#*--------------------------------------------------------------------* * * * * * * * * * * *---------------------------------------------------------------------- * Author: Gerson Balbueno Bicca * $Id: HeatExchangerDetailed.mso 1 2006-06-20 17:33:53Z rafael $ *--------------------------------------------------------------------*# using "HEX_Engine"; #===================================================================== # Basic Model for Detailed Heat Exchangers #===================================================================== Model HeatExchangerDetailed_Basic PARAMETERS ext PP as CalcObject(Brief="External Physical Properties"); ext HE as CalcObject(Brief="STHE Calculations",File="heatex.dll"); ext NComp as Integer (Brief="Number of Components"); M(NComp) as molweight (Brief="Component Mol Weight"); VARIABLES in Inlet as Inlet_Main_Stream; # Hot and Cold Inlets out Outlet as Outlet_Main_Stream; # Hot and Cold Outlets Properties as Main_Properties; # Hot and Cold Properties Details as Details_Main; Tubes as Tube_Side_Main; Shell as Shell_Side_Main; Resistances as Main_Resistances; Baffles as Baffles_Main; SET M = PP.MolecularWeight(); EQUATIONS "Hot Stream Average Temperature" Properties.Hot.Average.T = 0.5*Inlet.Hot.T + 0.5*Outlet.Hot.T; "Cold Stream Average Temperature" Properties.Cold.Average.T = 0.5*Inlet.Cold.T + 0.5*Outlet.Cold.T; "Hot Stream Average Pressure" Properties.Hot.Average.P = 0.5*Inlet.Hot.P+0.5*Outlet.Hot.P; "Cold Stream Average Pressure" Properties.Cold.Average.P = 0.5*Inlet.Cold.P+0.5*Outlet.Cold.P; "Hot Stream Average Molecular Weight" Properties.Hot.Average.Mw = sum(M*Inlet.Hot.z); "Cold Stream Average Molecular Weight" Properties.Cold.Average.Mw = sum(M*Inlet.Cold.z); if Inlet.Cold.v equal 0 then "Heat Capacity Cold Stream" Properties.Cold.Average.Cp = PP.LiquidCp(Properties.Cold.Average.T,Properties.Cold.Average.P,Inlet.Cold.z); Properties.Cold.Inlet.Cp = PP.LiquidCp(Inlet.Cold.T,Inlet.Cold.P,Inlet.Cold.z); Properties.Cold.Outlet.Cp = PP.LiquidCp(Outlet.Cold.T,Outlet.Cold.P,Outlet.Cold.z); "Mass Density Cold Stream" Properties.Cold.Average.rho = PP.LiquidDensity(Properties.Cold.Average.T,Properties.Cold.Average.P,Inlet.Cold.z); Properties.Cold.Inlet.rho = PP.LiquidDensity(Inlet.Cold.T,Inlet.Cold.P,Inlet.Cold.z); Properties.Cold.Outlet.rho = PP.LiquidDensity(Outlet.Cold.T,Outlet.Cold.P,Outlet.Cold.z); "Viscosity Cold Stream" Properties.Cold.Average.Mu = PP.LiquidViscosity(Properties.Cold.Average.T,Properties.Cold.Average.P,Inlet.Cold.z); Properties.Cold.Inlet.Mu = PP.LiquidViscosity(Inlet.Cold.T,Inlet.Cold.P,Inlet.Cold.z); Properties.Cold.Outlet.Mu = PP.LiquidViscosity(Outlet.Cold.T,Outlet.Cold.P,Outlet.Cold.z); "Conductivity Cold Stream" Properties.Cold.Average.K = PP.LiquidThermalConductivity(Properties.Cold.Average.T,Properties.Cold.Average.P,Inlet.Cold.z); Properties.Cold.Inlet.K = PP.LiquidThermalConductivity(Inlet.Cold.T,Inlet.Cold.P,Inlet.Cold.z); Properties.Cold.Outlet.K = PP.LiquidThermalConductivity(Outlet.Cold.T,Outlet.Cold.P,Outlet.Cold.z); "Heat Capacity Cold Stream" Properties.Cold.Wall.Cp = PP.LiquidCp(Properties.Cold.Wall.Twall,Properties.Cold.Average.P,Inlet.Cold.z); "Viscosity Cold Stream" Properties.Cold.Wall.Mu = PP.LiquidViscosity(Properties.Cold.Wall.Twall,Properties.Cold.Average.P,Inlet.Cold.z); "Conductivity Cold Stream" Properties.Cold.Wall.K = PP.LiquidThermalConductivity(Properties.Cold.Wall.Twall,Properties.Cold.Average.P,Inlet.Cold.z); else "Heat Capacity Cold Stream" Properties.Cold.Average.Cp = PP.VapourCp(Properties.Cold.Average.T,Properties.Cold.Average.P,Inlet.Cold.z); Properties.Cold.Inlet.Cp = PP.VapourCp(Inlet.Cold.T,Inlet.Cold.P,Inlet.Cold.z); Properties.Cold.Outlet.Cp = PP.VapourCp(Outlet.Cold.T,Outlet.Cold.P,Outlet.Cold.z); "Mass Density Cold Stream" Properties.Cold.Average.rho = PP.VapourDensity(Properties.Cold.Average.T,Properties.Cold.Average.P,Inlet.Cold.z); Properties.Cold.Inlet.rho = PP.VapourDensity(Inlet.Cold.T,Inlet.Cold.P,Inlet.Cold.z); Properties.Cold.Outlet.rho = PP.VapourDensity(Outlet.Cold.T,Outlet.Cold.P,Outlet.Cold.z); "Viscosity Cold Stream" Properties.Cold.Average.Mu = PP.VapourViscosity(Properties.Cold.Average.T,Properties.Cold.Average.P,Inlet.Cold.z); Properties.Cold.Inlet.Mu = PP.VapourViscosity(Inlet.Cold.T,Inlet.Cold.P,Inlet.Cold.z); Properties.Cold.Outlet.Mu = PP.VapourViscosity(Outlet.Cold.T,Outlet.Cold.P,Outlet.Cold.z); "Conductivity Cold Stream" Properties.Cold.Average.K = PP.VapourThermalConductivity(Properties.Cold.Average.T,Properties.Cold.Average.P,Inlet.Cold.z); Properties.Cold.Inlet.K = PP.VapourThermalConductivity(Inlet.Cold.T,Inlet.Cold.P,Inlet.Cold.z); Properties.Cold.Outlet.K = PP.VapourThermalConductivity(Outlet.Cold.T,Outlet.Cold.P,Outlet.Cold.z); "Heat Capacity Cold Stream" Properties.Cold.Wall.Cp = PP.VapourCp(Properties.Cold.Wall.Twall,Properties.Cold.Average.P,Inlet.Cold.z); "Viscosity Cold Stream" Properties.Cold.Wall.Mu = PP.VapourViscosity(Properties.Cold.Wall.Twall,Properties.Cold.Average.P,Inlet.Cold.z); "Conductivity Cold Stream" Properties.Cold.Wall.K = PP.VapourThermalConductivity(Properties.Cold.Wall.Twall,Properties.Cold.Average.P,Inlet.Cold.z); end if Inlet.Hot.v equal 0 then "Heat Capacity Hot Stream" Properties.Hot.Average.Cp = PP.LiquidCp(Properties.Hot.Average.T,Properties.Hot.Average.P,Inlet.Hot.z); Properties.Hot.Inlet.Cp = PP.LiquidCp(Inlet.Hot.T,Inlet.Hot.P,Inlet.Hot.z); Properties.Hot.Outlet.Cp = PP.LiquidCp(Outlet.Hot.T,Outlet.Hot.P,Outlet.Hot.z); "Mass Density Hot Stream" Properties.Hot.Average.rho = PP.LiquidDensity(Properties.Hot.Average.T,Properties.Hot.Average.P,Inlet.Hot.z); Properties.Hot.Inlet.rho = PP.LiquidDensity(Inlet.Hot.T,Inlet.Hot.P,Inlet.Hot.z); Properties.Hot.Outlet.rho = PP.LiquidDensity(Outlet.Hot.T,Outlet.Hot.P,Outlet.Hot.z); "Viscosity Hot Stream" Properties.Hot.Average.Mu = PP.LiquidViscosity(Properties.Hot.Average.T,Properties.Hot.Average.P,Inlet.Hot.z); Properties.Hot.Inlet.Mu = PP.LiquidViscosity(Inlet.Hot.T,Inlet.Hot.P,Inlet.Hot.z); Properties.Hot.Outlet.Mu = PP.LiquidViscosity(Outlet.Hot.T,Outlet.Hot.P,Outlet.Hot.z); "Conductivity Hot Stream" Properties.Hot.Average.K = PP.LiquidThermalConductivity(Properties.Hot.Average.T,Properties.Hot.Average.P,Inlet.Hot.z); Properties.Hot.Inlet.K = PP.LiquidThermalConductivity(Inlet.Hot.T,Inlet.Hot.P,Inlet.Hot.z); Properties.Hot.Outlet.K = PP.LiquidThermalConductivity(Outlet.Hot.T,Outlet.Hot.P,Outlet.Hot.z); "Heat Capacity Hot Stream" Properties.Hot.Wall.Cp = PP.LiquidCp(Properties.Hot.Wall.Twall,Properties.Hot.Average.P,Inlet.Hot.z); "Viscosity Hot Stream" Properties.Hot.Wall.Mu = PP.LiquidViscosity(Properties.Hot.Wall.Twall,Properties.Hot.Average.P,Inlet.Hot.z); "Conductivity Hot Stream" Properties.Hot.Wall.K = PP.LiquidThermalConductivity(Properties.Hot.Wall.Twall,Properties.Hot.Average.P,Inlet.Hot.z); else "Heat Capacity Hot Stream" Properties.Hot.Average.Cp = PP.VapourCp(Properties.Hot.Average.T,Properties.Hot.Average.P,Inlet.Hot.z); Properties.Hot.Inlet.Cp = PP.VapourCp(Inlet.Hot.T,Inlet.Hot.P,Inlet.Hot.z); Properties.Hot.Outlet.Cp = PP.VapourCp(Outlet.Hot.T,Outlet.Hot.P,Outlet.Hot.z); "Mass Density Hot Stream" Properties.Hot.Average.rho = PP.VapourDensity(Properties.Hot.Average.T,Properties.Hot.Average.P,Inlet.Hot.z); Properties.Hot.Inlet.rho = PP.VapourDensity(Inlet.Hot.T,Inlet.Hot.P,Inlet.Hot.z); Properties.Hot.Outlet.rho = PP.VapourDensity(Outlet.Hot.T,Outlet.Hot.P,Outlet.Hot.z); "Viscosity Hot Stream" Properties.Hot.Average.Mu = PP.VapourViscosity(Properties.Hot.Average.T,Properties.Hot.Average.P,Inlet.Hot.z); Properties.Hot.Inlet.Mu = PP.VapourViscosity(Inlet.Hot.T,Inlet.Hot.P,Inlet.Hot.z); Properties.Hot.Outlet.Mu = PP.VapourViscosity(Outlet.Hot.T,Outlet.Hot.P,Outlet.Hot.z); "Conductivity Hot Stream" Properties.Hot.Average.K = PP.VapourThermalConductivity(Properties.Hot.Average.T,Properties.Hot.Average.P,Inlet.Hot.z); Properties.Hot.Inlet.K = PP.VapourThermalConductivity(Inlet.Hot.T,Inlet.Hot.P,Inlet.Hot.z); Properties.Hot.Outlet.K = PP.VapourThermalConductivity(Outlet.Hot.T,Outlet.Hot.P,Outlet.Hot.z); "Heat Capacity Hot Stream" Properties.Hot.Wall.Cp = PP.VapourCp(Properties.Hot.Wall.Twall,Properties.Hot.Average.P,Inlet.Hot.z); "Viscosity Hot Stream" Properties.Hot.Wall.Mu = PP.VapourViscosity(Properties.Hot.Wall.Twall,Properties.Hot.Average.P,Inlet.Hot.z); "Conductivity Hot Stream" Properties.Hot.Wall.K = PP.VapourThermalConductivity(Properties.Hot.Wall.Twall,Properties.Hot.Average.P,Inlet.Hot.z); end #===================================================================== # Thermal Details #===================================================================== "Hot Stream Heat Capacity" Details.Ch =Inlet.Hot.F*Properties.Hot.Average.Cp; "Cold Stream Heat Capacity" Details.Cc =Inlet.Cold.F*Properties.Cold.Average.Cp; "Heat Capacity Ratio" [Details.Cmin,Details.Cmax,Details.Cr] = HE.HeatCapacityRatio(Details.Ch,Details.Cc); #===================================================================== # Energy Balance #===================================================================== "Energy Balance Hot Stream" Details.Q = Inlet.Hot.F*(Inlet.Hot.h-Outlet.Hot.h); "Energy Balance Cold Stream" Details.Q =-Inlet.Cold.F*(Inlet.Cold.h-Outlet.Cold.h); #===================================================================== # Material Balance #===================================================================== "Flow Mass Inlet Cold Stream" Properties.Cold.Inlet.Fw = sum(M*Inlet.Cold.z)*Inlet.Cold.F; "Flow Mass Outlet Cold Stream" Properties.Cold.Outlet.Fw = sum(M*Outlet.Cold.z)*Outlet.Cold.F; "Flow Mass Inlet Hot Stream" Properties.Hot.Inlet.Fw = sum(M*Inlet.Hot.z)*Inlet.Hot.F; "Flow Mass Outlet Hot Stream" Properties.Hot.Outlet.Fw = sum(M*Outlet.Hot.z)*Outlet.Hot.F; "Molar Balance Hot Stream" Inlet.Hot.F = Outlet.Hot.F; "Molar Balance Cold Stream" Inlet.Cold.F = Outlet.Cold.F; #====================================== # Constraints #====================================== "Hot Stream Molar Fraction Constraint" Outlet.Hot.z=Inlet.Hot.z; "Cold Stream Molar Fraction Constraint" Outlet.Cold.z=Inlet.Cold.z; "No Phase Change In Cold Stream" Inlet.Cold.v=Outlet.Cold.v; "No Phase Change In Hot Stream" Inlet.Hot.v=Outlet.Hot.v; end Model Heatex_Detailed as HeatExchangerDetailed_Basic PARAMETERS ext PP as CalcObject; ext HE as CalcObject (Brief="STHE Calculations",File="heatex.dll"); side as Integer (Brief="Fluid Alocation",Lower=0,Upper=1); Pi as constant (Brief="Pi Number",Default=3.14159265); #===================================================================== # Shell Geometrical Parameters #===================================================================== Tpass as Integer (Brief="Number of Tube Passes",Lower=1); Nss as Integer (Brief="Number of Sealing Strips pairs",Lower=1); Dishell as length (Brief="Inside Shell Diameter",Lower=10e-6); Donozzle_Shell as length (Brief="Shell Outlet Nozzle Diameter",Lower=10e-6); Dinozzle_Shell as length (Brief="Shell Inlet Nozzle Diameter",Lower=10e-6); Hinozzle_Shell as length (Brief="Height Under Shell Inlet Nozzle",Lower=10e-6); Honozzle_Shell as length (Brief="Height Under Shell Outlet Nozzle",Lower=10e-6); Lcf as length (Brief="Bundle-to-Shell Clearance",Lower=10e-8); #===================================================================== # Tubes Geometrical Parameters #===================================================================== Ntt as Integer (Brief="Total Number of Tubes in Shell",Default=100,Lower=1); Pattern as Integer (Brief="Tube Layout Characteristic Angle",Lower=30); Ltube as length (Brief="Effective Tube Length",Lower=0.1); pitch as length (Brief="Tube Pitch",Lower=1e-8); Kwall as conductivity (Brief="Tube Wall Material Thermal Conductivity"); Dotube as length (Brief="Tube Outside Diameter",Lower=10e-6); Ditube as length (Brief="Tube Inside Diameter",Lower=10e-6); Donozzle_Tube as length (Brief="Tube Outlet Nozzle Diameter",Lower=10e-6); Dinozzle_Tube as length (Brief="Tube Inlett Nozzle Diameter",Lower=10e-6); #===================================================================== # Baffles Geometrical Parameters #===================================================================== Bc as Integer (Brief="Baffle Cut",Default=25,Lower=25); Nb as Real (Brief="Number of Baffles",Lower=1); Lcd as length (Brief="Baffle-to-Shell Clearance",Lower=10e-8); Ltd as length (Brief="Tube-to-Bafflehole Clearance",Lower=10e-8); #===================================================================== #===================================================================== EQUATIONS #===================================================================== "Shell Side Cross Flow Area" Shell.HeatTransfer.Sm = HE.CrossFlowArea(Baffles.Ls); "Ji Factor" Shell.HeatTransfer.Ji = HE.JiFactor(Shell.HeatTransfer.Re); "Jc Factor" Shell.HeatTransfer.Jc = HE.JcFactor(); "Jl Factor" Shell.HeatTransfer.Jl = HE.JlFactor(Shell.HeatTransfer.Sm); "Jb Factor" Shell.HeatTransfer.Jb = HE.JbFactor(Shell.HeatTransfer.Re,Baffles.Ls,Shell.HeatTransfer.Sm); "Jr Factor" Shell.HeatTransfer.Jr = HE.JrFactor(Shell.HeatTransfer.Re); "Total J Factor" Shell.HeatTransfer.Jtotal=Shell.HeatTransfer.Jc*Shell.HeatTransfer.Jl*Shell.HeatTransfer.Jb*Shell.HeatTransfer.Jr*Shell.HeatTransfer.Js; #===================================================================== # Fluid Alocation #===================================================================== if side equal 1 then "Shell Side Phi correction" Shell.HeatTransfer.Phi = HE.PhiCorrection(Properties.Hot.Average.Mu,Properties.Hot.Wall.Mu); "Tube Side Phi correction" Tubes.HeatTransfer.Phi = HE.PhiCorrection(Properties.Cold.Average.Mu,Properties.Cold.Wall.Mu); else "Shell Side Phi correction" Shell.HeatTransfer.Phi = HE.PhiCorrection(Properties.Cold.Average.Mu,Properties.Cold.Wall.Mu); "Tube Side Phi correction" Tubes.HeatTransfer.Phi = HE.PhiCorrection(Properties.Hot.Average.Mu,Properties.Hot.Wall.Mu); end if side equal 1 then "Wall Temperature" # Properties.Hot.Wall.Twall = HE.WallTemperature(Properties.Hot.Average.T,Properties.Cold.Average.T,Tubes.HeatTransfer.htube,Shell.HeatTransfer.hshell); # Properties.Cold.Wall.Twall = HE.WallTemperature(Properties.Cold.Average.T,Properties.Hot.Average.T,Tubes.HeatTransfer.htube,Shell.HeatTransfer.hshell); Properties.Hot.Wall.Twall = (Properties.Hot.Average.T+Properties.Cold.Average.T)/2; Properties.Cold.Wall.Twall = (Properties.Hot.Average.T+Properties.Cold.Average.T)/2; "Tube Side Velocity" Tubes.HeatTransfer.Vtube = HE.TubeVelocity(Properties.Cold.Inlet.Fw,Properties.Cold.Average.rho); "Tube Side Reynolds Number" Tubes.HeatTransfer.Re = HE.TubeReynoldsNumber(Properties.Cold.Average.rho,Tubes.HeatTransfer.Vtube,Properties.Cold.Average.Mu); "Tube Side Prandtl Number" Tubes.HeatTransfer.PR = HE.PrandtlNumber(Properties.Cold.Average.K,Properties.Cold.Average.Cp,Properties.Cold.Average.Mw,Properties.Cold.Average.Mu); "Tube Side Prandtl Number at Wall Temperature" Tubes.HeatTransfer.PRw = HE.PrandtlNumber(Properties.Cold.Wall.K,Properties.Cold.Wall.Cp,Properties.Cold.Average.Mw,Properties.Cold.Wall.Mu); "Tube Side Film Coefficient" Tubes.HeatTransfer.htube= HE.TubeFilmCoeff(Tubes.HeatTransfer.Re,Tubes.HeatTransfer.PR,Properties.Cold.Average.K,Tubes.HeatTransfer.Phi); "Shell Side Prandtl Number" Shell.HeatTransfer.PR=HE.PrandtlNumber(Properties.Hot.Average.K,Properties.Hot.Average.Cp,Properties.Hot.Average.Mw,Properties.Hot.Average.Mu); "Shell Side Prandtl Number at Wall Temperature" Shell.HeatTransfer.PRw = HE.PrandtlNumber(Properties.Hot.Wall.K,Properties.Hot.Wall.Cp,Properties.Hot.Average.Mw,Properties.Hot.Wall.Mu); "Tube Side Pressure Drop" Tubes.PressureDrop.PdTube = HE.DeltaPtube(Tubes.HeatTransfer.Re,Properties.Cold.Average.rho,Tubes.HeatTransfer.Vtube,Tubes.HeatTransfer.Phi); "Pressure Drop Tube Side Inlet Nozzle" Tubes.PressureDrop.Pdnozzle_in = HE.DeltaPtubeNozzlein(Properties.Cold.Inlet.rho,Properties.Cold.Inlet.Fw); "Velocity Tube Side Inlet Nozzle" Tubes.PressureDrop.Vnozzle_in = HE.TubeVelocityNozzlein(Properties.Cold.Inlet.rho,Properties.Cold.Inlet.Fw); "Pressure Drop Tube Side Outlet Nozzle" Tubes.PressureDrop.Pdnozzle_out = HE.DeltaPtubeNozzleout(Properties.Cold.Outlet.rho,Properties.Cold.Inlet.Fw); "Velocity Tube Side Outlet Nozzle" Tubes.PressureDrop.Vnozzle_out = HE.TubeVelocityNozzleout(Properties.Cold.Outlet.rho,Properties.Cold.Inlet.Fw); "Shell Pressure Drop Inlet Nozzle" Shell.PressureDrop.Pdnozzle_in = HE.DeltaPshellNozzleIn(Properties.Hot.Inlet.rho,Properties.Hot.Inlet.Fw); "Velocity Shell Side Inlet