubes.HeatTransfer.Phi = HE.PhiCorrection(Unity(i).Properties.Cold.Average.Mu,Unity(i).Properties.Cold.Wall.Mu); else "Shell Side Reynolds Number" Unity(i).Shell.HeatTransfer.Re = HE.ShellReynoldsNumber(Unity(i).Properties.Cold.Inlet.Fw,Unity(i).Shell.HeatTransfer.Sm,Unity(i).Properties.Cold.Average.Mu); "Shell Heat Transfer Coefficient" Unity(i).Shell.HeatTransfer.hshell = HE.ShellFilmCoeff(Unity(i).Shell.HeatTransfer.Ji,Unity(i).Properties.Cold.Average.Cp,Unity(i).Properties.Cold.Average.Mw,Unity(i).Properties.Cold.Inlet.Fw,Unity(i).Shell.HeatTransfer.Sm,Unity(i).Shell.HeatTransfer.PR,Unity(i).Shell.HeatTransfer.Jtotal,Unity(i).Shell.HeatTransfer.Phi); "Shell Pressure Drop Cross Flow" Unity(i).Shell.PressureDrop.PdCross = HE.DeltaPcrossIncremental(Unity(i).Shell.HeatTransfer.Re,Unity(i).Baffles.Ls,Unity(i).Baffles.Lso,Unity(i).Baffles.Lsi,Unity(i).Properties.Cold.Inlet.Fw,Unity(i).Shell.HeatTransfer.Phi,Unity(i).Properties.Cold.Average.rho); "Shell Pressure Baffle Window" Unity(i).Shell.PressureDrop.Pdwindow = HE.DeltaPwindowIncremental(Unity(i).Properties.Cold.Inlet.Fw,Unity(i).Shell.HeatTransfer.Sm,Unity(i).Properties.Cold.Average.rho,Unity(i).Properties.Cold.Average.Mu,Unity(i).Baffles.Ls); "Shell Pressure End Zones" Unity(i).Shell.PressureDrop.PdEndZones = HE.DeltaPendZonesIncremental(Unity(i).Shell.HeatTransfer.Re,Unity(i).Baffles.Ls,Unity(i).Baffles.Lso,Unity(i).Baffles.Lsi,Unity(i).Properties.Cold.Inlet.Fw,Unity(i).Shell.HeatTransfer.Phi,Unity(i).Properties.Cold.Average.rho); "Wall Temperature" # Tubes.HeatTransfer.Twall = HE.WallTemperature(Properties.Cold.Average.T,Properties.Hot.Average.T,Tubes.HeatTransfer.htube,Shell.HeatTransfer.hshell); Unity(i).Properties.Hot.Wall.Twall = (Unity(i).Properties.Hot.Average.T+Unity(i).Properties.Cold.Average.T)/2; Unity(i).Properties.Cold.Wall.Twall = (Unity(i).Properties.Hot.Average.T+Unity(i).Properties.Cold.Average.T)/2; "Tube Side Velocity" Unity(i).Tubes.HeatTransfer.Vtube = HE.TubeVelocity(Unity(i).Properties.Hot.Inlet.Fw,Unity(i).Properties.Hot.Average.rho); "Tube Side Reynolds Number" Unity(i).Tubes.HeatTransfer.Re = HE.TubeReynoldsNumber(Unity(i).Properties.Hot.Average.rho,Unity(i).Tubes.HeatTransfer.Vtube,Unity(i).Properties.Hot.Average.Mu); "Tube Side Prandtl Number" Unity(i).Tubes.HeatTransfer.PR = HE.PrandtlNumber(Unity(i).Properties.Hot.Average.K,Unity(i).Properties.Hot.Average.Cp,Unity(i).Properties.Hot.Average.Mw,Unity(i).Properties.Hot.Average.Mu); "Tube Side Prandtl Number at Wall" Unity(i).Tubes.HeatTransfer.PRw = HE.PrandtlNumber(Unity(i).Properties.Hot.Wall.K,Unity(i).Properties.Hot.Wall.Cp,Unity(i).Properties.Hot.Average.Mw,Unity(i).Properties.Hot.Wall.Mu); "Tube Side Film Coefficient" Unity(i).Tubes.HeatTransfer.htube = HE.TubeFilmCoeffIncremental(Unity(i).Tubes.HeatTransfer.Re,Unity(i).Tubes.HeatTransfer.PR,Unity(i).Properties.Hot.Average.K, Unity(i).Tubes.HeatTransfer.Phi,Sumary.Lpos(i)); "Shell Side Prandtl Number" Unity(i).Shell.HeatTransfer.PR = HE.PrandtlNumber(Unity(i).Properties.Cold.Average.K,Unity(i).Properties.Cold.Average.Cp,Unity(i).Properties.Cold.Average.Mw,Unity(i).Properties.Cold.Average.Mu); "Shell