#*------------------------------------------------------------------- * EMSO Model Library (EML) Copyright (C) 2004 - 2007 ALSOC. * * This LIBRARY is free software; you can distribute it and/or modify * it under the therms of the ALSOC FREE LICENSE as available at * http://www.enq.ufrgs.br/alsoc. * * EMSO Copyright (C) 2004 - 2007 ALSOC, original code * from http://www.rps.eng.br Copyright (C) 2002-2004. * All rights reserved. * * EMSO is distributed under the therms of the ALSOC LICENSE as * available at http://www.enq.ufrgs.br/alsoc. * *---------------------------------------------------------------------- * Author: Paula B. Staudt * $Id: tray.mso 325 2007-07-29 00:41:04Z arge $ *--------------------------------------------------------------------*# using "streams"; Model trayBasic ATTRIBUTES Pallete = false; Icon = "icon/Tray"; Brief = "Basic equations of a tray column model."; Info = "This model contains only the main equations of a column tray equilibrium model without the hidraulic equations. Assumptions * both phases (liquid and vapour) exists all the time; * thermodymanic equilibrium with Murphree plate efficiency; * no entrainment of liquid or vapour phase; * no weeping; * the dymanics in the downcomer are neglected. "; PARAMETERS outer PP as Plugin(Brief = "External Physical Properties", Type="PP"); outer NComp as Integer; V as volume(Brief="Total Volume of the tray"); Q as heat_rate (Brief="Rate of heat supply"); Ap as area (Brief="Plate area = Atray - Adowncomer"); VARIABLES in Inlet as stream (Brief="Feed stream", PosX=0, PosY=0.4932); in InletL as stream (Brief="Inlet liquid stream", PosX=0.5195, PosY=0); in InletV as stream (Brief="Inlet vapour stream", PosX=0.4994, PosY=1); out OutletL as liquid_stream (Brief="Outlet liquid stream", PosX=0.8277, PosY=1); out OutletV as vapour_stream (Brief="Outlet vapour stream", PosX=0.8043, PosY=0); M(NComp) as mol (Brief="Molar Holdup in the tray"); ML as mol (Brief="Molar liquid holdup"); MV as mol (Brief="Molar vapour holdup"); E as energy (Brief="Total Energy Holdup on tray"); vL as volume_mol (Brief="Liquid Molar Volume"); vV as volume_mol (Brief="Vapour Molar volume"); Level as length (Brief="Height of clear liquid on plate"); yideal(NComp) as fraction; Emv as Real (Brief = "Murphree efficiency"); EQUATIONS "Component Molar Balance" diff(M)=Inlet.F*Inlet.z + InletL.F*InletL.z + InletV.F*InletV.z - OutletL.F*OutletL.z - OutletV.F*OutletV.z; "Energy Balance" diff(E) = ( Inlet.F*Inlet.h + InletL.F*InletL.h + InletV.F*InletV.h - OutletL.F*OutletL.h - OutletV.F*OutletV.h + Q ); "Molar Holdup" M = ML*OutletL.z + MV*OutletV.z; "Energy Holdup" E = ML*OutletL.h + MV*OutletV.h - OutletL.P*V; "Mol fraction normalisation" sum(OutletL.z)= 1.0; sum(OutletL.z)= sum(OutletV.z); "Liquid Volume" vL = PP.LiquidVolume(OutletL.T, OutletL.P, OutletL.z); "Vapour Volume" vV = PP.VapourVolume(OutletV.T, OutletV.P, OutletV.z); "Chemical Equilibrium" PP.LiquidFugacityCoefficient(OutletL.T, OutletL.P, OutletL.z)*OutletL.z = PP.VapourFugacityCoefficient(OutletV.T, OutletV.P, yideal)*yideal; "Murphree Efficiency" OutletV.z = Emv * (yideal - InletV.z) + InletV.z; "Thermal Equilibrium" OutletV.T = OutletL.T; "Mechanical Equilibrium" OutletV.P = OutletL.P; "Geometry Constraint" V = ML* vL + MV*vV; "Level of clear liquid over the weir" Level = ML*vL/Ap; end Model tray as trayBasic ATTRIBUTES Pallete = false; Icon = "icon/Tray"; Brief = "Complete model of a column tray."; Info = "Specify: * the Feed stream * the Liquid inlet stream * the Vapour inlet stream * the Vapour outlet flow (OutletV.F) Initial: * the plate temperature (OutletL.T) * the liquid height (Level) OR the liquid flow OutletL.F * (NoComps - 1) OutletL compositions "; PARAMETERS Ah as area (Brief="Total holes area"); lw as length (Brief="Weir length"); g as acceleration (Default=9.81); hw as length (Brief="Weir height"); beta as fraction (Brief="Aeration fraction"); alfa as fraction (Brief="Dry pressure drop coefficient"); VARIABLES rhoL as dens_mass; rhoV as dens_mass; EQUATIONS "Liquid Density" rhoL = PP.LiquidDensity(OutletL.T, OutletL.P, OutletL.z); "Vapour Density" rhoV = PP.VapourDensity(InletV.T, InletV.P, InletV.z); if Level > (beta * hw) then "Francis Equation" OutletL.F = 1.84*'1/s'*lw*((Level-(beta*hw))/(beta))^2/vL; else "Low level" OutletL.F = 0 * 'mol/h'; end end #*------------------------------------------------------------------- * Model of a tray with reaction *-------------------------------------------------------------------*# Model trayReact ATTRIBUTES Pallete = false; Icon = "icon/Tray"; Brief = "Model of a tray with reaction."; Info = "Assumptions * both phases (liquid and vapour) exists all the time; * thermodymanic equilibrium with Murphree plate efficiency; * no entrainment of liquid or vapour phase; * no weeping; * the dymanics in the downcomer are neglected. Specify: * the Feed stream; * the Liquid inlet stream; * the Vapour inlet stream; * the Vapour outlet flow (OutletV.F); * the reaction related variables. Initial: * the plate temperature (OutletL.T) * the liquid height (Level) OR the liquid flow OutletL.F * (NoComps - 1) OutletL compositions "; PARAMETERS outer PP as Plugin(Type="PP"); outer NComp as Integer; V as volume(Brief="Total Volume of the tray"); Q as power (Brief="Rate of heat supply"); Ap as area (Brief="Plate area = Atray - Adowncomer"); Ah as area (Brief="Total holes area"); lw as length (Brief="Weir length"); g as acceleration (Default=9.81); hw as length (Brief="Weir height"); beta as fraction (Brief="Aeration fraction"); alfa as fraction (Brief="Dry pressure drop coefficient"); stoic(NComp) as Real(Brief="Stoichiometric matrix"); Hr as energy_mol; Pstartup as pressure; VapourFlow as Switcher(Valid = ["on", "off"], Default = "off"); LiquidFlow as Switcher(Valid = ["on", "off"], Default = "off"); VARIABLES in Inlet as stream (Brief="Feed stream", PosX=0, PosY=0.4932); in InletL as stream (Brief="Inlet liquid stream", PosX=0.5195, PosY=0); in InletV as stream (Brief="Inlet vapour stream", PosX=0.4994, PosY=1); out OutletL as liquid_stream (Brief="Outlet liquid stream", PosX=0.8277, PosY=1); out OutletV as vapour_stream (Brief="Outlet vapour stream", PosX=0.8043, PosY=0); yideal(NComp) as fraction; Emv as Real (Brief = "Murphree efficiency"); M(NComp) as mol (Brief="Molar Holdup in the tray"); ML as mol (Brief="Molar liquid holdup"); MV as mol (Brief="Molar vapour holdup"); E as energy (Brief="Total Energy Holdup on tray"); vL as volume_mol (Brief="Liquid Molar Volume"); vV as volume_mol (Brief="Vapour Molar volume"); Level as length (Brief="Height of clear liquid on plate"); Vol as volume; rhoL as dens_mass; rhoV as dens_mass; r3 as reaction_mol (Brief = "Reaction resulting ethyl acetate", DisplayUnit = 'mol/l/s'); C(NComp) as conc_mol (Brief = "Molar concentration", Lower = -1); #, Unit = "mol/l"); EQUATIONS "Molar Concentration" OutletL.z = vL * C; "Reaction" r3 = exp(-7150*'K'/OutletL.T)*(4.85e4*C(1)*C(2) - 1.23e4*C(3)*C(4))*'l/mol/s'; "Component Molar Balance" diff(M)=Inlet.F*Inlet.z + InletL.F*InletL.z + InletV.F*InletV.z - OutletL.F*OutletL.z - OutletV.F*OutletV.z + stoic*r3*ML*vL; "Energy Balance" diff(E) = ( Inlet.F*Inlet.h + InletL.F*InletL.h + InletV.F*InletV.h - OutletL.F*OutletL.h - OutletV.F*OutletV.h + Q ) + Hr * r3 * vL*ML; "Molar Holdup" M = ML*OutletL.z + MV*OutletV.z; "Energy Holdup" E = ML*OutletL.h + MV*OutletV.h - OutletL.P*V; "Mol fraction normalisation" sum(OutletL.z)= 1.0; "Liquid Volume" vL = PP.LiquidVolume(OutletL.T, OutletL.P, OutletL.z); "Vapour Volume" vV = PP.VapourVolume(OutletV.T, OutletV.P, OutletV.z); "Thermal Equilibrium" OutletV.T = OutletL.T; "Mechanical Equilibrium" OutletV.P = OutletL.P; "Level of clear liquid over the weir" Level = ML*vL/Ap; Vol = ML*vL; "Liquid Density" rhoL = PP.LiquidDensity(OutletL.T, OutletL.P, OutletL.z); "Vapour Density" rhoV = PP.VapourDensity(InletV.T, InletV.P, InletV.z); switch LiquidFlow case "on": "Francis Equation" OutletL.F*vL = 1.84*'1/s'*lw*((Level-(beta*hw)+1e-6*'m')/(beta))^2; when Level < (beta * hw) switchto "off"; case "off": "Low level" OutletL.F = 0 * 'mol/h'; when Level > (beta * hw) + 1e-6*'m' switchto "on"; end switch VapourFlow case "on": #InletV.P = OutletV.P + Level*g*rhoL + rhoV*alfa*(InletV.F*vV/Ah)^2; InletV.F*vV = sqrt((InletV.P - OutletV.P - Level*g*rhoL + 1e-8 * 'atm')/(rhoV*alfa))*Ah; when InletV.P < OutletV.P + Level*g*rhoL switchto "off"; case "off": InletV.F = 0 * 'mol/s'; when InletV.P > OutletV.P + Level*g*rhoL + 3e-2 * 'atm' switchto "on"; #when InletV.P > OutletV.P + Level*beta*g*rhoL + 1e-2 * 'atm' switchto "on"; end "Chemical Equilibrium" PP.LiquidFugacityCoefficient(OutletL.T, OutletL.P, OutletL.z)*OutletL.z = PP.VapourFugacityCoefficient(OutletV.T, OutletV.P, yideal)*yideal; OutletV.z = Emv * (yideal - InletV.z) + InletV.z; sum(OutletL.z)= sum(OutletV.z); "Geometry Constraint" V = ML* vL + MV*vV; end