 Timestamp:
 Feb 8, 2008, 6:20:12 PM (15 years ago)
 Location:
 branches/packed
 Files:

 2 edited
Legend:
 Unmodified
 Added
 Removed

branches/packed/eml/stage_separators/tray.mso
r453 r454 169 169 end 170 170 171 Model packedStage Oldas trayBasic171 Model packedStage_Navaes as trayBasic 172 172 PARAMETERS 173 173 PPwater as Plugin(Brief="Physical Properties", … … 277 277 end 278 278 279 Model packedStage as trayBasic279 Model packedStage_Billet as trayBasic 280 280 PARAMETERS 281 281 a as Real (Brief="surface area per packing volume", Unit='m^2/m^3'); … … 329 329 uV * Across = OutletV.F * vV; 330 330 331 #"Coefficient of Resistance"332 # ksi * C^2 * (uL/uV * sqrt(rhoV/rhoL) * (niL/niV)^5.8)^3= g/1*'s^2/m';331 "Coefficient of Resistance" 332 ksi * C^2 * (uL/uV * sqrt(rhoV/rhoL) * (niL/niV)^2)^0.5 = g/1*'s^2/m'; 333 333 #ksil = Cp * (exp(uL*rhoL/a/niL/200)*(hL/hLs)^0.3) * (64/Rev+(1.8/Rev)) * 334 334 ksil = Cp * (exp(uL*rhoL/a/niL/200)*(hL/hLs)^0.3) * (64/Rev+(1.8/Rev)) * 335 ((ehL)/e) ;335 ((ehL)/e)^1.5; 336 336 337 337 # "Liquid holdup and Liquid flow" … … 345 345 346 346 "Theoretical Liquid Holdup" 347 #hLs = (12*a^2*niL*uL/g/rhoL)^0.333; 348 hLs = (12*a^2*niL*uL/g/rhoL); 347 hLs = (12*a^2*niL*uL/g/rhoL)^0.333; 348 #hLs = (12*a^2*niL*uL/g/rhoL); 349 end 350 351 Model packedStage_BilletSchultes as trayBasic 352 PARAMETERS 353 a as Real (Brief="surface area per packing volume", Unit='m^2/m^3'); 354 g as acceleration; 355 e as Real (Brief="Void fraction of packing, m^3/m^3"); 356 ds as length (Brief="Column diameter"); 357 Cpo as Real (Brief="Constant for resitance equation"); # Billet and Schultes, 1999. 358 Mw(NComp) as molweight (Brief = "Component Mol Weight"); 359 360 VARIABLES 361 miL as viscosity (Brief="Liquid dynamic viscosity", DisplayUnit='kg/m/s'); 362 miV as viscosity (Brief="Vapor dynamic viscosity", DisplayUnit='kg/m/s'); 363 rhoL as dens_mass; 364 rhoV as dens_mass; 365 uL as velocity (Brief="volume flow rate of liquid, m^3/m^2/s", Default = 0.007); 366 uV as velocity (Brief="volume flow rate of vapor, m^3/m^2/s", Default = 1.14); 367 hs as length (Brief="Height of the packing stage"); 368 dp as length (Brief="Particle diameter"); 369 K as Real (Brief="Wall factor"); 370 Rev as Real (Brief="Reynolds number of the vapor stream"); 371 Qsio as Real (Brief="Resistance coefficient"); 372 373 SET 374 Mw = PP.MolecularWeight(); 375 376 EQUATIONS 377 "Liquid Density" 378 rhoL = PP.LiquidDensity(OutletL.T, OutletL.P, OutletL.z); 379 "Vapour Density" 380 rhoV = PP.VapourDensity(InletV.T, InletV.P, InletV.z); 381 "Liquid viscosity" 382 miL = PP.LiquidViscosity(OutletL.T, OutletL.P, OutletL.z); 383 "Vapour viscosity" 384 miV = PP.VapourViscosity(InletV.T, InletV.P, InletV.z); 385 386 "Volume flow rate of liquid, m^3/m^2/s" 387 uL * Ap = OutletL.F * vL; 388 "Volume flow rate of vapor, m^3/m^2/s" 389 uV * Ap = OutletV.F * vV; 390 391 # "Liquid holdup and Liquid flow" 392 # vL * ML = (12*miL*a^2*uL/rhoL/g)^1/3 * hs * Ap; 393 394 "Particle diameter" 395 dp = 6 * ((1e)/a); 396 397 "Wall Factor" 398 1 = K * 1+(2*dp/(3*ds*(1e))); 399 400 "Reynolds number of the vapor stream" 401 Rev = K*dp*uV*rhoV / (miV*(1e)); 402 403 #"Resistance Coefficient" 404 #Qsio = Cpo * (64/Rev) + 1.8/Rev^0.08); 405 #Qsio = Cpo * (64/Rev);# + 1.8/Rev^0.08); 406 407 "Pressure drop and Vapor flow" 408 (InletV.P  OutletV.P)/hs = Qsio*a*uV^2*rhoV / (2*e^2*K); 349 409 end 350 410 
