Changeset 525 for trunk/eml/heat_exchangers/DoublePipe.mso
- Timestamp:
- May 24, 2008, 6:35:24 PM (15 years ago)
- File:
-
- 1 edited
Legend:
- Unmodified
- Added
- Removed
-
trunk/eml/heat_exchangers/DoublePipe.mso
r478 r525 19 19 using "HEX_Engine"; 20 20 21 Model DoublePipe_Geometry 22 23 ATTRIBUTES 24 Pallete = false; 25 Brief = "double pipe geometrical parameters."; 26 Info = 27 "to be documented."; 28 29 PARAMETERS 30 31 outer PP as Plugin (Brief="External Physical Properties", Type="PP"); 32 outer NComp as Integer (Brief="Number of Components",Hidden=true); 33 34 M(NComp) as molweight (Brief="Component Mol Weight",Hidden=true); 35 36 Pi as constant (Brief="Pi Number",Default=3.14159265, Symbol = "\pi",Hidden=true); 37 DoInner as length (Brief="Outside Diameter of Inner Pipe",Lower=1e-6); 38 DiInner as length (Brief="Inside Diameter of Inner Pipe",Lower=1e-10); 39 DiOuter as length (Brief="Inside Diameter of Outer pipe",Lower=1e-10); 40 Lpipe as length (Brief="Effective Tube Length of one segment of Pipe",Lower=0.1, Symbol = "L_{pipe}"); 41 Kwall as conductivity (Brief="Tube Wall Material Thermal Conductivity",Default=1.0, Symbol = "K_{wall}"); 42 Rfi as positive (Brief="Inside Fouling Resistance",Unit='m^2*K/kW',Default=1e-6,Lower=0); 43 Rfo as positive (Brief="Outside Fouling Resistance",Unit='m^2*K/kW',Default=1e-6,Lower=0); 44 45 SET 46 47 #"Component Molecular Weight" 48 M = PP.MolecularWeight(); 49 50 #"Pi Number" 51 Pi = 3.14159265; 52 53 end 21 54 22 55 Model DoublePipe_Basic … … 31 64 32 65 outer PP as Plugin (Brief="External Physical Properties", Type="PP"); 33 outer NComp as Integer (Brief="Number of Components" );34 35 M(NComp) as molweight (Brief="Component Mol Weight" );36 37 HotSide as Switcher (Brief="Flag for Fluid Alocation ",Valid=["outer","inner"],Default="outer");38 innerFlowRegime as Switcher (Brief="Inner Flow Regime ",Valid=["laminar","transition","turbulent"],Default="laminar" );39 outerFlowRegime as Switcher (Brief="Outer Flow Regime ",Valid=["laminar","transition","turbulent"],Default="laminar" );66 outer NComp as Integer (Brief="Number of Components",Hidden=true); 67 68 M(NComp) as molweight (Brief="Component Mol Weight",Hidden=true); 69 70 HotSide as Switcher (Brief="Flag for Fluid Alocation ",Valid=["outer","inner"],Default="outer",Hidden=true); 71 innerFlowRegime as Switcher (Brief="Inner Flow Regime ",Valid=["laminar","transition","turbulent"],Default="laminar",Hidden=true); 72 outerFlowRegime as Switcher (Brief="Outer Flow Regime ",Valid=["laminar","transition","turbulent"],Default="laminar",Hidden=true); 40 73 41 74 InnerLaminarCorrelation as Switcher (Brief="Heat Transfer Correlation in Laminar Flow for the Inner Side",Valid=["Hausen","Schlunder"],Default="Hausen"); 42 InnerTransitionCorrelation as Switcher 75 InnerTransitionCorrelation as Switcher (Brief="Heat Transfer Correlation in Transition Flow for the Inner Side",Valid=["Gnielinski","Hausen"],Default="Gnielinski"); 43 76 InnerTurbulentCorrelation as Switcher (Brief="Heat Transfer Correlation in Turbulent Flow for the Inner Side",Valid=["Petukhov","SiederTate"],Default="Petukhov"); 44 77 … … 47 80 OuterTurbulentCorrelation