#*------------------------------------------------------------------- * EMSO Model Library (EML) Copyright (C) 2004 - 2007 ALSOC. * * This LIBRARY is free software; you can distribute it and/or modify * it under the therms of the ALSOC FREE LICENSE as available at * http://www.enq.ufrgs.br/alsoc. * * EMSO Copyright (C) 2004 - 2007 ALSOC, original code * from http://www.rps.eng.br Copyright (C) 2002-2004. * All rights reserved. * * EMSO is distributed under the therms of the ALSOC LICENSE as * available at http://www.enq.ufrgs.br/alsoc. * *-------------------------------------------------------------------- * Author: Gerson Balbueno Bicca * $Id: DoublePipe.mso 110 2007-01-12 18:44:02Z bicca $ *------------------------------------------------------------------*# using "HEX_Engine"; #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++# # Basic Models for Double Pipe Heat Exchangers #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++# Model DoublePipe_Basic PARAMETERS ext PP as CalcObject (Brief="External Physical Properties"); ext NComp as Integer (Brief="Number of Components"); M(NComp) as molweight (Brief="Component Mol Weight"); VARIABLES in Inlet as Inlet_Main_Stream; # Hot and Cold Inlets out Outlet as Outlet_Main_Stream; # Hot and Cold Outlets Properties as Main_Properties; # Hot and Cold Properties Details as Details_Main; Inner as Main_DoublePipe; Outer as Main_DoublePipe; Resistances as Main_Resistances; SET M = PP.MolecularWeight(); EQUATIONS "Hot Stream Average Temperature" Properties.Hot.Average.T = 0.5*Inlet.Hot.T + 0.5*Outlet.Hot.T; "Cold Stream Average Temperature" Properties.Cold.Average.T = 0.5*Inlet.Cold.T + 0.5*Outlet.Cold.T; "Hot Stream Average Pressure" Properties.Hot.Average.P = 0.5*Inlet.Hot.P+0.5*Outlet.Hot.P; "Cold Stream Average Pressure" Properties.Cold.Average.P = 0.5*Inlet.Cold.P+0.5*Outlet.Cold.P; "Cold Stream Wall Temperature" Properties.Cold.Wall.Twall = 0.5*Properties.Hot.Average.T + 0.5*Properties.Cold.Average.T; "Hot Stream Wall Temperature" Properties.Hot.Wall.Twall = 0.5*Properties.Hot.Average.T + 0.5*Properties.Cold.Average.T; "Hot Stream Average Molecular Weight" Properties.Hot.Average.Mw = sum(M*Inlet.Hot.z); "Cold Stream Average Molecular Weight" Properties.Cold.Average.Mw = sum(M*Inlet.Cold.z); if Inlet.Cold.v equal 0 then "Heat Capacity Cold Stream" Properties.Cold.Average.Cp = PP.LiquidCp(Properties.Cold.Average.T,Properties.Cold.Average.P,Inlet.Cold.z); Properties.Cold.Inlet.Cp = PP.LiquidCp(Inlet.Cold.T,Inlet.Cold.P,Inlet.Cold.z); Properties.Cold.Outlet.Cp = PP.LiquidCp(Outlet.Cold.T,Outlet.Cold.P,Outlet.Cold.z); "Mass Density Cold Stream" Properties.Cold.Average.rho = PP.LiquidDensity(Properties.Cold.Average.T,Properties.Cold.Average.P,Inlet.Cold.z); Properties.Cold.Inlet.rho = PP.LiquidDensity(Inlet.Cold.T,Inlet.Cold.P,Inlet.Cold.z); Properties.Cold.Outlet.rho = PP.LiquidDensity(Outlet.Cold.T,Outlet.Cold.P,Outlet.Cold.z); "Viscosity Cold Stream" Properties.Cold.Average.Mu = PP.LiquidViscosity(Properties.Cold.Average.T,Properties.Cold.Average.P,Inlet.Cold.z); Properties.Cold.Inlet.Mu = PP.LiquidViscosity(Inlet.Cold.T,Inlet.Cold.P,Inlet.Cold.z); Properties.Cold.Outlet.Mu = PP.LiquidViscosity(Outlet.Cold.T,Outlet.Cold.P,Outlet.Cold.z); "Conductivity Cold Stream" Properties.Cold.Average.K = PP.LiquidThermalConductivity(Properties.Cold.Average.T,Properties.Cold.Average.P,Inlet.Cold.z); Properties.Cold.Inlet.K = PP.LiquidThermalConductivity(Inlet.Cold.T,Inlet.Cold.P,Inlet.Cold.z); Properties.Cold.Outlet.K = PP.LiquidThermalConductivity(Outlet.Cold.T,Outlet.Cold.P,Outlet.Cold.z); "Heat Capacity Cold Stream" Properties.Cold.Wall.Cp = PP.LiquidCp(Properties.Cold.Wall.Twall,Properties.Cold.Average.P,Inlet.Cold.z); "Viscosity Cold Stream" Properties.Cold.Wall.Mu = PP.LiquidViscosity(Properties.Cold.Wall.Twall,Properties.Cold.Average.P,Inlet.Cold.z); "Conductivity Cold Stream" Properties.Cold.Wall.K = PP.LiquidThermalConductivity(Properties.Cold.Wall.Twall,Properties.Cold.Average.P,Inlet.Cold.z); else "Heat Capacity Cold Stream" Properties.Cold.Average.Cp = PP.VapourCp(Properties.Cold.Average.T,Properties.Cold.Average.P,Inlet.Cold.z); Properties.Cold.Inlet.Cp = PP.VapourCp(Inlet.Cold.T,Inlet.Cold.P,Inlet.Cold.z); Properties.Cold.Outlet.Cp = PP.VapourCp(Outlet.Cold.T,Outlet.Cold.P,Outlet.Cold.z); "Mass Density Cold Stream" Properties.Cold.Average.rho = PP.VapourDensity(Properties.Cold.Average.T,Properties.Cold.Average.P,Inlet.Cold.z); Properties.Cold.Inlet.rho = PP.VapourDensity(Inlet.Cold.T,Inlet.Cold.P,Inlet.Cold.z); Properties.Cold.Outlet.rho = PP.VapourDensity(Outlet.Cold.T,Outlet.Cold.P,Outlet.Cold.z); "Viscosity Cold Stream" Properties.Cold.Average.Mu = PP.VapourViscosity(Properties.Cold.Average.T,Properties.Cold.Average.P,Inlet.Cold.z); Properties.Cold.Inlet.Mu = PP.VapourViscosity(Inlet.Cold.T,Inlet.Cold.P,Inlet.Cold.z); Properties.Cold.Outlet.Mu = PP.VapourViscosity(Outlet.Cold.T,Outlet.Cold.P,Outlet.Cold.z); "Conductivity Cold Stream" Properties.Cold.Average.K = PP.VapourThermalConductivity(Properties.Cold.Average.T,Properties.Cold.Average.P,Inlet.Cold.z); Properties.Cold.Inlet.K = PP.VapourThermalConductivity(Inlet.Cold.T,Inlet.Cold.P,Inlet.Cold.z); Properties.Cold.Outlet.K = PP.VapourThermalConductivity(Outlet.Cold.T,Outlet.Cold.P,Outlet.Cold.z); "Heat Capacity Cold Stream" Properties.Cold.Wall.Cp = PP.VapourCp(Properties.Cold.Wall.Twall,Properties.Cold.Average.P,Inlet.Cold.z); "Viscosity Cold Stream" Properties.Cold.Wall.Mu = PP.VapourViscosity(Properties.Cold.Wall.Twall,Properties.Cold.Average.P,Inlet.Cold.z); "Conductivity Cold Stream" Properties.Cold.Wall.K = PP.VapourThermalConductivity(Properties.Cold.Wall.Twall,Properties.Cold.Average.P,Inlet.Cold.z); end if Inlet.Hot.v equal 0 then "Heat Capacity Hot Stream" Properties.Hot.Average.Cp = PP.LiquidCp(Properties.Hot.Average.T,Properties.Hot.Average.P,Inlet.Hot.z); Properties.Hot.Inlet.Cp = PP.LiquidCp(Inlet.Hot.T,Inlet.Hot.P,Inlet.Hot.z); Properties.Hot.Outlet.Cp = PP.LiquidCp(Outlet.Hot.T,Outlet.Hot.P,Outlet.Hot.z); "Mass Density Hot Stream" Properties.Hot.Average.rho = PP.LiquidDensity(Properties.Hot.Average.T,Properties.Hot.Average.P,Inlet.Hot.z); Properties.Hot.Inlet.rho = PP.LiquidDensity(Inlet.Hot.T,Inlet.Hot.P,Inlet.Hot.z); Properties.Hot.Outlet.rho = PP.LiquidDensity(Outlet.Hot.T,Outlet.Hot.P,Outlet.Hot.z); "Viscosity Hot Stream" Properties.Hot.Average.Mu = PP.LiquidViscosity(Properties.Hot.Average.T,Properties.Hot.Average.P,Inlet.Hot.z); Properties.Hot.Inlet.Mu = PP.LiquidViscosity(Inlet.Hot.T,Inlet.Hot.P,Inlet.Hot.z); Properties.Hot.Outlet.Mu = PP.LiquidViscosity(Outlet.Hot.T,Outlet.Hot.P,Outlet.Hot.z); "Conductivity Hot Stream" Properties.Hot.Average.K = PP.LiquidThermalConductivity(Properties.Hot.Average.T,Properties.Hot.Average.P,Inlet.Hot.z); Properties.Hot.Inlet.K = PP.LiquidThermalConductivity(Inlet.Hot.T,Inlet.Hot.P,Inlet.Hot.z); Properties.Hot.Outlet.K = PP.LiquidThermalConductivity(Outlet.Hot.T,Outlet.Hot.P,Outlet.Hot.z); "Heat Capacity Hot Stream" Properties.Hot.Wall.Cp = PP.LiquidCp(Properties.Hot.Wall.Twall,Properties.Hot.Average.P,Inlet.Hot.z); "Viscosity Hot Stream" Properties.Hot.Wall.Mu = PP.LiquidViscosity(Properties.Hot.Wall.Twall,Properties.Hot.Average.P,Inlet.Hot.z); "Conductivity Hot Stream" Properties.Hot.Wall.K = PP.LiquidThermalConductivity(Properties.Hot.Wall.Twall,Properties.Hot.Average.P,Inlet.Hot.z); else "Heat Capacity Hot Stream" Properties.Hot.Average.Cp = PP.VapourCp(Properties.Hot.Average.T,Properties.Hot.Average.P,Inlet.Hot.z); Properties.Hot.Inlet.Cp = PP.VapourCp(Inlet.Hot.T,Inlet.Hot.P,Inlet.Hot.z); Properties.Hot.Outlet.Cp = PP.VapourCp(Outlet.Hot.T,Outlet.Hot.P,Outlet.Hot.z); "Mass Density Hot Stream" Properties.Hot.Average.rho = PP.VapourDensity(Properties.Hot.Average.T,Properties.Hot.Average.P,Inlet.Hot.z); Properties.Hot.Inlet.rho = PP.VapourDensity(Inlet.Hot.T,Inlet.Hot.P,Inlet.Hot.z); Properties.Hot.Outlet.rho = PP.VapourDensity(Outlet.Hot.T,Outlet.Hot.P,Outlet.Hot.z); "Viscosity