Nozzle" Shell.PressureDrop.Vnozzle_in = HE.ShellVelocityNozzleIn(Properties.Hot.Inlet.rho,Properties.Hot.Inlet.Fw); "Shell Pressure Drop Outlet Nozzle" Shell.PressureDrop.Pdnozzle_out =HE.DeltaPshellNozzleOut(Properties.Hot.Outlet.rho,Properties.Hot.Inlet.Fw); "Velocity Shell Side Outlet Nozzle" Shell.PressureDrop.Vnozzle_out =HE.ShellVelocityNozzleOut(Properties.Hot.Outlet.rho,Properties.Hot.Inlet.Fw); "Pressure Drop Hot Stream" Outlet.Hot.P = Inlet.Hot.P- Shell.PressureDrop.Pdtotal; "Pressure Drop Cold Stream" Outlet.Cold.P = Inlet.Cold.P - Tubes.PressureDrop.Pdtotal; else "Wall Temperature" # Properties.Cold.Wall.Twall = HE.WallTemperature(Properties.Cold.Average.T,Properties.Hot.Average.T,Tubes.HeatTransfer.htube,Shell.HeatTransfer.hshell); # Properties.Hot.Wall.Twall = HE.WallTemperature(Properties.Hot.Average.T,Properties.Cold.Average.T,Tubes.HeatTransfer.htube,Shell.HeatTransfer.hshell); Properties.Hot.Wall.Twall = (Properties.Hot.Average.T+Properties.Cold.Average.T)/2; Properties.Cold.Wall.Twall = (Properties.Hot.Average.T+Properties.Cold.Average.T)/2; "Tube Side Velocity" Tubes.HeatTransfer.Vtube=HE.TubeVelocity(Properties.Hot.Inlet.Fw,Properties.Hot.Average.rho); "Tube Side Reynolds Number" Tubes.HeatTransfer.Re=HE.TubeReynoldsNumber(Properties.Hot.Average.rho,Tubes.HeatTransfer.Vtube,Properties.Hot.Average.Mu); "Tube Side Prandtl Number" Tubes.HeatTransfer.PR=HE.PrandtlNumber(Properties.Hot.Average.K,Properties.Hot.Average.Cp,Properties.Hot.Average.Mw,Properties.Hot.Average.Mu); "Tube Side Prandtl Number at Wall" Tubes.HeatTransfer.PRw=HE.PrandtlNumber(Properties.Hot.Wall.K,Properties.Hot.Wall.Cp,Properties.Hot.Average.Mw,Properties.Hot.Wall.Mu); "Tube Side Film Coefficient" Tubes.HeatTransfer.htube= HE.TubeFilmCoeff(Tubes.HeatTransfer.Re,Tubes.HeatTransfer.PR,Properties.Hot.Average.K,Tubes.HeatTransfer.Phi); "Shell Side Prandtl Number" Shell.HeatTransfer.PR=HE.PrandtlNumber(Properties.Cold.Average.K,Properties.Cold.Average.Cp,Properties.Cold.Average.Mw,Properties.Cold.Average.Mu); "Shell Side Prandtl Number at Wall" Shell.HeatTransfer.PRw=HE.PrandtlNumber(Properties.Cold.Wall.K,Properties.Cold.Wall.Cp,Properties.Cold.Average.Mw,Properties.Cold.Wall.Mu); "Tube Side Pressure Drop" Tubes.PressureDrop.PdTube = HE.DeltaPtube(Tubes.HeatTransfer.Re,Properties.Hot.Average.rho,Tubes.HeatTransfer.Vtube,Tubes.HeatTransfer.Phi); "Pressure Drop Tube Side Inlet Nozzle" Tubes.PressureDrop.Pdnozzle_in = HE.DeltaPtubeNozzlein(Properties.Hot.Inlet.rho,Properties.Hot.Inlet.Fw); "Velocity Tube Side Inlet Nozzle" Tubes.PressureDrop.Vnozzle_in = HE.TubeVelocityNozzlein(Properties.Hot.Inlet.rho,Properties.Hot.Inlet.Fw); "Pressure Drop Tube Side Outlet Nozzle" Tubes.PressureDrop.Pdnozzle_out = HE.DeltaPtubeNozzleout(Properties.Hot.Outlet.rho,Properties.Hot.Inlet.Fw); "Velocity Tube Side Outlet Nozzle" Tubes.PressureDrop.Vnozzle_out = HE.TubeVelocityNozzleout(Properties.Hot.Outlet.rho,Properties.Hot.Inlet.Fw); "Shell Pressure Drop Inlet Nozzle" Shell.PressureDrop.Pdnozzle_in = HE.DeltaPshellNozzleIn(Properties.Cold.Inlet.rho,Properties.Cold.Inlet.Fw); "Velocity Shell Side Inlet Nozzle" Shell.PressureDrop.Vnozzle_in = HE.ShellVelocityNozzleIn(Properties.Cold.Inlet.rho,Properties.Cold.Inlet.Fw); "Shell Pressure Drop Outlet Nozzle" Shell.PressureDrop.Pdnozzle_out = HE.DeltaPshellNozzleOut(Properties.Cold.Outlet.rho,Properties.Cold.Inlet.Fw); "Velocity Shell Side Outlet Nozzle" Shell.PressureDrop.Vnozzle_out = HE.ShellVelocityNozzleOut(Properties.Cold.Outlet.rho,Properties.Cold.Inlet.Fw); "Pressure Drop Hot Stream" Outlet.Hot.P = Inlet.Hot.P- Tubes.PressureDrop.Pdtotal; "Pressure Drop Cold Stream" Outlet.Cold.P = Inlet.Cold.P - Shell.PressureDrop.Pdtotal; end #===================================================================== "Tube Resistance" Resistances.Rtube*(Tubes.HeatTransfer.htube*Ditube) = Dotube; "Wall Resistance" Resistances.Rwall=Dotube*ln(Dotube/Ditube)/(2*Kwall); "Shell Resistance" Resistances.Rshell*(Shell.HeatTransfer.hshell)=1; "Overall Heat Transfer Coefficient" Details.U=1/(Dotube/(Tubes.HeatTransfer.htube*Ditube)+(Dotube*ln(Dotube/Ditube)/(2*Kwall))+(1/(Shell.HeatTransfer.hshell))); "Exchange Surface Area" Details.A=Pi*Dotube*Ntt*Ltube; "Baffles Spacing" Ltube = Baffles.Lsi+Baffles.Lso+Baffles.Ls*(Nb-1); SET #===================================================================== # Set Parameters for heatex Calculation #===================================================================== Pi = 3.14159265; HE.Tpass = Tpass; HE.Nss = Nss; HE.Ntt = Ntt; HE.Pattern = Pattern; HE.Bc = Bc; HE.Donozzle_Shell = Donozzle_Shell; HE.Dinozzle_Shell = Dinozzle_Shell; HE.Honozzle_Shell = Honozzle_Shell; HE.Hinozzle_Shell = Hinozzle_Shell; HE.Donozzle_Tube = Donozzle_Tube; HE.Dinozzle_Tube = Dinozzle_Tube; HE.Nb = Nb; HE.Dishell = Dishell; HE.Lcf = Lcf; HE.Ltube = Ltube; HE.pitch = pitch; HE.Dotube = Dotube; HE.Ditube = Ditube; HE.Lcd = Lcd; HE.Ltd = Ltd; side = HE.FluidAlocation(); end Model Heatex_Detailed_NTU as Heatex_Detailed VARIABLES Eft as positive (Brief="Effectiveness",Default=0.05,Lower=1e-8); EQUATIONS Details.Q = Eft*Details.Cmin*(Inlet.Hot.T-Inlet.Cold.T); end Model Heatex_Detailed_LMTD as Heatex_Detailed VARIABLES LMTD as temp_delta (Brief="Logarithmic Mean Temperature Difference",Lower=5); Fc as positive (Brief="LMTD Correction Factor",Lower=0.7); MTD as temp_delta (Brief="Mean Temperature Difference",Lower=5); EQUATIONS "Exchange Surface Area" Details.Q = Details.U*Details.A*MTD; "Mean Temperature Difference" MTD = Fc*LMTD; end Model E_Shell_NTU_Det as Heatex_Detailed_NTU #===================================================================== # Shell and Tubes Heat Exchanger with 1 shell pass - LMTD Method #===================================================================== EQUATIONS "TEMA E Shell Effectiveness" Eft = 2*(1+Details.Cr+sqrt(1+Details.Cr^2)*((1+exp(-Details.NTU*sqrt(1+Details.Cr^2)))/(1-exp(-Details.NTU*sqrt(1+Details.Cr^2)))) )^-1; "Js Factor" Shell.HeatTransfer.Js = HE.JsFactor(Shell.HeatTransfer.Re,Baffles.Lsi,Baffles.Lso,Baffles.Ls); if side equal 1 then "Shell Side Reynolds Number" Shell.HeatTransfer.Re=HE.ShellReynoldsNumber(Properties.Hot.Inlet.Fw,Shell.HeatTransfer.Sm,Properties.Hot.Average.Mu); "Shell Heat Transfer Coefficient" Shell.HeatTransfer.hshell=HE.ShellFilmCoeff(Shell.HeatTransfer.Ji,Properties.Hot.Average.Cp,Properties.Hot.Average.Mw,Properties.Hot.Inlet.Fw,Shell.HeatTransfer.Sm,Shell.HeatTransfer.PR,Shell.HeatTransfer.Jtotal,Shell.HeatTransfer.Phi); "Shell Pressure Drop Cross Flow" Shell.PressureDrop.PdCross = HE.DeltaPcross(Shell.HeatTransfer.Re,Baffles.Ls,Baffles.Lso,Baffles.Lsi,Properties.Hot.Inlet.Fw,Shell.HeatTransfer.Phi,Properties.Hot.Average.rho); "Shell Pressure Baffle Window" Shell.PressureDrop.Pdwindow = HE.DeltaPwindow(Properties.Hot.Inlet.Fw,Shell.HeatTransfer.Sm,Properties.Hot.Average.rho,Properties.Hot.Average.Mu,Baffles.Ls); "Shell Pressure End Zones" Shell.PressureDrop.PdEndZones = HE.DeltaPendZones(Shell.HeatTransfer.Re,Baffles.Ls,Baffles.Lso,Baffles.Lsi,Properties.Hot.Inlet.Fw,Shell.HeatTransfer.Phi,Properties.Hot.Average.rho); else "Shell Side Reynolds Number" Shell.HeatTransfer.Re=HE.ShellReynoldsNumber(Properties.Cold.Inlet.Fw,Shell.HeatTransfer.Sm,Properties.Cold.Average.Mu); "Shell Heat Transfer Coefficient" Shell.HeatTransfer.hshell=HE.ShellFilmCoeff(Shell.HeatTransfer.Ji,Properties.Cold.Average.Cp,Properties.Cold.Average.Mw,Properties.Cold.Inlet.Fw,Shell.HeatTransfer.Sm,Shell.HeatTransfer.PR,Shell.HeatTransfer.Jtotal,Shell.HeatTransfer.Phi); "Shell Pressure Drop Cross Flow" Shell.PressureDrop.PdCross = HE.DeltaPcross(Shell.HeatTransfer.Re,Baffles.Ls,Baffles.Lso,Baffles.Lsi,Properties.Cold.Inlet.Fw,Shell.HeatTransfer.Phi,Properties.Cold.Average.rho); "Shell Pressure Baffle Window" Shell.PressureDrop.Pdwindow = HE.DeltaPwindow(Properties.Cold.Inlet.Fw,Shell.HeatTransfer.Sm,Properties.Cold.Average.rho,Properties.Cold.Average.Mu,Baffles.Ls); "Shell Pressure End Zones" Shell.PressureDrop.PdEndZones = HE.DeltaPendZones(Shell.HeatTransfer.Re,Baffles.Ls,Baffles.Lso,Baffles.Lsi,Properties.Cold.Inlet.Fw,Shell.HeatTransfer.Phi,Properties.Cold.Average.rho); end end Model F_Shell_NTU_Det as Heatex_Detailed_NTU #===================================================================== # Shell