as Switcher (Brief="Heat Transfer Correlation in Turbulent Flow for the Outer Side",Valid=["Petukhov","SiederTate"],Default="Petukhov"); 48 81 49 CalculationApproach as Switcher (Brief="Options for convergence Calculations ",Valid=["Simplified","Full"],Default="Full"); 50 Qestimated as power (Brief="Estimated Duty", Default=70, Lower=1e-6, Upper=1e10); 51 52 Pi as constant (Brief="Pi Number",Default=3.14159265, Symbol = "\pi"); 53 DoInner as length (Brief="Outside Diameter of Inner Pipe",Lower=1e-6); 54 DiInner as length (Brief="Inside Diameter of Inner Pipe",Lower=1e-10); 55 DiOuter as length (Brief="Inside Diameter of Outer pipe",Lower=1e-10); 56 Lpipe as length (Brief="Effective Tube Length of one segment of Pipe",Lower=0.1, Symbol = "L_{pipe}"); 57 Kwall as conductivity (Brief="Tube Wall Material Thermal Conductivity",Default=1.0, Symbol = "K_{wall}"); 58 Rfi as positive (Brief="Inside Fouling Resistance",Unit='m^2*K/kW',Default=1e-6,Lower=0); 59 Rfo as positive (Brief="Outside Fouling Resistance",Unit='m^2*K/kW',Default=1e-6,Lower=0); 82 CalculationApproach as Switcher (Brief="Options for convergence Calculations ",Valid=["Simplified","Full"],Default="Full"); 83 Qestimated as power (Brief="Estimated Duty", Default=70, Lower=1e-6, Upper=1e10); 60 84 61 85 VARIABLES 62 86 63 in InletInner as stream (Brief="Inlet Inner Stream", PosX=0, PosY=0.5225, Symbol="_{inInner}"); 64 in InletOuter as stream (Brief="Inlet Outer Stream", PosX=0.2805, PosY=0, Symbol="_{inOuter}"); 65 out OutletInner as streamPH (Brief="Outlet Inner Stream", PosX=1, PosY=0.5225, Symbol="_{outInner}"); 66 out OutletOuter as streamPH (Brief="Outlet Outer Stream", PosX=0.7264, PosY=1, Symbol="_{outOuter}"); 87 Geometry as DoublePipe_Geometry (Brief="Double pipe geometry",Symbol=" "); 88 in InletInner as stream (Brief="Inlet Inner Stream", PosX=0, PosY=0.5225, Symbol="_{inInner}"); 89 in InletOuter as stream (Brief="Inlet Outer Stream", PosX=0.2805, PosY=0, Symbol="_{inOuter}"); 90 out OutletInner as streamPH (Brief="Outlet Inner Stream", PosX=1, PosY=0.5225, Symbol="_{outInner}"); 91 out OutletOuter as streamPH (Brief="Outlet Outer Stream", PosX=0.7264, PosY=1, Symbol="_{outOuter}"); 67 92 68 93 Details as Details_Main (Brief="Some Details in the Heat Exchanger", Symbol=" "); … … 72 97 SET 73 98 74 #"Component Molecular Weight"75 M = PP.MolecularWeight();76 77 #"Pi Number"78 Pi = 3.14159265;79 80 99 #"Inner Pipe Cross Sectional Area for Flow" 81 Inner.HeatTransfer.As= Pi*DiInner*DiInner/4;100 Inner.HeatTransfer.As=Geometry.Pi*Geometry.DiInner*Geometry.DiInner/4; 82 101 83 102 #"Outer Pipe Cross Sectional Area for Flow" 84 Outer.HeatTransfer.As= Pi*(DiOuter*DiOuter - DoInner*DoInner)/4;103 Outer.HeatTransfer.As=Geometry.Pi*(Geometry.DiOuter*Geometry.DiOuter - Geometry.DoInner*Geometry.DoInner)/4; 85 104 86 105 #"Inner Pipe Hydraulic Diameter for Heat Transfer" 87 Inner.HeatTransfer.Dh= DiInner;106 Inner.HeatTransfer.Dh=Geometry.DiInner; 88 107 89 108 #"Outer Pipe Hydraulic Diameter for Heat Transfer" 90 Outer.HeatTransfer.Dh=( DiOuter*DiOuter-DoInner*DoInner)/DoInner;109 Outer.HeatTransfer.Dh=(Geometry.DiOuter*Geometry.DiOuter-Geometry.DoInner*Geometry.DoInner)/Geometry.DoInner; 