Side Prandtl Number at Wall" Unity(i).Shell.HeatTransfer.PRw = HE.PrandtlNumber(Unity(i).Properties.Cold.Wall.K,Unity(i).Properties.Cold.Wall.Cp,Unity(i).Properties.Cold.Average.Mw,Unity(i).Properties.Cold.Wall.Mu); "Tube Side Pressure Drop" Unity(i).Tubes.PressureDrop.PdTube = HE.DeltaPtubeIncremental(Unity(i).Tubes.HeatTransfer.Re,Unity(i).Properties.Hot.Average.rho,Unity(i).Tubes.HeatTransfer.Vtube, Unity(i).Tubes.HeatTransfer.Phi,Sumary.Lz(i)); "Shell Side Phi correction for viscosity" Unity(i).Shell.HeatTransfer.Phi = HE.PhiCorrection(Unity(i).Properties.Cold.Average.Mu,Unity(i).Properties.Cold.Wall.Mu); "Tube Side Phi correction for viscosity" Unity(i).Tubes.HeatTransfer.Phi = HE.PhiCorrection(Unity(i).Properties.Hot.Average.Mu,Unity(i).Properties.Hot.Wall.Mu); end "Position for discretization" Sumary.Lpos(i) = sum(Sumary.Lz([1:i])); "Tube Resistance" Unity(i).Resistances.Rtube*(Unity(i).Tubes.HeatTransfer.htube*Ditube) = Dotube; "Wall Resistance" Unity(i).Resistances.Rwall = Dotube*ln(Dotube/Ditube)/(2*Kwall); "Shell Resistance" Unity(i).Resistances.Rshell*(Unity(i).Shell.HeatTransfer.hshell) = 1; "Overall Heat Transfer Coefficient" Unity(i).Details.U = 1/(Dotube/(Unity(i).Tubes.HeatTransfer.htube*Ditube)+(Dotube*ln(Dotube/Ditube)/(2*Kwall))+(1/(Unity(i).Shell.HeatTransfer.hshell))); "Exchange Surface Area" Unity(i).Details.A = Pi*Dotube*Ntt*Sumary.Lz(i); "Baffles Spacing" Ltube = Unity(i).Baffles.Lsi+Unity(i).Baffles.Lso+Unity(i).Baffles.Ls*(Nb-1); "Js Factor" Unity(i).Shell.HeatTransfer.Js = HE.JsFactor(Unity(i).Shell.HeatTransfer.Re,Unity(i).Baffles.Lsi,Unity(i).Baffles.Lso,Unity(i).Baffles.Ls); "Ji Factor" Unity(i).Shell.HeatTransfer.Ji = HE.JiFactor(Unity(i).Shell.HeatTransfer.Re); "Jc Factor" Unity(i).Shell.HeatTransfer.Jc = HE.JcFactor(); "Jl Factor" Unity(i).Shell.HeatTransfer.Jl = HE.JlFactor(Unity(i).Shell.HeatTransfer.Sm); "Jb Factor" Unity(i).Shell.HeatTransfer.Jb = HE.JbFactor(Unity(i).Shell.HeatTransfer.Re,Unity(i).Baffles.Ls,Unity(i).Shell.HeatTransfer.Sm); "Jr Factor" Unity(i).Shell.HeatTransfer.Jr = HE.JrFactor(Unity(i).Shell.HeatTransfer.Re); "Total J Factor" Unity(i).Shell.HeatTransfer.Jtotal = Unity(i).Shell.HeatTransfer.Jc*Unity(i).Shell.HeatTransfer.Jl*Unity(i).Shell.HeatTransfer.Jb*Unity(i).Shell.HeatTransfer.Jr*Unity(i).Shell.HeatTransfer.Js; end SET #===================================================================== # Set Parameters for heatex Calculation #===================================================================== Sumary.Zones = Nb+1; Pi = 3.14159265; HE.Tpass = Tpass; HE.Nss = Nss; HE.Ntt = Ntt; HE.Pattern = Pattern; HE.Bc = Bc; HE.Donozzle_Shell = Donozzle_Shell; HE.Dinozzle_Shell = Dinozzle_Shell; HE.Honozzle_Shell = Honozzle_Shell; HE.Hinozzle_Shell = Hinozzle_Shell; HE.Donozzle_Tube = Donozzle_Tube; HE.Dinozzle_Tube = Dinozzle_Tube; HE.Nb = Nb; HE.Dishell = Dishell; HE.Lcf = Lcf; HE.pitch = pitch; HE.Dotube = Dotube; HE.Ditube = Ditube; HE.Lcd = Lcd; HE.Ltd = Ltd; side = HE.FluidAlocation(); end