#*------------------------------------------------------------------- * EMSO Model Library (EML) Copyright (C) 2004 - 2007 ALSOC. * * This LIBRARY is free software; you can distribute it and/or modify * it under the therms of the ALSOC FREE LICENSE as available at * http://www.enq.ufrgs.br/alsoc. * * EMSO Copyright (C) 2004 - 2007 ALSOC, original code * from http://www.rps.eng.br Copyright (C) 2002-2004. * All rights reserved. * * EMSO is distributed under the therms of the ALSOC LICENSE as * available at http://www.enq.ufrgs.br/alsoc. * *-------------------------------------------------------------------- * Model of a tray *-------------------------------------------------------------------- * - Streams * * a liquid outlet stream * * a liquid inlet stream * * a vapour outlet stream * * a vapour inlet stream * * a feed stream * * - Assumptions * * both phases (liquid and vapour) exists all the time * * thermodymanic equilibrium (Murphree plate efficiency=1) * * no entrainment of liquid or vapour phase * * no weeping * * the dymanics in the downcomer are neglected * * - Tray hydraulics: Roffel B.,Betlem B.H.L.,Ruijter J.A.F. (2000) * Computers and Chemical Engineering * Frauke Reepmeyer, Jens-Uwe Repke and Günter Wozny (2003) * Chem. Eng. Technol. 26 (2003) 1 * * - Specify: * * the Feed stream * * the Liquid inlet stream * * the Vapour inlet stream * * the Vapour outlet flow (OutletV.F) * * - Initial: * * the plate temperature (OutletL.T) * * the liquid height (Level) or the liquid flow OutletL.F * * (NoComps - 1) OutletL compositions * *---------------------------------------------------------------------- * Author: Paula B. Staudt * $Id: tray.mso 103 2007-01-10 15:25:26Z paula $ *--------------------------------------------------------------------*# using "streams"; Model trayBasic PARAMETERS ext PP as CalcObject; ext NComp as Integer; V as volume(Brief="Total Volume of the tray"); Q as heat_rate (Brief="Rate of heat supply"); Ap as area (Brief="Plate area = Atray - Adowncomer"); VARIABLES in Inlet as stream; in InletL as stream; in InletV as stream; out OutletL as stream_therm; out OutletV as stream_therm; M(NComp) as mol (Brief="Molar Holdup in the tray"); ML as mol (Brief="Molar liquid holdup"); MV as mol (Brief="Molar vapour holdup"); E as energy (Brief="Total Energy Holdup on tray"); vL as volume_mol (Brief="Liquid Molar Volume"); vV as volume_mol (Brief="Vapour Molar volume"); Level as length (Brief="Height of clear liquid on plate"); yideal(NComp) as fraction; Emv as Real (Brief = "Murphree efficiency"); EQUATIONS "Component Molar Balance" diff(M)=Inlet.F*Inlet.z + InletL.F*InletL.z + InletV.F*InletV.z - OutletL.F*OutletL.z - OutletV.F*OutletV.z; "Energy Balance" diff(E) = ( Inlet.F*Inlet.h + InletL.F*InletL.h + InletV.F*InletV.h - OutletL.F*OutletL.h - OutletV.F*OutletV.h + Q ); "Molar Holdup" M = ML*OutletL.z + MV*OutletV.z; "Energy Holdup" E = ML*OutletL.h + MV*OutletV.h - OutletL.P*V; "Mol fraction normalisation" sum(OutletL.z)= 1.0; sum(OutletL.z)= sum(OutletV.z); "Liquid Volume" vL = PP.LiquidVolume(OutletL.T, OutletL.P, OutletL.z); "Vapour Volume" vV = PP.VapourVolume(OutletV.T, OutletV.P, OutletV.z); "Chemical Equilibrium" PP.LiquidFugacityCoefficient(OutletL.T, OutletL.P, OutletL.z)*OutletL.z = PP.VapourFugacityCoefficient(OutletV.T, OutletV.P, yideal)*yideal; "Murphree Efficiency" OutletV.z = Emv * (yideal - InletV.z) + InletV.z; "Thermal Equilibrium" OutletV.T = OutletL.T; "Mechanical Equilibrium" OutletV.P = OutletL.P; "Geometry Constraint" V = ML* vL + MV*vV; "vaporization fraction " OutletV.v = 1.0; OutletL.v = 0.0; "Level of clear liquid over the weir" Level = ML*vL/Ap; end Model tray as trayBasic PARAMETERS Ah as area (Brief="Total holes area"); lw as length (Brief="Weir length"); g as acceleration (Default=9.81); hw as length (Brief="Weir height"); beta as fraction (Brief="Aeration fraction"); alfa as fraction (Brief="Dry pressure drop coefficient"); VARIABLES rhoL as dens_mass; rhoV as dens_mass; EQUATIONS "Liquid Density" rhoL = PP.LiquidDensity(OutletL.T, OutletL.P, OutletL.z); "Vapour Density" rhoV = PP.VapourDensity(InletV.T, InletV.P, InletV.z); if (Level > (beta * hw)) then "Francis Equation" OutletL.F = 1.84*"m^0.5/s"*lw*((Level-(beta*hw))/(beta))^2/vL; else "Low level" OutletL.F = 0 * "mol/h"; end end #*------------------------------------------------------------------- * Model of a tray with reaction *-------------------------------------------------------------------*# Model trayReact PARAMETERS ext PP as CalcObject; ext NComp as Integer; V as volume(Brief="Total Volume of the tray"); Q as power (Brief="Rate of heat supply"); Ap as area (Brief="Plate area = Atray - Adowncomer"); Ah as area (Brief="Total holes area"); lw as length (Brief="Weir length"); g as acceleration (Default=9.81); hw as length (Brief="Weir height"); beta as fraction (Brief="Aeration fraction"); alfa as fraction (Brief="Dry pressure drop coefficient"); stoic(NComp) as Real(Brief="Stoichiometric matrix"); Hr as energy_mol; Pstartup as pressure; VARIABLES in Inlet as stream; in InletL as stream; in InletV as stream; out OutletL as stream_therm; out OutletV as stream_therm; yideal(NComp) as fraction; Emv as Real (Brief = "Murphree efficiency"); M(NComp) as mol (Brief="Molar Holdup in the tray"); ML as mol (Brief="Molar liquid holdup"); MV as mol (Brief="Molar vapour holdup"); E as energy (Brief="Total Energy Holdup on tray"); vL as volume_mol (Brief="Liquid Molar Volume"); vV as volume_mol (Brief="Vapour Molar volume"); Level as length (Brief="Height of clear liquid on plate"); Vol as volume; rhoL as dens_mass; rhoV as dens_mass; r as reaction_mol (Brief = "Reaction rate", Unit = "mol/l/s"); C(NComp) as conc_mol (Brief = "Molar concentration", Lower = -1); #, Unit = "mol/l"); EQUATIONS "Molar Concentration" OutletL.z = vL * C; "Component Molar Balance" diff(M)=Inlet.F*Inlet.z + InletL.F*InletL.z + InletV.F*InletV.z - OutletL.F*OutletL.z - OutletV.F*OutletV.z + stoic*r*ML*vL; "Energy Balance" diff(E) = ( Inlet.F*Inlet.h + InletL.F*InletL.h + InletV.F*InletV.h - OutletL.F*OutletL.h - OutletV.F*OutletV.h + Q ) + Hr * r * vL*ML; "Molar Holdup" M = ML*OutletL.z + MV*OutletV.z; "Energy Holdup" E = ML*OutletL.h + MV*OutletV.h - OutletL.P*V; "Mol fraction normalisation" sum(OutletL.z)= 1.0; "Liquid Volume" vL = PP.LiquidVolume(OutletL.T, OutletL.P, OutletL.z); "Vapour Volume" vV = PP.VapourVolume(OutletV.T, OutletV.P, OutletV.z); "Thermal Equilibrium" OutletV.T = OutletL.T; "Mechanical Equilibrium" OutletV.P = OutletL.P; "vaporization fraction " OutletV.v = 1.0; OutletL.v = 0.0; "Level of clear liquid over the weir" Level = ML*vL/Ap; Vol = ML*vL; "Liquid Density" rhoL = PP.LiquidDensity(OutletL.T, OutletL.P, OutletL.z); "Vapour Density" rhoV = PP.VapourDensity(InletV.T, InletV.P, InletV.z); if (Level > (beta * hw)) then "Francis Equation" OutletL.F = (1.84*"1/s"*lw*((Level-(beta*hw))/(beta))^2/vL); else "Low level" OutletL.F = 0 * "mol/h"; end "Pressure Drop through the tray" OutletV.F = (1 + tanh(1 * (OutletV.P - Pstartup)/"Pa"))/2 * Ah/vV * sqrt(2*(OutletV.P - InletL.P + 1e-8 * "atm") / (alfa*rhoV) ); "Chemical Equilibrium" PP.LiquidFugacityCoefficient(OutletL.T, OutletL.P, OutletL.z)*OutletL.z = PP.VapourFugacityCoefficient(OutletV.T, OutletV.P, yideal)*yideal; OutletV.z = Emv * (yideal - InletV.z) + InletV.z; sum(OutletL.z)= sum(OutletV.z); "Geometry Constraint" V = ML* vL + MV*vV; end