91 110 92 111 #"Inner Pipe Hydraulic Diameter for Pressure Drop" 93 Inner.PressureDrop.Dh= DiInner;112 Inner.PressureDrop.Dh=Geometry.DiInner; 94 113 95 114 #"Outer Pipe Hydraulic Diameter for Pressure Drop" 96 Outer.PressureDrop.Dh= DiOuter-DoInner;115 Outer.PressureDrop.Dh=Geometry.DiOuter-Geometry.DoInner; 97 116 98 117 EQUATIONS … … 272 291 273 292 "Exchange Surface Area for one segment of pipe" 274 Details.A= Pi*DoInner*Lpipe;293 Details.A=Geometry.Pi*Geometry.DoInner*Geometry.Lpipe; 275 294 276 295 switch innerFlowRegime … … 338 357 339 358 "Nusselt Number" 340 Inner.HeatTransfer.Nu = 3.665 + ((0.19*(( DiInner/Lpipe)*Inner.HeatTransfer.Re*Inner.HeatTransfer.PR)^0.8)/(1+0.117*((DiInner/Lpipe)*Inner.HeatTransfer.Re*Inner.HeatTransfer.PR)^0.467));359 Inner.HeatTransfer.Nu = 3.665 + ((0.19*((Geometry.DiInner/Geometry.Lpipe)*Inner.HeatTransfer.Re*Inner.HeatTransfer.PR)^0.8)/(1+0.117*((Geometry.DiInner/Geometry.Lpipe)*Inner.HeatTransfer.Re*Inner.HeatTransfer.PR)^0.467)); 341 360 342 361 case "Schlunder": 343 362 344 363 "Nusselt Number" 345 Inner.HeatTransfer.Nu = (49.027896+4.173281*Inner.HeatTransfer.Re*Inner.HeatTransfer.PR*( DiInner/Lpipe))^(1/3);364 Inner.HeatTransfer.Nu = (49.027896+4.173281*Inner.HeatTransfer.Re*Inner.HeatTransfer.PR*(Geometry.DiInner/Geometry.Lpipe))^(1/3); 346 365 347 366 end … … 364 383 365 384 "Nusselt Number" 366 Inner.HeatTransfer.Nu =0.116*(Inner.HeatTransfer.Re^(0.667)-125)*Inner.HeatTransfer.PR^(0.333)*(1+( DiInner/Lpipe)^0.667);385 Inner.HeatTransfer.Nu =0.116*(Inner.HeatTransfer.Re^(0.667)-125)*Inner.HeatTransfer.PR^(0.333)*(1+(Geometry.DiInner/Geometry.Lpipe)^0.667); 367 386 368 387 end … … 409 428 410 429 "Nusselt Number" 411 Outer.HeatTransfer.Nu = 3.665 + ((0.19*((Outer.HeatTransfer.Dh/ Lpipe)*Outer.HeatTransfer.Re*Outer.HeatTransfer.PR)^0.8)/(1+0.117*((Outer.HeatTransfer.Dh/Lpipe)*Outer.HeatTransfer.Re*Outer.HeatTransfer.PR)^0.467));430 Outer.HeatTransfer.Nu = 3.665 + ((0.19*((Outer.HeatTransfer.Dh/Geometry.Lpipe)*Outer.HeatTransfer.Re*Outer.HeatTransfer.PR)^0.8)/(1+0.117*((Outer.HeatTransfer.Dh/Geometry.Lpipe)*Outer.HeatTransfer.Re*Outer.HeatTransfer.PR)^0.467)); 412 431 413 432 case "Schlunder": 414 433 415 434 "Nusselt Number" 416 Outer.HeatTransfer.Nu = (49.027896+4.173281*Outer.HeatTransfer.Re*Outer.HeatTransfer.PR*(Outer.HeatTransfer.Dh/ Lpipe))^(1/3);435 Outer.HeatTransfer.Nu = (49.027896+4.173281*Outer.HeatTransfer.Re*Outer.HeatTransfer.PR*(Outer.HeatTransfer.Dh/Geometry.Lpipe))^(1/3); 417 436 418 437 end … … 435 454 436 455 "Nusselt Number" 437 Outer.HeatTransfer.Nu = 0.116*(Outer.HeatTransfer.Re^(0.667)-125)*Outer.HeatTransfer.PR^(0.333)*(1+(Outer.HeatTransfer.Dh/ Lpipe)^0.667);456 Outer.HeatTransfer.Nu = 0.116*(Outer.HeatTransfer.Re^(0.667)-125)*Outer.HeatTransfer.PR^(0.333)*(1+(Outer.HeatTransfer.Dh/Geometry.Lpipe)^0.667); 438 457 439 458 … … 473 492 474 493 "Inner Pipe Film Coefficient" 475 Inner.HeatTransfer.hcoeff = (Inner.HeatTransfer.Nu*Inner.Properties.Average.K/ DiInner)*Inner.HeatTransfer.Phi;494 Inner.HeatTransfer.hcoeff = (Inner.HeatTransfer.Nu*Inner.Properties.Average.K/Geometry.DiInner)*Inner.HeatTransfer.Phi; 