branches/packed/sample/stage_separators/sample_tray.mso
r453 r454 113 113 114 114 DEVICES 115 t1 as packedStage ;115 t1 as packedStage_Billet; 116 116 feed as source; 117 117 inL as liquid_stream; … … 145 145 t1.hs = 0.4 * 'm';#0.075 * 'm'; 146 146 t1.OutletV.F = 147.1 * 'kmol/h'; 147 t1.OutletL.F = 229.5 * 'kmol/h';148 t1.ksi = 0.805;147 # t1.OutletL.F = 229.5 * 'kmol/h'; 148 #t1.ksi = 0.805; 149 149 150 150 SET … … 162 162 INITIAL 163 163 t1.OutletL.T = 350 *'K'; 164 t1.ML = 0.2 * 'mol'; 165 t1.OutletL.z(1) = 0.1; 164 t1.ML = 0.5 * 'mol'; 165 t1.OutletL.z(1) = 0.2; 166 167 OPTIONS 168 #InitialFile = "/home/paula/tray_Test.rlt"; 169 #InitialFile = "/home/paula/packedStage_Test.rlt"; 170 TimeStep = 2; 171 TimeEnd = 50; 172 end 173 174 FlowSheet packedStage_BilletSchultes_Test 175 PARAMETERS 176 PP as Plugin(Brief="Physical Properties", 177 Type="PP", 178 Components = [ "npentane", "benzene"], 179 LiquidModel = "PR", 180 VapourModel = "PR" 181 ); 182 NComp as Integer; 183 184 SET 185 NComp = PP.NumberOfComponents; 186 187 VARIABLES 188 deltaP as Real (Unit='atm/m'); 189 190 DEVICES 191 t1 as packedStage_BilletSchultes; 192 feed as source; 193 inL as liquid_stream; 194 inV as vapour_stream; 195 196 CONNECTIONS 197 feed.Outlet to t1.Inlet; 198 inL to t1.InletL; 199 inV to t1.InletV; 200 201 EQUATIONS 202 deltaP = (t1.InletV.P  t1.OutletV.P)/t1.hs; 203 204 SPECIFY 205 feed.Outlet.F = 113.4 * 'kmol/h'; 206 feed.Outlet.T = 291 * 'K'; 207 feed.Outlet.P = 1.66 * 'atm'; 208 feed.Outlet.z = [0.5, 0.5]; 209 210 inL.F = 61.99 * 'kmol/h'; 211 inL.P = 1.63 * 'atm'; 212 inL.T = 310 * 'K'; 213 inL.z = [0.1641, 0.8359]; 214 215 inV.F = 201.25 * 'kmol/h'; 216 inV.P = 1.48 * 'atm'; 217 inV.T = 321 * 'K'; 218 inV.z = [0.0584, 0.9416]; 219 220 t1.Emv = 1; 221 t1.hs = 0.4 * 'm';#0.075 * 'm'; 222 # t1.OutletV.F = 147.1 * 'kmol/h'; 223 t1.OutletL.F = 229.5 * 'kmol/h'; 224 t1.Qsio = 0.8; 225 226 SET 227 #Metal Pall Ring  nominal packing size 50 mm  Billet and Schultes, 1999. 228 t1.Q = 0 * 'kW'; 229 t1.Ap = 0.8 * 'm^2'; 230 t1.V = 0.8 * 'm^2' * 0.4 * 'm'; 231 t1.ds = 1.009 * 'm'; 232 t1.Cpo = 0.763; 233 t1.e = 0.951; 234 t1.a = 112.6 * 'm^2/m^3'; 235 236 INITIAL 237 t1.OutletL.T = 350 *'K'; 238 t1.ML = 0.5 * 'mol'; 239 t1.OutletL.z(1) = 0.2; 166 240 167 241 OPTIONS 168 242 #InitialFile = "/home/paula/tray_Test.rlt"; 169 243 InitialFile = "/home/paula/packedStage_Test.rlt"; 170 #DAESolver(File="dassl");171 244 TimeStep = 2; 172 245 TimeEnd = 50;
Note: See TracChangeset
for help on using the changeset viewer.