- Timestamp:
- Jan 31, 2008, 3:10:36 PM (16 years ago)
- Location:
- branches/packed
- Files:
-
- 2 edited
Legend:
- Unmodified
- Added
- Removed
-
branches/packed/eml/stage_separators/tray.mso
r450 r451 282 282 g as acceleration; 283 283 e as Real (Brief="Void fraction of packing, m^3/m^3"); 284 V as volume;285 284 Across as area; 286 285 ds as length (Brief="Column diameter"); 287 286 d as length (Brief="size of an element of packing"); 288 h as length (Brief="Height of packing");287 #h as length (Brief="Height of packing"); 289 288 C as Real (Brief="Constant for resitance factor equation"); 290 289 Cp as Real (Brief="Constant for resitance at loading point factor equation"); 291 290 Mw(NComp) as molweight (Brief = "Component Mol Weight"); 292 291 293 SET294 Mw = PP.MolecularWeight();295 296 292 VARIABLES 297 293 niL as viscosity (Brief="Liquid dynamic viscosity", DisplayUnit='kg/m/s'); … … 309 305 hs as length (Brief="Height of the packing stage"); 310 306 307 SET 308 Mw = PP.MolecularWeight(); 309 Ap = Across; 310 311 311 EQUATIONS 312 312 "Liquid Density" … … 318 318 "Vapour viscosity" 319 319 niV = PP.VapourViscosity(InletV.T, InletV.P, InletV.z); 320 320 321 "Liquid volume" 321 322 VL = vL * ML; 322 323 "Liquid holdup" 323 324 hL = VL/V; 325 324 326 "Volume flow rate of liquid, m^3/m^2/s" 325 327 uL * Across = OutletL.F * vL; 326 " volume flow rate of vapor, m^3/m^2/s"328 "Volume flow rate of vapor, m^3/m^2/s" 327 329 uV * Across = OutletV.F * vV; 328 330 329 331 "Coefficient of Resistance" 330 332 ksi * C^2 * (uL/uV * sqrt(rhoV/rhoL) * (niL/niV)^5.8)^3 = g/1*'s^2/m'; 331 333 ksil = Cp * (exp(uL*rhoL/a/niL/200)*(hL/hLs)^0.3) * (64/Rev+(1.8/Rev)) * 332 ((e-hL)/e);#1.5 334 ((e-hL)/e);#^1.5; 335 333 336 "Liquid holdup and Liquid flow" 334 337 a^2 * niL * uL = hL^1 *(g*rhoL/3 - ksi*a*rhoV*uV^2/(4*hL*(e-hL)^2)); 338 335 339 "Pressure drop and Vapor flow" 336 340 (InletV.P - OutletV.P)/hs = ksil *(a/2 + 2/ds)*(uV^2*rhoV/(e-hL)^3); 337 341 338 342 "Vapor Reynolds number" 339 343 Rev = uV * (d-2*hL/a) * rhoV/ niV; 340 344 345 "Theoretical Liquid Holdup" 341 346 hLs = (12*a^2*niL*uL/g/rhoL)^0.333; 342 347 end -
branches/packed/sample/stage_separators/sample_tray.mso
r449 r451 110 110 111 111 VARIABLES 112 deltaP as Real (Unit=' Pa/m');112 deltaP as Real (Unit='atm/m'); 113 113 114 114 DEVICES … … 124 124 125 125 EQUATIONS 126 deltaP = (t1.InletV.P - t1.OutletV.P)/ (t1.V/t1.Across);126 deltaP = (t1.InletV.P - t1.OutletV.P)/t1.hs; 127 127 128 128 SPECIFY … … 137 137 inL.z = [0.1641, 0.8359]; 138 138 139 #inV.F = 201.25 * 'kmol/h'; 140 inV.F = 240 * 'kmol/h'; 139 inV.F = 201.25 * 'kmol/h'; 141 140 inV.P = 1.48 * 'atm'; 142 141 inV.T = 321 * 'K'; … … 144 143 145 144 t1.Emv = 1; 145 t1.hs = 0.075 * 'm'; 146 # t1.OutletV.F = 147.1 * 'kmol/h'; 147 # t1.OutletL.F = 229.5 * 'kmol/h'; 148 # t1.ksi = 0.805; 146 149 147 150 SET 148 # t1.PressureDropModel = "Leva"; 149 # t1.PackingType = "random"; 150 t1.V = 4 * 'ft^3'; 151 #Ceramic Pall Ring - nominal packing size 50 mm 151 152 t1.Q = 0 * 'kW'; 152 t1.Across = 1 * 'm^2';#3.94 * 'ft^2'; 153 t1.Across = 0.8 * 'm^2'; 154 t1.V = 0.8 * 'm^2' * 0.075 * 'm'; 155 t1.ds = 1.009 * 'm'; 156 t1.d = 50 * 'mm'; 157 t1.C = 2.37; 158 t1.Cp = 0.662; 159 t1.e = 0.78; 160 t1.a = 120 * 'm^2/m^3'; 153 161 154 162 INITIAL 155 t1.OutletL.T = 3 20 *'K';156 t1. Level = 1.2 * 0.125 * 'ft';157 t1.OutletL.z(1) = 0. 5;163 t1.OutletL.T = 350 *'K'; 164 t1.ML = 0.2 * 'mol'; 165 t1.OutletL.z(1) = 0.1; 158 166 159 167 OPTIONS 160 InitialFile = "/home/paula/tray_Test.rlt";168 #InitialFile = "/home/paula/tray_Test.rlt"; 161 169 #DAESolver(File="dassl"); 162 170 TimeStep = 0.1;
Note: See TracChangeset
for help on using the changeset viewer.