Ignore:
Timestamp:
Feb 8, 2008, 6:20:12 PM (15 years ago)
Author:
Paula Bettio Staudt
Message:

A new shot. Model with Billet and Schultes correlations

File:
1 edited

Legend:

Unmodified
Added
Removed
  • branches/packed/eml/stage_separators/tray.mso

    r453 r454  
    169169end
    170170
    171 Model packedStageOld as trayBasic
     171Model packedStage_Navaes as trayBasic
    172172        PARAMETERS
    173173        PPwater as Plugin(Brief="Physical Properties",
     
    277277end
    278278
    279 Model packedStage as trayBasic
     279Model packedStage_Billet as trayBasic
    280280        PARAMETERS
    281281        a as Real (Brief="surface area per packing volume", Unit='m^2/m^3');
     
    329329        uV * Across = OutletV.F * vV;
    330330       
    331 #       "Coefficient of Resistance"
    332 #       ksi * C^2 * (uL/uV * sqrt(rhoV/rhoL) * (niL/niV)^5.8)^3 = g/1*'s^2/m';
     331        "Coefficient of Resistance"
     332        ksi * C^2 * (uL/uV * sqrt(rhoV/rhoL) * (niL/niV)^2)^0.5 = g/1*'s^2/m';
    333333        #ksil = Cp * (exp(uL*rhoL/a/niL/200)*(hL/hLs)^0.3) * (64/Rev+(1.8/Rev)) *
    334334        ksil = Cp * (exp(uL*rhoL/a/niL/200)*(hL/hLs)^0.3) * (64/Rev+(1.8/Rev)) *
    335                                         ((e-hL)/e);
     335                                        ((e-hL)/e)^1.5;
    336336       
    337337#       "Liquid holdup and Liquid flow"
     
    345345
    346346        "Theoretical Liquid Holdup"
    347         #hLs = (12*a^2*niL*uL/g/rhoL)^0.333;
    348         hLs = (12*a^2*niL*uL/g/rhoL);
     347        hLs = (12*a^2*niL*uL/g/rhoL)^0.333;
     348        #hLs = (12*a^2*niL*uL/g/rhoL);
     349end
     350
     351Model packedStage_BilletSchultes as trayBasic
     352        PARAMETERS
     353        a as Real (Brief="surface area per packing volume", Unit='m^2/m^3');
     354        g as acceleration;
     355        e as Real (Brief="Void fraction of packing, m^3/m^3");
     356        ds as length (Brief="Column diameter");
     357        Cpo as Real (Brief="Constant for resitance equation"); # Billet and Schultes, 1999.
     358        Mw(NComp)       as molweight    (Brief = "Component Mol Weight");
     359
     360        VARIABLES
     361        miL as viscosity (Brief="Liquid dynamic viscosity", DisplayUnit='kg/m/s');
     362        miV as viscosity (Brief="Vapor dynamic viscosity", DisplayUnit='kg/m/s');
     363        rhoL as dens_mass;
     364        rhoV as dens_mass;
     365        uL as velocity (Brief="volume flow rate of liquid, m^3/m^2/s", Default = 0.007);
     366        uV as velocity (Brief="volume flow rate of vapor, m^3/m^2/s", Default = 1.14);
     367        hs as length (Brief="Height of the packing stage");
     368        dp as length (Brief="Particle diameter");
     369        K as Real (Brief="Wall factor");
     370        Rev as Real (Brief="Reynolds number of the vapor stream");
     371        Qsio as Real (Brief="Resistance coefficient");
     372       
     373        SET
     374        Mw = PP.MolecularWeight();
     375       
     376        EQUATIONS
     377        "Liquid Density"
     378        rhoL = PP.LiquidDensity(OutletL.T, OutletL.P, OutletL.z);
     379        "Vapour Density"
     380        rhoV = PP.VapourDensity(InletV.T, InletV.P, InletV.z);
     381        "Liquid viscosity"
     382        miL = PP.LiquidViscosity(OutletL.T, OutletL.P, OutletL.z);
     383        "Vapour viscosity"
     384        miV = PP.VapourViscosity(InletV.T, InletV.P, InletV.z);
     385
     386        "Volume flow rate of liquid, m^3/m^2/s"
     387        uL * Ap = OutletL.F * vL;
     388        "Volume flow rate of vapor, m^3/m^2/s"
     389        uV * Ap = OutletV.F * vV;
     390       
     391#       "Liquid holdup and Liquid flow"
     392#       vL * ML = (12*miL*a^2*uL/rhoL/g)^1/3 * hs * Ap;
     393       
     394        "Particle diameter"
     395        dp = 6 * ((1-e)/a);
     396       
     397        "Wall Factor"
     398        1 = K * 1+(2*dp/(3*ds*(1-e)));
     399       
     400        "Reynolds number of the vapor stream"
     401        Rev = K*dp*uV*rhoV / (miV*(1-e));
     402       
     403        #"Resistance Coefficient"
     404        #Qsio = Cpo * (64/Rev) + 1.8/Rev^0.08);
     405        #Qsio = Cpo * (64/Rev);# + 1.8/Rev^0.08);
     406
     407        "Pressure drop and Vapor flow"
     408        (InletV.P - OutletV.P)/hs = Qsio*a*uV^2*rhoV / (2*e^2*K);
    349409end
    350410
Note: See TracChangeset for help on using the changeset viewer.