and Tubes Heat Exchanger with 1 shell pass - LMTD Method #===================================================================== VARIABLES Eft1 as positive (Brief="Effectiveness Correction",Lower=0.01,Default=0.5); EQUATIONS "Effectiveness Correction" Eft1 = 2*(1+Details.Cr+sqrt(1+Details.Cr^2)*((1+exp(-Details.NTU*sqrt(1+Details.Cr^2)))/(1-exp(-Details.NTU*sqrt(1+Details.Cr^2)))) )^-1; "TEMA F Shell Effectiveness" Eft = ( ((1-Eft1*Details.Cr)/(1-Eft1))^2 -1 )*( ((1-Eft1*Details.Cr)/(1-Eft1))^2 - Details.Cr )^-1; "Js Factor" Shell.HeatTransfer.Js = HE.JsFactor(Shell.HeatTransfer.Re,Baffles.Lsi,Baffles.Lso,Baffles.Ls); if side equal 1 then "Shell Side Reynolds Number" Shell.HeatTransfer.Re= HE.ShellReynoldsNumber(Properties.Hot.Inlet.Fw,Shell.HeatTransfer.Sm,Properties.Hot.Average.Mu); "Shell Heat Transfer Coefficient" Shell.HeatTransfer.hshell= HE.ShellFilmCoeff(Shell.HeatTransfer.Ji,Properties.Hot.Average.Cp,Properties.Hot.Average.Mw,Properties.Hot.Inlet.Fw,Shell.HeatTransfer.Sm,Shell.HeatTransfer.PR,Shell.HeatTransfer.Jtotal,Shell.HeatTransfer.Phi); "Shell Pressure Drop Cross Flow" Shell.PressureDrop.PdCross = HE.DeltaPcross(Shell.HeatTransfer.Re,Baffles.Ls,Baffles.Lso,Baffles.Lsi,Properties.Hot.Inlet.Fw,Shell.HeatTransfer.Phi,Properties.Hot.Average.rho); "Shell Pressure Baffle Window" Shell.PressureDrop.Pdwindow = HE.DeltaPwindow(Properties.Hot.Inlet.Fw,Shell.HeatTransfer.Sm,Properties.Hot.Average.rho,Properties.Hot.Average.Mu,Baffles.Ls); "Shell Pressure End Zones" Shell.PressureDrop.PdEndZones = HE.DeltaPendZones(Shell.HeatTransfer.Re,Baffles.Ls,Baffles.Lso,Baffles.Lsi,Properties.Hot.Inlet.Fw,Shell.HeatTransfer.Phi,Properties.Hot.Average.rho); else "Shell Side Reynolds Number" Shell.HeatTransfer.Re=HE.ShellReynoldsNumber(Properties.Cold.Inlet.Fw,Shell.HeatTransfer.Sm,Properties.Cold.Average.Mu); "Shell Heat Transfer Coefficient" Shell.HeatTransfer.hshell=HE.ShellFilmCoeff(Shell.HeatTransfer.Ji,Properties.Cold.Average.Cp,Properties.Cold.Average.Mw,Properties.Cold.Inlet.Fw,Shell.HeatTransfer.Sm,Shell.HeatTransfer.PR,Shell.HeatTransfer.Jtotal,Shell.HeatTransfer.Phi); "Shell Pressure Drop Cross Flow" Shell.PressureDrop.PdCross = HE.DeltaPcross(Shell.HeatTransfer.Re,Baffles.Ls,Baffles.Lso,Baffles.Lsi,Properties.Cold.Inlet.Fw,Shell.HeatTransfer.Phi,Properties.Cold.Average.rho); "Shell Pressure Baffle Window" Shell.PressureDrop.Pdwindow = HE.DeltaPwindow(Properties.Cold.Inlet.Fw,Shell.HeatTransfer.Sm,Properties.Cold.Average.rho,Properties.Cold.Average.Mu,Baffles.Ls); "Shell Pressure End Zones" Shell.PressureDrop.PdEndZones = HE.DeltaPendZones(Shell.HeatTransfer.Re,Baffles.Ls,Baffles.Lso,Baffles.Lsi,Properties.Cold.Inlet.Fw,Shell.HeatTransfer.Phi,Properties.Cold.Average.rho); end end Model Multipass_NTU_Det #============================================================================ # Shell and Tubes Heat Exchanger In Series with 1 shell pass - LMTD Method #============================================================================ PARAMETERS Nshell as Integer (Brief="N Shell in Series",Default=2); ext HE as CalcObject (Brief="STHE Calculations",File="heatex.dll"); ext PP as CalcObject; side as Integer (Brief="Fluid Alocation",Lower=0,Upper=1); Pi as constant (Brief="Pi Number",Default=3.14159265); #===================================================================== # Shell Geometrical Parameters #===================================================================== Tpass as Integer (Brief="Number of Tube Passes",Lower=1); Nss as Integer (Brief="Number of Sealing Strips pairs",Lower=1); Dishell as length (Brief="Inside Shell Diameter",Lower=10e-6); Donozzle_Shell as length (Brief="Shell Outlet Nozzle Diameter",Lower=10e-6); Dinozzle_Shell as length (Brief="Shell Inlet Nozzle Diameter",Lower=10e-6); Hinozzle_Shell as length (Brief="Height Under Shell Inlet Nozzle",Lower=10e-6); Honozzle_Shell as length (Brief="Height Under Shell Outlet Nozzle",Lower=10e-6); Lcf as length (Brief="Bundle-to-Shell Clearance",Lower=10e-8); #===================================================================== # Tubes Geometrical Parameters #===================================================================== Ntt as Integer (Brief="Total Number of Tubes in Shell",Default=100,Lower=1); Pattern as Integer (Brief="Tube Layout Characteristic Angle",Lower=30); Ltube as length (Brief="Effective Tube Length",Lower=0.1); pitch as length (Brief="Tube Pitch",Lower=1e-8); Kwall as conductivity (Brief="Tube Wall Material Thermal Conductivity"); Dotube as length (Brief="Tube Outside Diameter",Lower=10e-6); Ditube as length (Brief="Tube Inside Diameter",Lower=10e-6); Donozzle_Tube as length (Brief="Tube Outlet Nozzle Diameter",Lower=10e-6); Dinozzle_Tube as length (Brief="Tube Inlett Nozzle Diameter",Lower=10e-6); #===================================================================== # Baffles Geometrical Parameters #===================================================================== Bc as Integer (Brief="Baffle Cut",Default=25,Lower=25); Nb as Real (Brief="Number of Baffles",Lower=1); Lcd as length (Brief="Baffle-to-Shell Clearance",Lower=10e-8); Ltd as length (Brief="Tube-to-Bafflehole Clearance",Lower=10e-8); #===================================================================== VARIABLES Eft(Nshell) as positive (Brief="Effectiveness",Default=0.05,Lower=1e-8); Unity(Nshell) as HeatExchangerDetailed_Basic;# "Shell in Series" CONNECTIONS Unity([1:Nshell-1]).Outlet.Hot to Unity([2:Nshell]).Inlet.Hot; Unity([2:Nshell]).Outlet.Cold to Unity([1:Nshell-1]).Inlet.Cold; EQUATIONS for i in [1:Nshell] "Shell Side Cross Flow Area" Unity(i).Shell.HeatTransfer.Sm = HE.CrossFlowArea(Unity(i).Baffles.Ls); "Ji Factor" Unity(i).Shell.HeatTransfer.Ji = HE.JiFactor(Unity(i).Shell.HeatTransfer.Re); "Jc Factor" Unity(i).Shell.HeatTransfer.Jc = HE.JcFactor(); "Jl Factor" Unity(i).Shell.HeatTransfer.Jl = HE.JlFactor(Unity(i).Shell.HeatTransfer.Sm); "Jb Factor" Unity(i).Shell.HeatTransfer.Jb = HE.JbFactor(Unity(i).Shell.HeatTransfer.Re,Unity(i).Baffles.Ls,Unity(i).Shell.HeatTransfer.Sm); "Jr Factor" Unity(i).Shell.HeatTransfer.Jr = HE.JrFactor(Unity(i).Shell.HeatTransfer.Re); "Total J Factor" Unity(i).Shell.HeatTransfer.Jtotal=Unity(i).Shell.HeatTransfer.Jc*Unity(i).Shell.HeatTransfer.Jl*Unity(i).Shell.HeatTransfer.Jb*Unity(i).Shell.HeatTransfer.Jr*Unity(i).Shell.HeatTransfer.Js; #===================================================================== # Fluid Alocation #===================================================================== if side equal 1 then "Shell Side Phi correction for viscosity" Unity(i).Shell.HeatTransfer.Phi = HE.PhiCorrection(Unity(i).Properties.Hot.Average.Mu,Unity(i).Properties.Hot.Wall.Mu); "Tube Side Phi correction for viscosity" Unity(i).Tubes.HeatTransfer.Phi = HE.PhiCorrection(Unity(i).Properties.Cold.Average.Mu,Unity(i).Properties.Cold.Wall.Mu); else "Shell Side Phi correction for viscosity" Unity(i).Shell.HeatTransfer.Phi = HE.PhiCorrection(Unity(i).Properties.Cold.Average.Mu,Unity(i).Properties.Cold.Wall.Mu); "Tube Side Phi correction for viscosity" Unity(i).Tubes.HeatTransfer.Phi = HE.PhiCorrection(Unity(i).Properties.Hot.Average.Mu,Unity(i).Properties.Hot.Average.Mu); end if side equal 1 then "Wall Temperature" # Unity(i).Tubes.HeatTransfer.Twall = HE.WallTemperature(Unity(i).Properties.Hot.Average.T,Unity(i).Properties.Cold.Average.T,Unity(i).Tubes.HeatTransfer.htube,Unity(i).Shell.HeatTransfer.hshell); Unity(i).Properties.Hot.Wall.Twall = (Unity(i).Properties.Hot.Average.T+Unity(i).Properties.Cold.Average.T)/2; Unity(i).Properties.Cold.Wall.Twall = (Unity(i).Properties.Hot.Average.T+Unity(i).Properties.Cold.Average.T)/2; "Tube Side Velocity" Unity(i).Tubes.HeatTransfer.Vtube = HE.TubeVelocity(Unity(i).Properties.Cold.Inlet.Fw,Unity(i).Properties.Cold.Average.rho); "Tube Side Reynolds Number" Unity(i).Tubes.HeatTransfer.Re = HE.TubeReynoldsNumber(Unity(i).Properties.Cold.Average.rho,Unity(i).Tubes.HeatTransfer.Vtube,Unity(i).Properties.Cold.Average.Mu); "Tube Side Prandtl Number" Unity(i).Tubes.HeatTransfer.PR = HE.PrandtlNumber(Unity(i).Properties.Cold.Average.K,Unity(i).Properties.Cold.Average.Cp,Unity(i).Properties.Cold.Average.Mw,Unity(i).Properties.Cold.Average.Mu); "Tube Side Prandtl