Hot Stream" Properties.Hot.Average.Mu = PP.VapourViscosity(Properties.Hot.Average.T,Properties.Hot.Average.P,Inlet.Hot.z); Properties.Hot.Inlet.Mu = PP.VapourViscosity(Inlet.Hot.T,Inlet.Hot.P,Inlet.Hot.z); Properties.Hot.Outlet.Mu = PP.VapourViscosity(Outlet.Hot.T,Outlet.Hot.P,Outlet.Hot.z); "Conductivity Hot Stream" Properties.Hot.Average.K = PP.VapourThermalConductivity(Properties.Hot.Average.T,Properties.Hot.Average.P,Inlet.Hot.z); Properties.Hot.Inlet.K = PP.VapourThermalConductivity(Inlet.Hot.T,Inlet.Hot.P,Inlet.Hot.z); Properties.Hot.Outlet.K = PP.VapourThermalConductivity(Outlet.Hot.T,Outlet.Hot.P,Outlet.Hot.z); "Heat Capacity Hot Stream" Properties.Hot.Wall.Cp = PP.VapourCp(Properties.Hot.Wall.Twall,Properties.Hot.Average.P,Inlet.Hot.z); "Viscosity Hot Stream" Properties.Hot.Wall.Mu = PP.VapourViscosity(Properties.Hot.Wall.Twall,Properties.Hot.Average.P,Inlet.Hot.z); "Conductivity Hot Stream" Properties.Hot.Wall.K = PP.VapourThermalConductivity(Properties.Hot.Wall.Twall,Properties.Hot.Average.P,Inlet.Hot.z); end #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++# # Thermal Details #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++# "Hot Stream Heat Capacity" Details.Ch =Inlet.Hot.F*Properties.Hot.Average.Cp; "Cold Stream Heat Capacity" Details.Cc =Inlet.Cold.F*Properties.Cold.Average.Cp; "Minimum Heat Capacity" Details.Cmin = min([Details.Ch,Details.Cc]); "Maximum Heat Capacity" Details.Cmax = max([Details.Ch,Details.Cc]); "Heat Capacity Ratio" Details.Cr*Details.Cmax = Details.Cmin; #-------------------------------------------------------------------- # Energy Balance #-------------------------------------------------------------------- "Energy Balance Hot Stream" Details.Q = Inlet.Hot.F*(Inlet.Hot.h-Outlet.Hot.h); "Energy Balance Cold Stream" Details.Q = Inlet.Cold.F*(Outlet.Cold.h - Inlet.Cold.h); #-------------------------------------------------------------------- # Material Balance #-------------------------------------------------------------------- "Flow Mass Inlet Cold Stream" Properties.Cold.Inlet.Fw = sum(M*Inlet.Cold.z)*Inlet.Cold.F; "Flow Mass Outlet Cold Stream" Properties.Cold.Outlet.Fw = sum(M*Outlet.Cold.z)*Outlet.Cold.F; "Flow Mass Inlet Hot Stream" Properties.Hot.Inlet.Fw = sum(M*Inlet.Hot.z)*Inlet.Hot.F; "Flow Mass Outlet Hot Stream" Properties.Hot.Outlet.Fw = sum(M*Outlet.Hot.z)*Outlet.Hot.F; "Molar Balance Hot Stream" Inlet.Hot.F = Outlet.Hot.F; "Molar Balance Cold Stream" Inlet.Cold.F = Outlet.Cold.F; #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++# # Constraints #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++# "Hot Stream Molar Fraction Constraint" Outlet.Hot.z=Inlet.Hot.z; "Cold Stream Molar Fraction Constraint" Outlet.Cold.z=Inlet.Cold.z; "No Phase Change In Cold Stream" Inlet.Cold.v=Outlet.Cold.v; "No Phase Change In Hot Stream" Inlet.Hot.v=Outlet.Hot.v; if Inner.PressureDrop.Re < 2300 then "Inner Side Friction Factor - laminar Flow" Inner.PressureDrop.fi*Inner.PressureDrop.Re = 16; else "Inner Side Friction Factor - Turbulent Flow" (Inner.PressureDrop.fi-0.0035)*(Inner.PressureDrop.Re^0.42) = 0.264; end if Outer.PressureDrop.Re < 2300 then "Inner Side Friction Factor - laminar Flow" Outer.PressureDrop.fi*Outer.PressureDrop.Re = 16; else "Inner Side Friction Factor - Turbulent Flow" (Outer.PressureDrop.fi - 0.0035)*(Outer.PressureDrop.Re^0.42) = 0.264; end end Model DoublePipe as DoublePipe_Basic PARAMETERS HE as CalcObject (Brief="STHE Calculations",File="heatex"); Pi as constant (Brief="Pi Number",Default=3.14159265); Hside as Integer (Brief="Fluid Alocation Flag-Default:Outer",Lower=0,Upper=1); Side as Integer (Brief="Flow Direction",Lower=0,Upper=1); DoInner as length (Brief="Outside Diameter of Inner Pipe",Lower=1e-6); DiInner as length (Brief="Inside Diameter of Inner Pipe",Lower=1e-10); DiOuter as length (Brief="Inside Diameter of Outer pipe",Lower=1e-10); Lpipe as length (Brief="Effective Tube Length",Lower=0.1); Kwall as conductivity (Brief="Tube Wall Material Thermal Conductivity",Default=1.0); SET Pi = 3.14159265; Hside = HE.FluidAlocation(); Side = HE.FlowDir(); #"Inner Pipe Cross Sectional Area for Flow" Inner.HeatTransfer.As=Pi*DiInner*DiInner/4; #"Outer Pipe Cross Sectional Area for Flow" Outer.HeatTransfer.As=Pi*(DiOuter*DiOuter-DoInner*DoInner)/4; #"Inner Pipe Hydraulic Diameter for Heat Transfer" Inner.HeatTransfer.Dh=DiInner; #"Outer Pipe Hydraulic Diameter for Heat Transfer" Outer.HeatTransfer.Dh=(DiOuter*DiOuter-DoInner*DoInner)/DoInner; #"Inner Pipe Hydraulic Diameter for Pressure Drop" Inner.PressureDrop.Dh=DiInner; #"Outer Pipe Hydraulic Diameter for Pressure Drop" Outer.PressureDrop.Dh=DiOuter-DoInner; EQUATIONS "Exchange Surface Area" Details.A=Pi*DoInner*Lpipe; if Hside equal 1 then "Pressure Drop Hot Stream" Outlet.Hot.P = Inlet.Hot.P - Outer.PressureDrop.Pdrop; "Pressure Drop Cold Stream" Outlet.Cold.P = Inlet.Cold.P - Inner.PressureDrop.Pdrop; "Outer Pipe Film Coefficient" Outer.HeatTransfer.hcoeff= HE.PipeFilmCoeff(Outer.HeatTransfer.Re,Outer.HeatTransfer.PR,Properties.Hot.Average.K,Outer.HeatTransfer.Dh,Lpipe)*Outer.HeatTransfer.Phi; "Inner Pipe Film Coefficient" Inner.HeatTransfer.hcoeff= HE.PipeFilmCoeff(Inner.HeatTransfer.Re,Inner.HeatTransfer.PR,Properties.Cold.Average.K,DiInner,Lpipe)*Inner.HeatTransfer.Phi; "Outer Pipe Pressure Drop" Outer.PressureDrop.Pdrop = (2*Outer.PressureDrop.fi*Lpipe*Properties.Hot.Average.rho*Outer.HeatTransfer.Vmean^2)/(Outer.PressureDrop.Dh*Outer.HeatTransfer.Phi); "Inner Pipe Pressure Drop" Inner.PressureDrop.Pdrop = (2*Inner.PressureDrop.fi*Lpipe*Properties.Cold.Average.rho*Inner.HeatTransfer.Vmean^2)/(DiInner*Inner.HeatTransfer.Phi); "Outer Pipe Phi correction" Outer.HeatTransfer.Phi = HE.PhiCorrection(Properties.Hot.Average.Mu,Properties.Hot.Wall.Mu); "Inner Pipe Phi correction" Inner.HeatTransfer.Phi = HE.PhiCorrection(Properties.Cold.Average.Mu,Properties.Cold.Wall.Mu); "Outer Pipe Prandtl Number" Outer.HeatTransfer.PR = ((Properties.Hot.Average.Cp/Properties.Hot.Average.Mw)*Properties.Hot.Average.Mu)/Properties.Hot.Average.K; "Inner Pipe Prandtl Number" Inner.HeatTransfer.PR = ((Properties.Cold.Average.Cp/Properties.Cold.Average.Mw)*Properties.Cold.Average.Mu)/Properties.Cold.Average.K; "Outer Pipe Reynolds Number for Heat Transfer" Outer.HeatTransfer.Re = (Properties.Hot.Average.rho*Outer.HeatTransfer.Vmean*Outer.HeatTransfer.Dh)/Properties.Hot.Average.Mu; "Outer Pipe Reynolds Number for Pressure Drop" Outer.PressureDrop.Re = (Properties.Hot.Average.rho*Outer.HeatTransfer.Vmean*Outer.PressureDrop.Dh)/Properties.Hot.Average.Mu; "Inner Pipe Reynolds Number for Heat Transfer" Inner.HeatTransfer.Re = (Properties.Cold.Average.rho*Inner.HeatTransfer.Vmean*Inner.HeatTransfer.Dh)/Properties.Cold.Average.Mu; "Inner Pipe Reynolds Number for Pressure Drop" Inner.PressureDrop.Re = Inner.HeatTransfer.Re; "Outer Pipe Velocity" Outer.HeatTransfer.Vmean*(Outer.HeatTransfer.As*Properties.Hot.Average.rho) = Properties.Hot.Inlet.Fw; "Inner Pipe Velocity" Inner.HeatTransfer.Vmean*(Inner.HeatTransfer.As*Properties.Cold.Average.rho) = Properties.Cold.Inlet.Fw; else "Pressure Drop Hot Stream" Outlet.Hot.P = Inlet.Hot.P - Inner.PressureDrop.Pdrop; "Pressure Drop Cold Stream" Outlet.Cold.P = Inlet.Cold.P - Outer.PressureDrop.Pdrop; "Inner Pipe Film Coefficient" Inner.HeatTransfer.hcoeff= HE.PipeFilmCoeff(Inner.HeatTransfer.Re,Inner.HeatTransfer.PR,Properties.Hot.Average.K,DiInner,Lpipe)*Inner.HeatTransfer.Phi; "Outer Pipe Film Coefficient" Outer.HeatTransfer.hcoeff= HE.PipeFilmCoeff(Outer.HeatTransfer.Re,Outer.HeatTransfer.PR,Properties.Cold.Average.K,Outer.HeatTransfer.Dh,Lpipe)*Outer.HeatTransfer.Phi; "Outer Pipe Pressure Drop" Outer.PressureDrop.Pdrop = (2*Outer.PressureDrop.fi*Lpipe*Properties.Cold.Average.rho*Outer.HeatTransfer.Vmean^2)/(Outer.PressureDrop.Dh*Outer.HeatTransfer.Phi); "Inner Pipe Pressure Drop" Inner.PressureDrop.Pdrop = (2*Inner.PressureDrop.fi*Lpipe*Properties.Hot.Average.rho*Inner.HeatTransfer.Vmean^2)/(DiInner*Inner.HeatTransfer.Phi); "Outer