476 495 477 496 "Outer Pipe Film Coefficient" … … 495 514 496 515 "Outer Pipe Pressure Drop for friction" 497 Outer.PressureDrop.Pd_fric = (2*Outer.PressureDrop.fi* Lpipe*Outer.Properties.Average.rho*Outer.HeatTransfer.Vmean^2)/(Outer.PressureDrop.Dh*Outer.HeatTransfer.Phi);516 Outer.PressureDrop.Pd_fric = (2*Outer.PressureDrop.fi*Geometry.Lpipe*Outer.Properties.Average.rho*Outer.HeatTransfer.Vmean^2)/(Outer.PressureDrop.Dh*Outer.HeatTransfer.Phi); 498 517 499 518 "Inner Pipe Pressure Drop for friction" 500 Inner.PressureDrop.Pd_fric = (2*Inner.PressureDrop.fi* Lpipe*Inner.Properties.Average.rho*Inner.HeatTransfer.Vmean^2)/(DiInner*Inner.HeatTransfer.Phi);519 Inner.PressureDrop.Pd_fric = (2*Inner.PressureDrop.fi*Geometry.Lpipe*Inner.Properties.Average.rho*Inner.HeatTransfer.Vmean^2)/(Geometry.DiInner*Inner.HeatTransfer.Phi); 501 520 502 521 … … 504 523 505 524 "Total Pressure Drop Outer Stream" 506 Outer.PressureDrop.Pdrop = 0*'kPa';525 Outer.PressureDrop.Pdrop = Outer.PressureDrop.Pd_fric; 507 526 508 527 "Total Pressure Drop Inner Stream" 509 Inner.PressureDrop.Pdrop = 0*'kPa';528 Inner.PressureDrop.Pdrop = Inner.PressureDrop.Pd_fric; 510 529 511 530 "Pressure Drop Outer Stream" 512 OutletOuter.P = InletOuter.P ;531 OutletOuter.P = InletOuter.P - Outer.PressureDrop.Pdrop; 513 532 514 533 "Pressure Drop Inner Stream" 515 OutletInner.P = InletInner.P ;534 OutletInner.P = InletInner.P - Inner.PressureDrop.Pdrop; 516 535 517 536 "Outer Pipe Pressure Drop for friction" 518 Outer.PressureDrop.Pd_fric = 0 *'kPa';537 Outer.PressureDrop.Pd_fric = 0.01*InletOuter.P; 519 538 520 539 "Inner Pipe Pressure Drop for friction" 521 Inner.PressureDrop.Pd_fric = 0 *'kPa';540 Inner.PressureDrop.Pd_fric = 0.01*InletInner.P; 522 541 523 542 end … … 560 579 561 580 "Overall Heat Transfer Coefficient Clean" 562 Details.Uc*(( DoInner/(Inner.HeatTransfer.hcoeff*DiInner) )+(DoInner*ln(DoInner/DiInner)/(2*Kwall))+(1/(Outer.HeatTransfer.hcoeff)))=1;581 Details.Uc*((Geometry.DoInner/(Inner.HeatTransfer.hcoeff*Geometry.DiInner) )+(Geometry.DoInner*ln(Geometry.DoInner/Geometry.DiInner)/(2*Geometry.Kwall))+(1/(Outer.HeatTransfer.hcoeff)))=1; 563 582 564 583 "Overall Heat Transfer Coefficient Dirty" 565 Details.Ud*( Rfi*(DoInner/DiInner) + Rfo + (DoInner/(Inner.HeatTransfer.hcoeff*DiInner) )+(DoInner*ln(DoInner/DiInner)/(2*Kwall))+(1/(Outer.HeatTransfer.hcoeff)))=1;584 Details.Ud*(Geometry.Rfi*(Geometry.DoInner/Geometry.DiInner) + Geometry.Rfo + (Geometry.DoInner/(Inner.HeatTransfer.hcoeff*Geometry.DiInner) )+(Geometry.DoInner*ln(Geometry.DoInner/Geometry.DiInner)/(2*Geometry.Kwall))+(1/(Outer.HeatTransfer.hcoeff)))=1; 566 585 567 586 end … … 624 643 625 644 "Number of Units Transference" 626 Method.NTU*Method.Cmin = Details.Ud* Pi*DoInner*Lpipe;645 Method.NTU*Method.Cmin = Details.Ud*Geometry.Pi*Geometry.DoInner*Geometry.Lpipe; 627 646 628 647 "Minimum Heat Capacity" … … 796 815 797 816 "Duty" 798 Details.Q = Details.Ud* Pi*DoInner*Lpipe*Method.LMTD;817 Details.Q = Details.Ud*Geometry.Pi*Geometry.DoInner*Geometry.Lpipe*Method.LMTD; 799 818 800 819 case "Simplified":
Note: See TracChangeset
for help on using the changeset viewer.