Number at Wall Temperature" Unity(i).Tubes.HeatTransfer.PRw = HE.PrandtlNumber(Unity(i).Properties.Cold.Wall.K,Unity(i).Properties.Cold.Wall.Cp,Unity(i).Properties.Cold.Average.Mw,Unity(i).Properties.Cold.Wall.Mu); "Tube Side Film Coefficient" Unity(i).Tubes.HeatTransfer.htube= HE.TubeFilmCoeff(Unity(i).Tubes.HeatTransfer.Re,Unity(i).Tubes.HeatTransfer.PR,Unity(i).Properties.Cold.Average.K,Unity(i).Tubes.HeatTransfer.Phi); "Shell Side Prandtl Number" Unity(i).Shell.HeatTransfer.PR=HE.PrandtlNumber(Unity(i).Properties.Hot.Average.K,Unity(i).Properties.Hot.Average.Cp,Unity(i).Properties.Hot.Average.Mw,Unity(i).Properties.Hot.Average.Mu); "Shell Side Prandtl Number at Wall Temperature" Unity(i).Shell.HeatTransfer.PRw = HE.PrandtlNumber(Unity(i).Properties.Hot.Wall.K,Unity(i).Properties.Hot.Wall.Cp,Unity(i).Properties.Hot.Average.Mw,Unity(i).Properties.Hot.Wall.Mu); "Tube Side Pressure Drop" Unity(i).Tubes.PressureDrop.PdTube = HE.DeltaPtube(Unity(i).Tubes.HeatTransfer.Re,Unity(i).Properties.Cold.Average.rho,Unity(i).Tubes.HeatTransfer.Vtube,Unity(i).Tubes.HeatTransfer.Phi); "Pressure Drop Tube Side Inlet Nozzle" Unity(i).Tubes.PressureDrop.Pdnozzle_in = HE.DeltaPtubeNozzlein(Unity(i).Properties.Cold.Inlet.rho,Unity(i).Properties.Cold.Inlet.Fw); "Velocity Tube Side Inlet Nozzle" Unity(i).Tubes.PressureDrop.Vnozzle_in = HE.TubeVelocityNozzlein(Unity(i).Properties.Cold.Inlet.rho,Unity(i).Properties.Cold.Inlet.Fw); "Pressure Drop Tube Side Outlet Nozzle" Unity(i).Tubes.PressureDrop.Pdnozzle_out = HE.DeltaPtubeNozzleout(Unity(i).Properties.Cold.Outlet.rho,Unity(i).Properties.Cold.Inlet.Fw); "Velocity Tube Side Outlet Nozzle" Unity(i).Tubes.PressureDrop.Vnozzle_out = HE.TubeVelocityNozzleout(Unity(i).Properties.Cold.Outlet.rho,Unity(i).Properties.Cold.Inlet.Fw); "Shell Pressure Drop Inlet Nozzle" Unity(i).Shell.PressureDrop.Pdnozzle_in = HE.DeltaPshellNozzleIn(Unity(i).Properties.Hot.Inlet.rho,Unity(i).Properties.Hot.Inlet.Fw); "Velocity Shell Side Inlet Nozzle" Unity(i).Shell.PressureDrop.Vnozzle_in = HE.ShellVelocityNozzleIn(Unity(i).Properties.Hot.Inlet.rho,Unity(i).Properties.Hot.Inlet.Fw); "Shell Pressure Drop Outlet Nozzle" Unity(i).Shell.PressureDrop.Pdnozzle_out =HE.DeltaPshellNozzleOut(Unity(i).Properties.Hot.Outlet.rho,Unity(i).Properties.Hot.Inlet.Fw); "Velocity Shell Side Outlet Nozzle" Unity(i).Shell.PressureDrop.Vnozzle_out =HE.ShellVelocityNozzleOut(Unity(i).Properties.Hot.Outlet.rho,Unity(i).Properties.Hot.Inlet.Fw); "Pressure Drop Hot Stream" Unity(i).Outlet.Hot.P = Unity(i).Inlet.Hot.P- Unity(i).Shell.PressureDrop.Pdtotal; "Pressure Drop Cold Stream" Unity(i).Outlet.Cold.P = Unity(i).Inlet.Cold.P - Unity(i).Tubes.PressureDrop.Pdtotal; else "Wall Temperature" # Unity(i).Tubes.HeatTransfer.Twall = HE.WallTemperature(Unity(i).Properties.Cold.Average.T,Unity(i).Properties.Hot.Average.T,Unity(i).Tubes.HeatTransfer.htube,Unity(i).Shell.HeatTransfer.hshell); Unity(i).Properties.Hot.Wall.Twall = (Unity(i).Properties.Hot.Average.T+Unity(i).Properties.Cold.Average.T)/2; Unity(i).Properties.Cold.Wall.Twall = (Unity(i).Properties.Hot.Average.T+Unity(i).Properties.Cold.Average.T)/2; "Tube Side Velocity" Unity(i).Tubes.HeatTransfer.Vtube = HE.TubeVelocity(Unity(i).Properties.Hot.Inlet.Fw,Unity(i).Properties.Hot.Average.rho); "Tube Side Reynolds Number" Unity(i).Tubes.HeatTransfer.Re = HE.TubeReynoldsNumber(Unity(i).Properties.Hot.Average.rho,Unity(i).Tubes.HeatTransfer.Vtube,Unity(i).Properties.Hot.Average.Mu); "Tube Side Prandtl Number" Unity(i).Tubes.HeatTransfer.PR = HE.PrandtlNumber(Unity(i).Properties.Hot.Average.K,Unity(i).Properties.Hot.Average.Cp,Unity(i).Properties.Hot.Average.Mw,Unity(i).Properties.Hot.Average.Mu); "Tube Side Prandtl Number at Wall" Unity(i).Tubes.HeatTransfer.PRw = HE.PrandtlNumber(Unity(i).Properties.Hot.Wall.K,Unity(i).Properties.Hot.Wall.Cp,Unity(i).Properties.Hot.Average.Mw,Unity(i).Properties.Hot.Wall.Mu); "Tube Side Film Coefficient" Unity(i).Tubes.HeatTransfer.htube = HE.TubeFilmCoeff(Unity(i).Tubes.HeatTransfer.Re,Unity(i).Tubes.HeatTransfer.PR,Unity(i).Properties.Hot.Average.K,Unity(i).Tubes.HeatTransfer.Phi); "Shell Side Prandtl Number" Unity(i).Shell.HeatTransfer.PR = HE.PrandtlNumber(Unity(i).Properties.Cold.Average.K,Unity(i).Properties.Cold.Average.Cp,Unity(i).Properties.Cold.Average.Mw,Unity(i).Properties.Cold.Average.Mu); "Shell Side Prandtl Number at Wall" Unity(i).Shell.HeatTransfer.PRw = HE.PrandtlNumber(Unity(i).Properties.Cold.Wall.K,Unity(i).Properties.Cold.Wall.Cp,Unity(i).Properties.Cold.Average.Mw,Unity(i).Properties.Cold.Wall.Mu); "Tube Side Pressure Drop" Unity(i).Tubes.PressureDrop.PdTube = HE.DeltaPtube(Unity(i).Tubes.HeatTransfer.Re,Unity(i).Properties.Hot.Average.rho,Unity(i).Tubes.HeatTransfer.Vtube,Unity(i).Tubes.HeatTransfer.Phi); "Pressure Drop Tube Side Inlet Nozzle" Unity(i).Tubes.PressureDrop.Pdnozzle_in = HE.DeltaPtubeNozzlein(Unity(i).Properties.Hot.Inlet.rho,Unity(i).Properties.Hot.Inlet.Fw); "Velocity Tube Side Inlet Nozzle" Unity(i).Tubes.PressureDrop.Vnozzle_in = HE.TubeVelocityNozzlein(Unity(i).Properties.Hot.Inlet.rho,Unity(i).Properties.Hot.Inlet.Fw); "Pressure Drop Tube Side Outlet Nozzle" Unity(i).Tubes.PressureDrop.Pdnozzle_out = HE.DeltaPtubeNozzleout(Unity(i).Properties.Hot.Outlet.rho,Unity(i).Properties.Hot.Inlet.Fw); "Velocity Tube Side Outlet Nozzle" Unity(i).Tubes.PressureDrop.Vnozzle_out = HE.TubeVelocityNozzleout(Unity(i).Properties.Hot.Outlet.rho,Unity(i).Properties.Hot.Inlet.Fw); "Shell Pressure Drop Inlet Nozzle" Unity(i).Shell.PressureDrop.Pdnozzle_in = HE.DeltaPshellNozzleIn(Unity(i).Properties.Cold.Inlet.rho,Unity(i).Properties.Cold.Inlet.Fw); "Velocity Shell Side Inlet Nozzle" Unity(i).Shell.PressureDrop.Vnozzle_in = HE.ShellVelocityNozzleIn(Unity(i).Properties.Cold.Inlet.rho,Unity(i).Properties.Cold.Inlet.Fw); "Shell Pressure Drop Outlet Nozzle" Unity(i).Shell.PressureDrop.Pdnozzle_out = HE.DeltaPshellNozzleOut(Unity(i).Properties.Cold.Outlet.rho,Unity(i).Properties.Cold.Inlet.Fw); "Velocity Shell Side Outlet Nozzle" Unity(i).Shell.PressureDrop.Vnozzle_out = HE.ShellVelocityNozzleOut(Unity(i).Properties.Cold.Outlet.rho,Unity(i).Properties.Cold.Inlet.Fw); "Pressure Drop Hot Stream" Unity(i).Outlet.Hot.P = Unity(i).Inlet.Hot.P- Unity(i).Tubes.PressureDrop.Pdtotal; "Pressure Drop Cold Stream" Unity(i).Outlet.Cold.P = Unity(i).Inlet.Cold.P - Unity(i).Shell.PressureDrop.Pdtotal; end "Tube Resistance" Unity(i).Resistances.Rtube*(Unity(i).Tubes.HeatTransfer.htube*Ditube) = Dotube; "Wall Resistance" Unity(i).Resistances.Rwall=Dotube*ln(Dotube/Ditube)/(2*Kwall); "Shell Resistance" Unity(i).Resistances.Rshell*(Unity(i).Shell.HeatTransfer.hshell)=1; "Overall Heat Transfer Coefficient" Unity(i).Details.U=1/(Dotube/(Unity(i).Tubes.HeatTransfer.htube*Ditube)+(Dotube*ln(Dotube/Ditube)/(2*Kwall))+(1/(Unity(i).Shell.HeatTransfer.hshell))); "Exchange Surface Area" Unity(i).Details.A=Pi*Dotube*Ntt*Ltube; "Baffles Spacing" Ltube = Unity(i).Baffles.Lsi+Unity(i).Baffles.Lso+Unity(i).Baffles.Ls*(Nb-1); "TEMA E Shell Effectiveness" Eft(i) = 2*(1+Unity(i).Details.Cr+sqrt(1+Unity(i).Details.Cr^2)*((1+exp(-Unity(i).Details.NTU*sqrt(1+Unity(i).Details.Cr^2)))/(1-exp(-Unity(i).Details.NTU*sqrt(1+Unity(i).Details.Cr^2)))) )^-1; "Js Factor" Unity(i).Shell.HeatTransfer.Js = HE.JsFactor(Unity(i).Shell.HeatTransfer.Re,Unity(i).Baffles.Lsi,Unity(i).Baffles.Lso,Unity(i).Baffles.Ls); if side equal 1 then "Shell Side Reynolds Number" Unity(i).Shell.HeatTransfer.Re=HE.ShellReynoldsNumber(Unity(i).Properties.Hot.Inlet.Fw,Unity(i).Shell.HeatTransfer.Sm,Unity(i).Properties.Hot.Average.Mu); "Shell Heat Transfer Coefficient" Unity(i).Shell.HeatTransfer.hshell=HE.ShellFilmCoeff(Unity(i).Shell.HeatTransfer.Ji,Unity(i).Properties.Hot.Average.Cp,Unity(i).Properties.Hot.Average.Mw,Unity(i).Properties.Hot.Inlet.Fw,Unity(i).Shell.HeatTransfer.Sm,Unity(i).Shell.HeatTransfer.PR,Unity(i).Shell.HeatTransfer.Jtotal,Unity(i).Shell.HeatTransfer.Phi); "Shell Pressure Drop Cross Flow" Unity(i).Shell.PressureDrop.PdCross = HE.DeltaPcross(Unity(i).Shell.HeatTransfer.Re,Unity(i).Baffles.Ls,Unity(i).Baffles.Lso,Unity(i).Baffles.Lsi,Unity(i).Properties.Hot.Inlet.Fw,Unity(i).Shell.HeatTransfer.Phi,Unity(i).Properties.Hot.Average.rho); "Shell Pressure Baffle Window" Unity(i).Shell.PressureDrop.Pdwindow = HE.DeltaPwindow(Unity(i).Properties.Hot.Inlet.Fw,Unity(i).Shell.HeatTransfer.Sm,Unity(i).Properties.Hot.Average.rho,Unity(i).Properties.Hot.Average.Mu,Unity(i).Baffles.Ls); "Shell Pressure End Zones" Unity(i).Shell.PressureDrop.PdEndZones = HE.DeltaPendZones(Unity(i).Shell.HeatTransfer.Re,Unity(i).Baffles.Ls,Unity(i).Baffles.Lso,Unity(i).Baffles.Lsi,Unity(i).Properties.Hot.Inlet.Fw,Unity(i).Shell.HeatTransfer.Phi,Unity(i).Properties.Hot.Average.rho); else "Shell Side Reynolds Number" Unity(i).Shell.HeatTransfer.Re=HE.ShellReynoldsNumber(Unity(i).Properties.Cold.Inlet.Fw,Unity(i).Shell.HeatTransfer.Sm,Unity(i).Properties.Cold.Average.Mu); "Shell Heat Transfer Coefficient" Unity(i).Shell.HeatTransfer.hshell=HE.ShellFilmCoeff(Unity(i).Shell.HeatTransfer.Ji,Unity(i).Properties.Cold.Average.Cp,Unity(i).Properties.Cold.Average.Mw,Unity(i).Properties.Cold.Inlet.Fw,Unity(i).Shell.HeatTransfer.Sm,Unity(i).Shell.HeatTransfer.PR,Unity(i).Shell.HeatTransfer.Jtotal,Unity(i).Shell.HeatTransfer.Phi); "Shell Pressure Drop Cross Flow" Unity(i).Shell.PressureDrop.PdCross = HE.DeltaPcross(Unity(i).Shell.HeatTransfer.Re,Unity(i).Baffles.Ls,Unity(i).Baffles.Lso,Unity(i).Baffles.Lsi,Unity(i).Properties.Cold.Inlet.Fw,Unity(i).Shell.HeatTransfer.Phi,Unity(i).Properties.Cold.Average.rho); "Shell Pressure Baffle Window" Unity(i).Shell.PressureDrop.Pdwindow = HE.DeltaPwindow(Unity(i).Properties.Cold.Inlet.Fw,Unity(i).Shell.HeatTransfer.Sm,Unity(i).Properties.Cold.Average.rho,Unity(i).Properties.Cold.Average.Mu,Unity(i).Baffles.Ls); "Shell Pressure End Zones" Unity(i).Shell.PressureDrop.PdEndZones = HE.DeltaPendZones(Unity(i).Shell.HeatTransfer.Re,Unity(i).Baffles.Ls,Unity(i).Baffles.Lso,Unity(i).Baffles.Lsi,Unity(i).Properties.Cold.Inlet.Fw,Unity(i).Shell.HeatTransfer.Phi,Unity(i).Properties.Cold.Average.rho); end Unity(i).Details.Q = Eft(i)*Unity(i).Details.Cmin*(Unity(i).Inlet.Hot.T-Unity(i).Inlet.Cold.T); end SET #===================================================================== # Set Parameters for heatex Calculation #===================================================================== Pi = 3.14159265; HE.Tpass = Tpass; HE.Nss = Nss; HE.Ntt = Ntt; HE.Pattern = Pattern; HE.Bc = Bc; HE.Donozzle_Shell = Donozzle_Shell; HE.Dinozzle_Shell = Dinozzle_Shell; HE.Honozzle_Shell = Honozzle_Shell; HE.Hinozzle_Shell = Hinozzle_Shell; HE.Donozzle_Tube = Donozzle_Tube; HE.Dinozzle_Tube = Dinozzle_Tube; HE.Nb = Nb; HE.Dishell = Dishell; HE.Lcf = Lcf; HE.Ltube = Ltube; HE.pitch = pitch; HE.Dotube = Dotube; HE.Ditube = Ditube; HE.Lcd = Lcd; HE.Ltd = Ltd; side = HE.FluidAlocation(); end Model E_Shell_LMTD_Det as Heatex_Detailed_LMTD #===================================================================== # Shell and Tubes Heat Exchanger with 1 shell pass - LMTD Method #===================================================================== EQUATIONS "LMTD Correction Factor" Fc = HE.EshellCorrectionFactor(Inlet.Hot.T,Outlet.Hot.T,Inlet.Cold.T,Outlet.Cold.T); "Counter Flow LMTD" LMTD = HE.CounterLMTD(Inlet.Hot.T,Outlet.Hot.T,Inlet.Cold.T,Outlet.Cold.T); "Js Factor" Shell.HeatTransfer.Js = HE.JsFactor(Shell.HeatTransfer.Re,Baffles.Lsi,Baffles.Lso,Baffles.Ls); if side equal 1 then "Shell Side Reynolds Number" Shell.HeatTransfer.Re=HE.ShellReynoldsNumber(Properties.Hot.Inlet.Fw,Shell.HeatTransfer.Sm,Properties.Hot.Average.Mu); "Shell Heat Transfer Coefficient" Shell.HeatTransfer.hshell=HE.ShellFilmCoeff(Shell.HeatTransfer.Ji,Properties.Hot.Average.Cp,Properties.Hot.Average.Mw,Properties.Hot.Inlet.Fw,Shell.HeatTransfer.Sm,Shell.HeatTransfer.PR,Shell.HeatTransfer.Jtotal,Shell.HeatTransfer.Phi); "Shell Pressure Drop Cross Flow" Shell.PressureDrop.PdCross = HE.DeltaPcross(Shell.HeatTransfer.Re,Baffles.Ls,Baffles.Lso,Baffles.Lsi,Properties.Hot.Inlet.Fw,Shell.HeatTransfer.Phi,Properties.Hot.Average.rho); "Shell Pressure Baffle Window" Shell.PressureDrop.Pdwindow = HE.DeltaPwindow(Properties.Hot.Inlet.Fw,Shell.HeatTransfer.Sm,Properties.Hot.Average.rho,Properties.Hot.Average.Mu,Baffles.Ls); "Shell Pressure End Zones" Shell.PressureDrop.PdEndZones = HE.DeltaPendZones(Shell.HeatTransfer.Re,Baffles.Ls,Baffles.Lso,Baffles.Lsi,Properties.Hot.Inlet.Fw,Shell.HeatTransfer.Phi,Properties.Hot.Average.rho); else "Shell Side Reynolds Number" Shell.HeatTransfer.Re=HE.ShellReynoldsNumber(Properties.Cold.Inlet.Fw,Shell.HeatTransfer.Sm,Properties.Cold.Average.Mu); "Shell Heat Transfer Coefficient" Shell.HeatTransfer.hshell=HE.ShellFilmCoeff(Shell.HeatTransfer.Ji,Properties.Cold.Average.Cp,Properties.Cold.Average.Mw,Properties.Cold.Inlet.Fw,Shell.HeatTransfer.Sm,Shell.HeatTransfer.PR,Shell.HeatTransfer.Jtotal,Shell.HeatTransfer.Phi); "Shell Pressure Drop Cross Flow" Shell.PressureDrop.PdCross = HE.DeltaPcross(Shell.HeatTransfer.Re,Baffles.Ls,Baffles.Lso,Baffles.Lsi,Properties.Cold.Inlet.Fw,Shell.HeatTransfer.Phi,Properties.Cold.Average.rho); "Shell Pressure Baffle Window" Shell.PressureDrop.Pdwindow = HE.DeltaPwindow(Properties.Cold.Inlet.Fw,Shell.HeatTransfer.Sm,Properties.Cold.Average.rho,Properties.Cold.Average.Mu,Baffles.Ls); "Shell Pressure End Zones" Shell.PressureDrop.PdEndZones = HE.DeltaPendZones(Shell.HeatTransfer.Re,Baffles.Ls,Baffles.Lso,Baffles.Lsi,Properties.Cold.Inlet.Fw,Shell.HeatTransfer.Phi,Properties.Cold.Average.rho); end end Model F_Shell_LMTD_Det as Heatex_Detailed_LMTD #===================================================================== # Shell and Tubes Heat Exchanger with 2 shell pass - LMTD Method #===================================================================== EQUATIONS "LMTD Correction Factor" Fc = HE.FshellCorrectionFactor(Inlet.Hot.T,Outlet.Hot.T,Inlet.Cold.T,Outlet.Cold.T); "Counter Flow LMTD" LMTD = HE.CounterLMTD(Inlet.Hot.T,Outlet.Hot.T,Inlet.Cold.T,Outlet.Cold.T); "Js Factor" Shell.HeatTransfer.Js = HE.JsFactor(Shell.HeatTransfer.Re,Baffles.Lsi,Baffles.Lso,Baffles.Ls); if side equal 1 then "Shell Side Reynolds Number" Shell.HeatTransfer.Re=HE.ShellReynoldsNumber(Properties.Hot.Inlet.Fw,Shell.HeatTransfer.Sm,Properties.Hot.Average.Mu); "Shell Heat Transfer Coefficient" Shell.HeatTransfer.hshell=HE.ShellFilmCoeff(Shell.HeatTransfer.Ji,Properties.Hot.Average.Cp,Properties.Hot.Average.Mw,Properties.Hot.Inlet.Fw,Shell.HeatTransfer.Sm,Shell.HeatTransfer.PR,Shell.HeatTransfer.Jtotal,Shell.HeatTransfer.Phi); "Shell Pressure Drop Cross Flow" Shell.PressureDrop.PdCross = HE.DeltaPcross(Shell.HeatTransfer.Re,Baffles.Ls,Baffles.Lso,Baffles.Lsi,Properties.Hot.Inlet.Fw,Shell.HeatTransfer.Phi,Properties.Hot.Average.rho); "Shell Pressure Baffle Window" Shell.PressureDrop.Pdwindow = HE.DeltaPwindow(Properties.Hot.Inlet.Fw,Shell.HeatTransfer.Sm,Properties.Hot.Average.rho,Properties.Hot.Average.Mu,Baffles.Ls); "Shell Pressure End Zones" Shell.PressureDrop.PdEndZones = HE.DeltaPendZones(Shell.HeatTransfer.Re,Baffles.Ls,Baffles.Lso,Baffles.Lsi,Properties.Hot.Inlet.Fw,Shell.HeatTransfer.Phi,Properties.Hot.Average.rho); else "Shell Side Reynolds Number" Shell.HeatTransfer.Re=HE.ShellReynoldsNumber(Properties.Cold.Inlet.Fw,Shell.HeatTransfer.Sm,Properties.Cold.Average.Mu); "Shell Heat Transfer Coefficient" Shell.HeatTransfer.hshell=HE.ShellFilmCoeff(Shell.HeatTransfer.Ji,Properties.Cold.Average.Cp,Properties.Cold.Average.Mw,Properties.Cold.Inlet.Fw,Shell.HeatTransfer.Sm,Shell.HeatTransfer.PR,Shell.HeatTransfer.Jtotal,Shell.HeatTransfer.Phi); "Shell Pressure Drop Cross Flow" Shell.PressureDrop.PdCross = HE.DeltaPcross(Shell.HeatTransfer.Re,Baffles.Ls,Baffles.Lso,Baffles.Lsi,Properties.Cold.Inlet.Fw,Shell.HeatTransfer.Phi,Properties.Cold.Average.rho); "Shell Pressure Baffle Window" Shell.PressureDrop.Pdwindow = HE.DeltaPwindow(Properties.Cold.Inlet.Fw,Shell.HeatTransfer.Sm,Properties.Cold.Average.rho,Properties.Cold.Average.Mu,Baffles.Ls); "Shell Pressure End Zones" Shell.PressureDrop.PdEndZones = HE.DeltaPendZones(Shell.HeatTransfer.Re,Baffles.Ls,Baffles.Lso,Baffles.Lsi,Properties.Cold.Inlet.Fw,Shell.HeatTransfer.Phi,Properties.Cold.Average.rho); end end Model Multipass_LMTD_Det #============================================================================ # Shell and Tubes Heat Exchanger In Series with 1 shell pass - LMTD Method #============================================================================ PARAMETERS Nshell as