Pipe Phi correction" Outer.HeatTransfer.Phi = HE.PhiCorrection(Properties.Cold.Average.Mu,Properties.Cold.Wall.Mu); "Inner Pipe Phi correction" Inner.HeatTransfer.Phi = HE.PhiCorrection(Properties.Hot.Average.Mu,Properties.Hot.Wall.Mu); "Outer Pipe Prandtl Number" Outer.HeatTransfer.PR = ((Properties.Cold.Average.Cp/Properties.Cold.Average.Mw)*Properties.Cold.Average.Mu)/Properties.Cold.Average.K; "Inner Pipe Prandtl Number" Inner.HeatTransfer.PR = ((Properties.Hot.Average.Cp/Properties.Hot.Average.Mw)*Properties.Hot.Average.Mu)/Properties.Hot.Average.K; "Outer Pipe Reynolds Number for Heat Transfer" Outer.HeatTransfer.Re = (Properties.Cold.Average.rho*Outer.HeatTransfer.Vmean*Outer.HeatTransfer.Dh)/Properties.Cold.Average.Mu; "Outer Pipe Reynolds Number for Pressure Drop" Outer.PressureDrop.Re = (Properties.Cold.Average.rho*Outer.HeatTransfer.Vmean*Outer.PressureDrop.Dh)/Properties.Cold.Average.Mu; "Inner Pipe Reynolds Number for Pressure Drop" Inner.PressureDrop.Re = Inner.HeatTransfer.Re; "Inner Pipe Reynolds Number for Heat Transfer" Inner.HeatTransfer.Re = (Properties.Hot.Average.rho*Inner.HeatTransfer.Vmean*Inner.HeatTransfer.Dh)/Properties.Hot.Average.Mu; "Outer Pipe Velocity" Outer.HeatTransfer.Vmean*(Outer.HeatTransfer.As*Properties.Cold.Average.rho)= Properties.Cold.Inlet.Fw; "Inner Pipe Velocity" Inner.HeatTransfer.Vmean*(Inner.HeatTransfer.As*Properties.Hot.Average.rho) = Properties.Hot.Inlet.Fw; end "Inner Pipe Resistance" Resistances.Rtube*(Inner.HeatTransfer.hcoeff*DiInner) = DoInner; "Wall Resistance" Resistances.Rwall*(2*Kwall) = DoInner*ln(DoInner/DiInner); "Outer Pipe Resistance" Resistances.Rshell*(Outer.HeatTransfer.hcoeff)=1; "Overall Heat Transfer Coefficient Clean" Details.Uc*(Resistances.Rtube+Resistances.Rwall+Resistances.Rshell)=1; "Overall Heat Transfer Coefficient Dirty" Details.Ud*(Resistances.Rfi*(DoInner/DiInner) + Resistances.Rfo + Resistances.Rtube + Resistances.Rwall + Resistances.Rshell)=1; end Model DoublePipe_Basic_NTU as DoublePipe #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++# # Basic Model Double Pipe Heat Exchanger - NTU Method #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++# VARIABLES Eft as positive (Brief="Effectiveness",Default=0.5,Lower=1e-12); EQUATIONS "Energy Balance" Details.Q = Eft*Details.Cmin*(Inlet.Hot.T-Inlet.Cold.T); end Model DoublePipe_Basic_LMTD as DoublePipe #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++# # Basic Model for Double Pipe Heat Exchanger- LMTD Method #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++# VARIABLES DT0 as temp_delta (Brief="Temperature Difference at Inlet",Lower=1); DTL as temp_delta (Brief="Temperature Difference at Outlet",Lower=1); LMTD as temp_delta (Brief="Logarithmic Mean Temperature Difference",Lower=1); EQUATIONS #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++# # Log Mean Temperature Difference #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++# if abs(DT0 - DTL) > 0.05*max(abs([DT0,DTL])) then "Log Mean Temperature Difference" LMTD*ln(DT0/DTL) = (DT0-DTL); else if DT0*DTL equal 0 then "Log Mean Temperature Difference" LMTD = 0.5*(DT0+DTL); else "Log Mean Temperature Difference" LMTD = 0.5*(DT0+DTL)*(1-(DT0-DTL)^2/(DT0*DTL)*(1+(DT0-DTL)^2/(DT0*DTL)/2)/12); end end "Exchange Surface Area" Details.Q = Details.Ud*Pi*DoInner*Lpipe*LMTD; end Model DoublePipe_LMTD as DoublePipe_Basic_LMTD EQUATIONS if Side equal 0 then "Temperature Difference at Inlet - Cocurrent Flow" DT0 = Inlet.Hot.T - Inlet.Cold.T; "Temperature Difference at Outlet - Cocurrent Flow" DTL = Outlet.Hot.T - Outlet.Cold.T; else "Temperature Difference at Inlet - Counter Flow" DT0 = Inlet.Hot.T - Outlet.Cold.T; "Temperature Difference at Outlet - Counter Flow" DTL = Outlet.Hot.T - Inlet.Cold.T; end end Model DoublePipe_NTU as DoublePipe_Basic_NTU EQUATIONS if Details.Cr equal 0 then "Effectiveness" Eft = 1-exp(-Details.NTU); else if Side equal 0 then "Effectiveness in Cocurrent Flow" Eft*(1+Details.Cr) = (1-exp(-Details.NTU*(1+Details.Cr))); else if Details.Cr equal 1 then "Effectiveness in Counter Flow" Eft*(1+Details.NTU) = Details.NTU; else "Effectiveness in Counter Flow" Eft*(1-Details.Cr*exp(-Details.NTU*(1-Details.Cr))) = (1-exp(-Details.NTU*(1-Details.Cr))); end end end end Model Multitubular_Basic PARAMETERS Npipe as Integer (Brief="N Pipe in Series",Default=2); ext PP as CalcObject (Brief="External Physical Properties"); HE as CalcObject (Brief="STHE Calculations",File="heatex"); Pi as constant (Brief="Pi Number",Default=3.14159265); Hside as Integer (Brief="Fluid Alocation Flag-Default:Outer",Lower=0,Upper=1); DoInner as length (Brief="Outside Diameter of Inner Pipe",Lower=1e-6); DiInner as length (Brief="Inside Diameter of Inner Pipe",Lower=1e-10); DiOuter as length (Brief="Inside Diameter of Outer pipe",Lower=1e-10); Lpipe as length (Brief="Effective Tube Length",Lower=0.1); Kwall as conductivity (Brief="Tube Wall Material Thermal Conductivity",Default=1.0); VARIABLES Unity(Npipe) as DoublePipe_Basic; SET Pi = 3.14159265; Hside = HE.FluidAlocation(); #"Inner Pipe Cross Sectional Area for Flow" Unity.Inner.HeatTransfer.As=Pi*DiInner*DiInner/4; #"Outer Pipe Cross Sectional Area for Flow" Unity.Outer.HeatTransfer.As=Pi*(DiOuter*DiOuter-DoInner*DoInner)/4; #"Inner Pipe Hydraulic Diameter for Heat Transfer" Unity.Inner.HeatTransfer.Dh=DiInner; #"Outer Pipe Hydraulic Diameter for Heat Transfer" Unity.Outer.HeatTransfer.Dh=(DiOuter*DiOuter-DoInner*DoInner)/DoInner; #"Inner Pipe Hydraulic Diameter for Pressure Drop" Unity.Inner.PressureDrop.Dh=DiInner; #"Outer Pipe Hydraulic Diameter for Pressure Drop" Unity.Outer.PressureDrop.Dh=DiOuter-DoInner; EQUATIONS for i in [1:Npipe] "Overall Heat Transfer Coefficient Clean" Unity(i).Details.Uc*(Unity(i).Resistances.Rtube+Unity(i).Resistances.Rwall+Unity(i).Resistances.Rshell)=1; "Overall Heat Transfer Coefficient Dirty" Unity(i).Details.Ud*(Unity(i).Resistances.Rfi*(DoInner/DiInner) + Unity(i).Resistances.Rfo + Unity(i).Resistances.Rtube + Unity(i).Resistances.Rwall + Unity(i).Resistances.Rshell)=1; "Exchange Surface Area" Unity(i).Details.A=Pi*DoInner*Lpipe; if Hside equal 1 then "Pressure Drop Hot Stream" Unity(i).Outlet.Hot.P = Unity(i).Inlet.Hot.P - Unity(i).Outer.PressureDrop.Pdrop; "Pressure Drop Cold Stream" Unity(i).Outlet.Cold.P = Unity(i).Inlet.Cold.P - Unity(i).Inner.PressureDrop.Pdrop; "Outer Pipe Film Coefficient" Unity(i).Outer.HeatTransfer.hcoeff= HE.PipeFilmCoeff(Unity(i).Outer.HeatTransfer.Re,Unity(i).Outer.HeatTransfer.PR,Unity(i).Properties.Hot.Average.K,Unity(i).Outer.HeatTransfer.Dh,Lpipe)*Unity(i).Outer.HeatTransfer.Phi; "Inner Pipe Film Coefficient" Unity(i).Inner.HeatTransfer.hcoeff= HE.PipeFilmCoeff(Unity(i).Inner.HeatTransfer.Re,Unity(i).Inner.HeatTransfer.PR,Unity(i).Properties.Cold.Average.K,DiInner,Lpipe)*Unity(i).Inner.HeatTransfer.Phi; "Outer Pipe Pressure Drop" Unity(i).Outer.PressureDrop.Pdrop = (2*Unity(i).Outer.PressureDrop.fi*Lpipe*Unity(i).Properties.Hot.Average.rho*Unity(i).Outer.HeatTransfer.Vmean^2)/(Unity(i).Outer.PressureDrop.Dh*Unity(i).Outer.HeatTransfer.Phi); "Inner Pipe Pressure Drop" Unity(i).Inner.PressureDrop.Pdrop = (2*Unity(i).Inner.PressureDrop.fi*Lpipe*Unity(i).Properties.Cold.Average.rho*Unity(i).Inner.HeatTransfer.Vmean^2)/(DiInner*Unity(i).Inner.HeatTransfer.Phi); "Outer Pipe Phi correction" Unity(i).Outer.HeatTransfer.Phi = HE.PhiCorrection(Unity(i).Properties.Hot.Average.Mu,Unity(i).Properties.Hot.Wall.Mu); "Inner Pipe Phi correction" Unity(i).Inner.HeatTransfer.Phi = HE.PhiCorrection(Unity(i).Properties.Cold.Average.Mu,Unity(i).Properties.Cold.Wall.Mu); "Outer Pipe Prandtl Number" Unity(i).Outer.HeatTransfer.PR = ((Unity(i).Properties.Hot.Average.Cp/Unity(i).Properties.Hot.Average.Mw)*Unity(i).Properties.Hot.Average.Mu)/Unity(i).Properties.Hot.Average.K; "Inner Pipe Prandtl Number" Unity(i).Inner.HeatTransfer.PR = ((Unity(i).Properties.Cold.Average.Cp/Unity(i).Properties.Cold.Average.Mw)*Unity(i).Properties.Cold.Average.Mu)/Unity(i).Properties.Cold.Average.K; "Outer Pipe Reynolds Number for Heat Transfer" Unity(i).Outer.HeatTransfer.Re = (Unity(i).Properties.Hot.Average.rho*Unity(i).Outer.HeatTransfer.Vmean*Unity(i).Outer.HeatTransfer.Dh)/Unity(i).Properties.Hot.Average.Mu; "Outer Pipe Reynolds Number for Pressure Drop" Unity(i).Outer.PressureDrop.Re = (Unity(i).Properties.Hot.Average.rho*Unity(i).Outer.HeatTransfer.Vmean*Unity(i).Outer.PressureDrop.Dh)/Unity(i).Properties.Hot.Average.Mu; "Inner Pipe Reynolds Number for Heat Transfer" Unity(i).Inner.HeatTransfer.Re = (Unity(i).Properties.Cold.Average.rho*Unity(i).Inner.HeatTransfer.Vmean*Unity(i).Inner.HeatTransfer.Dh)/Unity(i).Properties.Cold.Average.Mu; "Inner Pipe Reynolds Number for Pressure Drop" Unity(i).Inner.PressureDrop.Re = Unity(i).Inner.HeatTransfer.Re; "Outer Pipe Velocity" Unity(i).Outer.HeatTransfer.Vmean = Unity(i).Properties.Hot.Inlet.Fw/(Unity(i).Outer.HeatTransfer.As*Unity(i).Properties.Hot.Average.rho); "Inner Pipe Velocity" Unity(i).Inner.HeatTransfer.Vmean = Unity(i).Properties.Cold.Inlet.Fw/(Unity(i).Inner.HeatTransfer.As*Unity(i).Properties.Cold.Average.rho); else "Pressure Drop Hot Stream" Unity(i).Outlet.Hot.P = Unity(i).Inlet.Hot.P - Unity(i).Inner.PressureDrop.Pdrop; "Pressure Drop Cold Stream" Unity(i).Outlet.Cold.P = Unity(i).Inlet.Cold.P - Unity(i).Outer.PressureDrop.Pdrop; "Inner Pipe Film Coefficient" Unity(i).Inner.HeatTransfer.hcoeff= HE.PipeFilmCoeff(Unity(i).Inner.HeatTransfer.Re,Unity(i).Inner.HeatTransfer.PR,Unity(i).Properties.Hot.Average.K,DiInner,Lpipe)*Unity(i).Inner.HeatTransfer.Phi; "Outer Pipe Film Coefficient" Unity(i).Outer.HeatTransfer.hcoeff= HE.PipeFilmCoeff(Unity(i).Outer.HeatTransfer.Re,Unity(i).Outer.HeatTransfer.PR,Unity(i).Properties.Cold.Average.K,Unity(i).Outer.HeatTransfer.Dh,Lpipe)*Unity(i).Outer.HeatTransfer.Phi; "Outer Pipe Pressure Drop" Unity(i).Outer.PressureDrop.Pdrop = (2*Unity(i).Outer.PressureDrop.fi*Lpipe*Unity(i).Properties.Cold.Average.rho*Unity(i).Outer.HeatTransfer.Vmean^2)/(Unity(i).Outer.PressureDrop.Dh*Unity(i).Outer.HeatTransfer.Phi); "Inner Pipe Pressure Drop" Unity(i).Inner.PressureDrop.Pdrop = (2*Unity(i).Inner.PressureDrop.fi*Lpipe*Unity(i).Properties.Hot.Average.rho*Unity(i).Inner.HeatTransfer.Vmean^2)/(DiInner*Unity(i).Inner.HeatTransfer.Phi); "Outer Pipe Phi correction" Unity(i).Outer.HeatTransfer.Phi = HE.PhiCorrection(Unity(i).Properties.Cold.Average.Mu,Unity(i).Properties.Cold.Wall.Mu); "Inner Pipe Phi correction" Unity(i).Inner.HeatTransfer.Phi = HE.PhiCorrection(Unity(i).Properties.Hot.Average.Mu,Unity(i).Properties.Hot.Wall.Mu); "Outer Pipe Prandtl Number" Unity(i).Outer.HeatTransfer.PR = ((Unity(i).Properties.Cold.Average.Cp/Unity(i).Properties.Cold.Average.Mw)*Unity(i).Properties.Cold.Average.Mu)/Unity(i).Properties.Cold.Average.K; "Inner Pipe Prandtl Number" Unity(i).Inner.HeatTransfer.PR = ((Unity(i).Properties.Hot.Average.Cp/Unity(i).Properties.Hot.Average.Mw)*Unity(i).Properties.Hot.Average.Mu)/Unity(i).Properties.Hot.Average.K; "Outer Pipe Reynolds Number for Heat Transfer" Unity(i).Outer.HeatTransfer.Re = (Unity(i).Properties.Cold.Average.rho*Unity(i).Outer.HeatTransfer.Vmean*Unity(i).Outer.HeatTransfer.Dh)/Unity(i).Properties.Cold.Average.Mu; "Outer Pipe Reynolds Number for Pressure Drop" Unity(i).Outer.PressureDrop.Re = (Unity(i).Properties.Cold.Average.rho*Unity(i).Outer.HeatTransfer.Vmean*Unity(i).Outer.PressureDrop.Dh)/Unity(i).Properties.Cold.Average.Mu; "Inner Pipe Reynolds Number for Pressure Drop" Unity(i).Inner.PressureDrop.Re = Unity(i).Inner.HeatTransfer.Re; "Inner Pipe Reynolds Number for Heat Transfer" Unity(i).Inner.HeatTransfer.Re = (Unity(i).Properties.Hot.Average.rho*Unity(i).Inner.HeatTransfer.Vmean*Unity(i).Inner.HeatTransfer.Dh)/Unity(i).Properties.Hot.Average.Mu; "Outer Pipe Velocity" Unity(i).Outer.HeatTransfer.Vmean = Unity(i).Properties.Cold.Inlet.Fw/(Unity(i).Outer.HeatTransfer.As*Unity(i).Properties.Cold.Average.rho); "Inner