Integer (Brief="N Shell in Series",Default=2); ext HE as CalcObject (Brief="STHE Calculations",File="heatex.dll"); ext PP as CalcObject; side as Integer (Brief="Fluid Alocation",Lower=0,Upper=1); Pi as constant (Brief="Pi Number",Default=3.14159265); #===================================================================== # Shell Geometrical Parameters #===================================================================== Tpass as Integer (Brief="Number of Tube Passes",Lower=1); Nss as Integer (Brief="Number of Sealing Strips pairs",Lower=1); Dishell as length (Brief="Inside Shell Diameter",Lower=10e-6); Donozzle_Shell as length (Brief="Shell Outlet Nozzle Diameter",Lower=10e-6); Dinozzle_Shell as length (Brief="Shell Inlet Nozzle Diameter",Lower=10e-6); Hinozzle_Shell as length (Brief="Height Under Shell Inlet Nozzle",Lower=10e-6); Honozzle_Shell as length (Brief="Height Under Shell Outlet Nozzle",Lower=10e-6); Lcf as length (Brief="Bundle-to-Shell Clearance",Lower=10e-8); #===================================================================== # Tubes Geometrical Parameters #===================================================================== Ntt as Integer (Brief="Total Number of Tubes in Shell",Default=100,Lower=1); Pattern as Integer (Brief="Tube Layout Characteristic Angle",Lower=30); Ltube as length (Brief="Effective Tube Length",Lower=0.1); pitch as length (Brief="Tube Pitch",Lower=1e-8); Kwall as conductivity (Brief="Tube Wall Material Thermal Conductivity"); Dotube as length (Brief="Tube Outside Diameter",Lower=10e-6); Ditube as length (Brief="Tube Inside Diameter",Lower=10e-6); Donozzle_Tube as length (Brief="Tube Outlet Nozzle Diameter",Lower=10e-6); Dinozzle_Tube as length (Brief="Tube Inlett Nozzle Diameter",Lower=10e-6); #===================================================================== # Baffles Geometrical Parameters #===================================================================== Bc as Integer (Brief="Baffle Cut",Default=25,Lower=25); Nb as Real (Brief="Number of Baffles",Lower=1); Lcd as length (Brief="Baffle-to-Shell Clearance",Lower=10e-8); Ltd as length (Brief="Tube-to-Bafflehole Clearance",Lower=10e-8); #===================================================================== VARIABLES LMTD(Nshell) as temp_delta (Brief="Logarithmic Mean Temperature Difference",Lower=10); Fc(Nshell) as positive (Brief="LMTD Correction Factor",Lower=0.75); MTD(Nshell) as temp_delta (Brief="Mean Temperature Difference"); Unity(Nshell) as HeatExchangerDetailed_Basic; CONNECTIONS Unity([1:Nshell-1]).Outlet.Hot to Unity([2:Nshell]).Inlet.Hot; Unity([2:Nshell]).Outlet.Cold to Unity([1:Nshell-1]).Inlet.Cold; EQUATIONS for i in [1:Nshell] "Shell Side Cross Flow Area" Unity(i).Shell.HeatTransfer.Sm = HE.CrossFlowArea(Unity(i).Baffles.Ls); "Ji Factor" Unity(i).Shell.HeatTransfer.Ji = HE.JiFactor(Unity(i).Shell.HeatTransfer.Re); "Jc Factor" Unity(i).Shell.HeatTransfer.Jc = HE.JcFactor(); "Jl Factor" Unity(i).Shell.HeatTransfer.Jl = HE.JlFactor(Unity(i).Shell.HeatTransfer.Sm); "Jb Factor" Unity(i).Shell.HeatTransfer.Jb = HE.JbFactor(Unity(i).Shell.HeatTransfer.Re,Unity(i).Baffles.Ls,Unity(i).Shell.HeatTransfer.Sm); "Jr Factor" Unity(i).Shell.HeatTransfer.Jr = HE.JrFactor(Unity(i).Shell.HeatTransfer.Re); "Total J Factor" Unity(i).Shell.HeatTransfer.Jtotal=Unity(i).Shell.HeatTransfer.Jc*Unity(i).Shell.HeatTransfer.Jl*Unity(i).Shell.HeatTransfer.Jb*Unity(i).Shell.HeatTransfer.Jr*Unity(i).Shell.HeatTransfer.Js; #===================================================================== # Fluid Alocation #===================================================================== if side equal 1 then "Shell Side Phi correction for viscosity" Unity(i).Shell.HeatTransfer.Phi = HE.PhiCorrection(Unity(i).Properties.Hot.Average.Mu,Unity(i).Properties.Hot.Wall.Mu); "Tube Side Phi correction for viscosity" Unity(i).Tubes.HeatTransfer.Phi = HE.PhiCorrection(Unity(i).Properties.Cold.Average.Mu,Unity(i).Properties.Cold.Wall.Mu); else "Shell Side Phi correction for viscosity" Unity(i).Shell.HeatTransfer.Phi = HE.PhiCorrection(Unity(i).Properties.Cold.Average.Mu,Unity(i).Properties.Cold.Wall.Mu); "Tube Side Phi correction for viscosity" Unity(i).Tubes.HeatTransfer.Phi = HE.PhiCorrection(Unity(i).Properties.Hot.Average.Mu,Unity(i).Properties.Hot.Wall.Mu); end if side equal 1 then "Wall Temperature" # Tubes.HeatTransfer.Twall = HE.WallTemperature(Properties.Hot.Average.T,Properties.Cold.Average.T,Tubes.HeatTransfer.htube,Shell.HeatTransfer.hshell); # Tubes.HeatTransfer.Twall = HE.WallTemperature(Properties.Hot.Average.T,Properties.Cold.Average.T,Tubes.HeatTransfer.htube,Shell.HeatTransfer.hshell); Unity(i).Properties.Cold.Wall.Twall = (Unity(i).Properties.Hot.Average.T+Unity(i).Properties.Cold.Average.T)/2; Unity(i).Properties.Hot.Wall.Twall = (Unity(i).Properties.Hot.Average.T+Unity(i).Properties.Cold.Average.T)/2; "Tube Side Velocity" Unity(i).Tubes.HeatTransfer.Vtube = HE.TubeVelocity(Unity(i).Properties.Cold.Inlet.Fw,Unity(i).Properties.Cold.Average.rho); "Tube Side Reynolds Number" Unity(i).Tubes.HeatTransfer.Re = HE.TubeReynoldsNumber(Unity(i).Properties.Cold.Average.rho,Unity(i).Tubes.HeatTransfer.Vtube,Unity(i).Properties.Cold.Average.Mu); "Tube Side Prandtl Number" Unity(i).Tubes.HeatTransfer.PR = HE.PrandtlNumber(Unity(i).Properties.Cold.Average.K,Unity(i).Properties.Cold.Average.Cp,Unity(i).Properties.Cold.Average.Mw,Unity(i).Properties.Cold.Average.Mu); "Tube Side Prandtl Number at Wall" Unity(i).Tubes.HeatTransfer.PRw = HE.PrandtlNumber(Unity(i).Properties.Cold.Wall.K,Unity(i).Properties.Cold.Wall.Cp,Unity(i).Properties.Cold.Average.Mw,Unity(i).Properties.Cold.Wall.Mu); "Tube Side Film Coefficient" Unity(i).Tubes.HeatTransfer.htube= HE.TubeFilmCoeff(Unity(i).Tubes.HeatTransfer.Re,Unity(i).Tubes.HeatTransfer.PR,Unity(i).Properties.Cold.Average.K,Unity(i).Tubes.HeatTransfer.Phi); "Shell Side Prandtl Number" Unity(i).Shell.HeatTransfer.PR=HE.PrandtlNumber(Unity(i).Properties.Hot.Average.K,Unity(i).Properties.Hot.Average.Cp,Unity(i).Properties.Hot.Average.Mw,Unity(i).Properties.Hot.Average.Mu); "Shell Side Prandtl Number at Wall" Unity(i).Shell.HeatTransfer.PRw=HE.PrandtlNumber(Unity(i).Properties.Hot.Wall.K,Unity(i).Properties.Hot.Wall.Cp,Unity(i).Properties.Hot.Average.Mw,Unity(i).Properties.Hot.Wall.Mu); "Tube Side Pressure Drop" Unity(i).Tubes.PressureDrop.PdTube = HE.DeltaPtube(Unity(i).Tubes.HeatTransfer.Re,Unity(i).Properties.Cold.Average.rho,Unity(i).Tubes.HeatTransfer.Vtube,Unity(i).Tubes.HeatTransfer.Phi); "Pressure Drop Tube Side Inlet Nozzle" Unity(i).Tubes.PressureDrop.Pdnozzle_in = HE.DeltaPtubeNozzlein(Unity(i).Properties.Cold.Inlet.rho,Unity(i).Properties.Cold.Inlet.Fw); "Velocity Tube Side Inlet Nozzle" Unity(i).Tubes.PressureDrop.Vnozzle_in = HE.TubeVelocityNozzlein(Unity(i).Properties.Cold.Inlet.rho,Unity(i).Properties.Cold.Inlet.Fw); "Pressure Drop Tube Side Outlet Nozzle" Unity(i).Tubes.PressureDrop.Pdnozzle_out = HE.DeltaPtubeNozzleout(Unity(i).Properties.Cold.Outlet.rho,Unity(i).Properties.Cold.Inlet.Fw); "Velocity Tube Side Outlet Nozzle" Unity(i).Tubes.PressureDrop.Vnozzle_out = HE.TubeVelocityNozzleout(Unity(i).Properties.Cold.Outlet.rho,Unity(i).Properties.Cold.Inlet.Fw); "Shell Pressure Drop Inlet Nozzle" Unity(i).Shell.PressureDrop.Pdnozzle_in = HE.DeltaPshellNozzleIn(Unity(i).Properties.Hot.Inlet.rho,Unity(i).Properties.Hot.Inlet.Fw); "Velocity Shell Side Inlet Nozzle" Unity(i).Shell.PressureDrop.Vnozzle_in = HE.ShellVelocityNozzleIn(Unity(i).Properties.Hot.Inlet.rho,Unity(i).Properties.Hot.Inlet.Fw); "Shell Pressure Drop Outlet Nozzle" Unity(i).Shell.PressureDrop.Pdnozzle_out =HE.DeltaPshellNozzleOut(Unity(i).Properties.Hot.Outlet.rho,Unity(i).Properties.Hot.Inlet.Fw); "Velocity Shell Side Outlet Nozzle" Unity(i).Shell.PressureDrop.Vnozzle_out =HE.ShellVelocityNozzleOut(Unity(i).Properties.Hot.Outlet.rho,Unity(i).Properties.Hot.Inlet.Fw); "Pressure Drop Hot Stream" Unity(i).Outlet.Hot.P = Unity(i).Inlet.Hot.P- Unity(i).Shell.PressureDrop.Pdtotal; "Pressure Drop Cold Stream" Unity(i).Outlet.Cold.P = Unity(i).Inlet.Cold.P - Unity(i).Tubes.PressureDrop.Pdtotal; else "Wall Temperature" # Tubes.HeatTransfer.Twall = HE.WallTemperature(Properties.Cold.Average.T,Properties.Hot.Average.T,Tubes.HeatTransfer.htube,Shell.HeatTransfer.hshell); # Tubes.HeatTransfer.Twall = HE.WallTemperature(Properties.Cold.Average.T,Properties.Hot.Average.T,Tubes.HeatTransfer.htube,Shell.HeatTransfer.hshell); Unity(i).Properties.Cold.Wall.Twall = (Unity(i).Properties.Hot.Average.T+Unity(i).Properties.Cold.Average.T)/2; Unity(i).Properties.Hot.Wall.Twall = (Unity(i).Properties.Hot.Average.T+Unity(i).Properties.Cold.Average.T)/2; "Tube Side Velocity" Unity(i).Tubes.HeatTransfer.Vtube=HE.TubeVelocity(Unity(i).Properties.Hot.Inlet.Fw,Unity(i).Properties.Hot.Average.rho); "Tube Side Reynolds Number" Unity(i).Tubes.HeatTransfer.Re=HE.TubeReynoldsNumber(Unity(i).Properties.Hot.Average.rho,Unity(i).Tubes.HeatTransfer.Vtube,Unity(i).Properties.Hot.Average.Mu); "Tube Side Prandtl Number" Unity(i).Tubes.HeatTransfer.PR=HE.PrandtlNumber(Unity(i).Properties.Hot.Average.K,Unity(i).Properties.Hot.Average.Cp,Unity(i).Properties.Hot.Average.Mw,Unity(i).Properties.Hot.Average.Mu); "Tube Side Prandtl Number at Wall" Unity(i).Tubes.HeatTransfer.PRw=HE.PrandtlNumber(Unity(i).Properties.Hot.Wall.K,Unity(i).Properties.Hot.Wall.Cp,Unity(i).Properties.Hot.Average.Mw,Unity(i).Properties.Hot.Wall.Mu); "Tube Side Film Coefficient" Unity(i).Tubes.HeatTransfer.htube= HE.TubeFilmCoeff(Unity(i).Tubes.HeatTransfer.Re,Unity(i).Tubes.HeatTransfer.PR,Unity(i).Properties.Hot.Average.K,Unity(i).Tubes.HeatTransfer.Phi); "Shell Side Prandtl Number" Unity(i).Shell.HeatTransfer.PR=HE.PrandtlNumber(Unity(i).Properties.Cold.Average.K,Unity(i).Properties.Cold.Average.Cp,Unity(i).Properties.Cold.Average.Mw,Unity(i).Properties.Cold.Average.Mu); "Shell Side Prandtl Number at Wall" Unity(i).Shell.HeatTransfer.PRw=HE.PrandtlNumber(Unity(i).Properties.Cold.Wall.K,Unity(i).Properties.Cold.Wall.Cp,Unity(i).Properties.Cold.Average.Mw,Unity(i).Properties.Cold.Wall.Mu); "Tube Side Pressure Drop" Unity(i).Tubes.PressureDrop.PdTube = HE.DeltaPtube(Unity(i).Tubes.HeatTransfer.Re,Unity(i).Properties.Hot.Average.rho,Unity(i).Tubes.HeatTransfer.Vtube,Unity(i).Tubes.HeatTransfer.Phi); "Pressure Drop Tube Side Inlet Nozzle" Unity(i).Tubes.PressureDrop.Pdnozzle_in = HE.DeltaPtubeNozzlein(Unity(i).Properties.Hot.Inlet.rho,Unity(i).Properties.Hot.Inlet.Fw); "Velocity Tube Side Inlet Nozzle" Unity(i).Tubes.PressureDrop.Vnozzle_in = HE.TubeVelocityNozzlein(Unity(i).Properties.Hot.Inlet.rho,Unity(i).Properties.Hot.Inlet.Fw); "Pressure Drop Tube Side Outlet Nozzle" Unity(i).Tubes.PressureDrop.Pdnozzle_out = HE.DeltaPtubeNozzleout(Unity(i).Properties.Hot.Outlet.rho,Unity(i).Properties.Hot.Inlet.Fw); "Velocity Tube Side Outlet Nozzle" Unity(i).Tubes.PressureDrop.Vnozzle_out = HE.TubeVelocityNozzleout(Unity(i).Properties.Hot.Outlet.rho,Unity(i).Properties.Hot.Inlet.Fw); "Shell Pressure Drop Inlet Nozzle" Unity(i).Shell.PressureDrop.Pdnozzle_in = HE.DeltaPshellNozzleIn(Unity(i).Properties.Cold.Inlet.rho,Unity(i).Properties.Cold.Inlet.Fw); "Velocity Shell Side Inlet Nozzle" Unity(i).Shell.PressureDrop.Vnozzle_in = HE.ShellVelocityNozzleIn(Unity(i).Properties.Cold.Inlet.rho,Unity(i).Properties.Cold.Inlet.Fw); "Shell Pressure Drop Outlet Nozzle" Unity(i).Shell.PressureDrop.Pdnozzle_out = HE.DeltaPshellNozzleOut(Unity(i).Properties.Cold.Outlet.rho,Unity(i).Properties.Cold.Inlet.Fw); "Velocity Shell Side Outlet Nozzle" Unity(i).Shell.PressureDrop.Vnozzle_out = HE.ShellVelocityNozzleOut(Unity(i).Properties.Cold.Outlet.rho,Unity(i).Properties.Cold.Inlet.Fw); "Pressure Drop Hot Stream" Unity(i).Outlet.Hot.P = Unity(i).Inlet.Hot.P- Unity(i).Tubes.PressureDrop.Pdtotal; "Pressure Drop Cold Stream" Unity(i).Outlet.Cold.P = Unity(i).Inlet.Cold.P - Unity(i).Shell.PressureDrop.Pdtotal; end "Tube Resistance" Unity(i).Resistances.Rtube*(Unity(i).Tubes.HeatTransfer.htube*Ditube) = Dotube; "Wall Resistance" Unity(i).Resistances.Rwall=Dotube*ln(Dotube/Ditube)/(2*Kwall); "Shell Resistance" Unity(i).Resistances.Rshell*(Unity(i).Shell.HeatTransfer.hshell)=1; "Overall Heat Transfer Coefficient" Unity(i).Details.U=1/(Dotube/(Unity(i).Tubes.HeatTransfer.htube*Ditube)+(Dotube*ln(Dotube/Ditube)/(2*Kwall))+(1/(Unity(i).Shell.HeatTransfer.hshell))); "Exchange Surface Area" Unity(i).Details.A=Pi*Dotube*Ntt*Ltube; "Baffles Spacing" Ltube = Unity(i).Baffles.Lsi+Unity(i).Baffles.Lso+Unity(i).Baffles.Ls*(Nb-1); "LMTD Correction Factor" Fc(i) = HE.EshellCorrectionFactor(Unity(i).Inlet.Hot.T,Unity(i).Outlet.Hot.T,Unity(i).Inlet.Cold.T,Unity(i).Outlet.Cold.T); "Counter Flow LMTD" LMTD(i) = HE.CounterLMTD(Unity(i).Inlet.Hot.T,Unity(i).Outlet.Hot.T,Unity(i).Inlet.Cold.T,Unity(i).Outlet.Cold.T); "Js Factor" Unity(i).Shell.HeatTransfer.Js = HE.JsFactor(Unity(i).Shell.HeatTransfer.Re,Unity(i).Baffles.Lsi,Unity(i).Baffles.Lso,Unity(i).Baffles.Ls); if side equal 1 then "Shell Side Reynolds Number" Unity(i).Shell.HeatTransfer.Re=HE.ShellReynoldsNumber(Unity(i).Properties.Hot.Inlet.Fw,Unity(i).Shell.HeatTransfer.Sm,Unity(i).Properties.Hot.Average.Mu); "Shell Heat Transfer Coefficient" Unity(i).Shell.HeatTransfer.hshell=HE.ShellFilmCoeff(Unity(i).Shell.HeatTransfer.Ji,Unity(i).Properties.Hot.Average.Cp,Unity(i).Properties.Hot.Average.Mw,Unity(i).Properties.Hot.Inlet.Fw,Unity(i).Shell.HeatTransfer.Sm,Unity(i).Shell.HeatTransfer.PR,Unity(i).Shell.HeatTransfer.Jtotal,Unity(i).Shell.HeatTransfer.Phi); "Shell Pressure Drop Cross Flow" Unity(i).Shell.PressureDrop.PdCross = HE.DeltaPcross(Unity(i).Shell.HeatTransfer.Re,Unity(i).Baffles.Ls,Unity(i).Baffles.Lso,Unity(i).Baffles.Lsi,Unity(i).Properties.Hot.Inlet.Fw,Unity(i).Shell.HeatTransfer.Phi,Unity(i).Properties.Hot.Average.rho); "Shell Pressure Baffle Window" Unity(i).Shell.PressureDrop.Pdwindow = HE.DeltaPwindow(Unity(i).Properties.Hot.Inlet.Fw,Unity(i).Shell.HeatTransfer.Sm,Unity(i).Properties.Hot.Average.rho,Unity(i).Properties.Hot.Average.Mu,Unity(i).Baffles.Ls); "Shell Pressure End Zones" Unity(i).Shell.PressureDrop.PdEndZones = HE.DeltaPendZones(Unity(i).Shell.HeatTransfer.Re,Unity(i).Baffles.Ls,Unity(i).Baffles.Lso,Unity(i).Baffles.Lsi,Unity(i).Properties.Hot.Inlet.Fw,Unity(i).Shell.HeatTransfer.Phi,Unity(i).Properties.Hot.Average.rho); else "Shell Side Reynolds Number" Unity(i).Shell.HeatTransfer.Re=HE.ShellReynoldsNumber(Unity(i).Properties.Cold.Inlet.Fw,Unity(i).Shell.HeatTransfer.Sm,Unity(i).Properties.Cold.Average.Mu); "Shell Heat Transfer Coefficient" Unity(i).Shell.HeatTransfer.hshell=HE.ShellFilmCoeff(Unity(i).Shell.HeatTransfer.Ji,Unity(i).Properties.Cold.Average.Cp,Unity(i).Properties.Cold.Average.Mw,Unity(i).Properties.Cold.Inlet.Fw,Unity(i).Shell.HeatTransfer.Sm,Unity(i).Shell.HeatTransfer.PR,Unity(i).Shell.HeatTransfer.Jtotal,Unity(i).Shell.HeatTransfer.Phi); "Shell Pressure Drop Cross Flow" Unity(i).Shell.PressureDrop.PdCross = HE.DeltaPcross(Unity(i).Shell.HeatTransfer.Re,Unity(i).Baffles.Ls,Unity(i).Baffles.Lso,Unity(i).Baffles.Lsi,Unity(i).Properties.Cold.Inlet.Fw,Unity(i).Shell.HeatTransfer.Phi,Unity(i).Properties.Cold.Average.rho); "Shell Pressure Baffle Window" Unity(i).Shell.PressureDrop.Pdwindow = HE.DeltaPwindow(Unity(i).Properties.Cold.Inlet.Fw,Unity(i).Shell.HeatTransfer.Sm,Unity(i).Properties.Cold.Average.rho,Unity(i).Properties.Cold.Average.Mu,Unity(i).Baffles.Ls); "Shell Pressure End Zones" Unity(i).Shell.PressureDrop.PdEndZones = HE.DeltaPendZones(Unity(i).Shell.HeatTransfer.Re,Unity(i).Baffles.Ls,Unity(i).Baffles.Lso,Unity(i).Baffles.Lsi,Unity(i).Properties.Cold.Inlet.Fw,Unity(i).Shell.HeatTransfer.Phi,Unity(i).Properties.Cold.Average.rho); end "Exchange Surface Area" Unity(i).Details.Q = Unity(i).Details.U*Unity(i).Details.A*Fc(i)*LMTD(i); "Mean Temperature Difference" MTD(i) = Fc(i)*LMTD(i); end SET #===================================================================== # Set Parameters for heatex Calculation #===================================================================== Pi = 3.14159265; HE.Tpass = Tpass; HE.Nss = Nss; HE.Ntt = Ntt; HE.Pattern = Pattern; HE.Bc = Bc; HE.Donozzle_Shell = Donozzle_Shell; HE.Dinozzle_Shell = Dinozzle_Shell; HE.Honozzle_Shell = Honozzle_Shell; HE.Hinozzle_Shell = Hinozzle_Shell; HE.Donozzle_Tube = Donozzle_Tube; HE.Dinozzle_Tube = Dinozzle_Tube; HE.Nb = Nb; HE.Dishell = Dishell; HE.Lcf = Lcf; HE.Ltube = Ltube; HE.pitch = pitch; HE.Dotube = Dotube; HE.Ditube = Ditube; HE.Lcd = Lcd; HE.Ltd = Ltd; side = HE.FluidAlocation(); end