Pipe Velocity" Unity(i).Inner.HeatTransfer.Vmean = Unity(i).Properties.Hot.Inlet.Fw/(Unity(i).Inner.HeatTransfer.As*Unity(i).Properties.Hot.Average.rho); end "Inner Pipe Resistance" Unity(i).Resistances.Rtube*(Unity(i).Inner.HeatTransfer.hcoeff*DiInner) = DoInner; "Wall Resistance" Unity(i).Resistances.Rwall=DoInner*ln(DoInner/DiInner)/(2*Kwall); "Outer Pipe Resistance" Unity(i).Resistances.Rshell*(Unity(i).Outer.HeatTransfer.hcoeff)=1; end end Model Multitubular_Basic_LMTD as Multitubular_Basic #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++# # Basic Model for Double Pipe Heat Exchanger- LMTD Method #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++# VARIABLES DT0(Npipe) as temp_delta (Brief="Temperature Difference at Inlet",Lower=1); DTL(Npipe) as temp_delta (Brief="Temperature Difference at Outlet",Lower=1); LMTD(Npipe) as temp_delta (Brief="Logarithmic Mean Temperature Difference",Lower=1); EQUATIONS #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++# # Log Mean Temperature Difference #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++# for i in [1:Npipe] if abs(DT0(i) - DTL(i)) > 0.05*max(abs([DT0(i),DTL(i)])) then "Log Mean Temperature Difference" LMTD(i)= (DT0(i)-DTL(i))/ln(DT0(i)/DTL(i)); else if DT0(i)*DTL(i) equal 0 then "Log Mean Temperature Difference" LMTD(i) = 0.5*(DT0(i)+DTL(i)); else "Log Mean Temperature Difference" LMTD(i) = 0.5*(DT0(i)+DTL(i))*(1-(DT0(i)-DTL(i))^2/(DT0(i)*DTL(i))*(1+(DT0(i)-DTL(i))^2/(DT0(i)*DTL(i))/2)/12); end end "Exchange Surface Area" Unity(i).Details.Q = Unity(i).Details.Ud*Unity(i).Details.A*LMTD(i); end end Model Multitubular_Counter_NTU as Multitubular_Basic VARIABLES Eft(Npipe) as positive (Brief="Effectiveness",Default=0.05,Lower=1e-8); CONNECTIONS Unity([1:Npipe-1]).Outlet.Hot to Unity([2:Npipe]).Inlet.Hot; Unity([2:Npipe]).Outlet.Cold to Unity([1:Npipe-1]).Inlet.Cold; EQUATIONS for i in [1:Npipe] if Unity(i).Details.Cr equal 0 then "Effectiveness" Eft(i) = 1-exp(-Unity(i).Details.NTU); else if Unity(i).Details.Cr equal 1 then "Effectiveness in Counter Flow" Eft(i) = Unity(i).Details.NTU/(1+Unity(i).Details.NTU); else "Effectiveness in Counter Flow" Eft(i)*(1-Unity(i).Details.Cr*exp(-Unity(i).Details.NTU*(1-Unity(i).Details.Cr))) = (1-exp(-Unity(i).Details.NTU*(1-Unity(i).Details.Cr))); end end "Energy Balance" Unity(i).Details.Q = Eft(i)*Unity(i).Details.Cmin*(Unity(i).Inlet.Hot.T-Unity(i).Inlet.Cold.T); end end Model Multitubular_Cocurrent_NTU as Multitubular_Basic VARIABLES Eft(Npipe) as positive (Brief="Effectiveness",Default=0.05,Lower=1e-8); CONNECTIONS Unity([1:Npipe-1]).Outlet.Hot to Unity([2:Npipe]).Inlet.Hot; Unity([1:Npipe-1]).Outlet.Cold to Unity([2:Npipe]).Inlet.Cold; EQUATIONS for i in [1:Npipe] if Unity(i).Details.Cr equal 0 then "Effectiveness" Eft(i) = 1-exp(-Unity(i).Details.NTU); else "Effectiveness in Cocurrent Flow" Eft(i) = (1-exp(-Unity(i).Details.NTU*(1+Unity(i).Details.Cr)))/(1+Unity(i).Details.Cr); end "Energy Balance" Unity(i).Details.Q = Eft(i)*Unity(i).Details.Cmin*(Unity(i).Inlet.Hot.T-Unity(i).Inlet.Cold.T); end end Model Multitubular_Counter_LMTD as Multitubular_Basic_LMTD CONNECTIONS Unity([1:Npipe-1]).Outlet.Hot to Unity([2:Npipe]).Inlet.Hot; Unity([2:Npipe]).Outlet.Cold to Unity([1:Npipe-1]).Inlet.Cold; EQUATIONS for i in [1:Npipe] "Temperature Difference at Inlet - Counter Flow" DT0(i) = Unity(i).Inlet.Hot.T - Unity(i).Outlet.Cold.T; "Temperature Difference at Outlet - Counter Flow" DTL(i) = Unity(i).Outlet.Hot.T - Unity(i).Inlet.Cold.T; end end Model Multitubular_Cocurrent_LMTD as Multitubular_Basic_LMTD CONNECTIONS Unity([1:Npipe-1]).Outlet.Hot to Unity([2:Npipe]).Inlet.Hot; Unity([1:Npipe-1]).Outlet.Cold to Unity([2:Npipe]).Inlet.Cold; EQUATIONS for i in [1:Npipe] "Temperature Difference at Inlet - Cocurrent Flow" DT0(i) = Unity(i).Inlet.Hot.T - Unity(i).Inlet.Cold.T; "Temperature Difference at Outlet - Cocurrent Flow" DTL(i) = Unity(i).Outlet.Hot.T - Unity(i).Outlet.Cold.T; end end