Changeset 150 for branches/newlanguage
- Timestamp:
- Feb 5, 2007, 6:47:18 PM (17 years ago)
- Location:
- branches/newlanguage/eml/heat_exchangers
- Files:
-
- 2 edited
Legend:
- Unmodified
- Added
- Removed
-
branches/newlanguage/eml/heat_exchangers/DoublePipe.mso
r139 r150 89 89 90 90 "Viscosity Cold Stream" 91 Properties.Cold.Average.Mu 91 Properties.Cold.Average.Mu = PP.LiquidViscosity(Properties.Cold.Average.T,Properties.Cold.Average.P,Inlet.Cold.z); 92 92 Properties.Cold.Inlet.Mu = PP.LiquidViscosity(Inlet.Cold.T,Inlet.Cold.P,Inlet.Cold.z); 93 93 Properties.Cold.Outlet.Mu = PP.LiquidViscosity(Outlet.Cold.T,Outlet.Cold.P,Outlet.Cold.z); … … 271 271 Outlet.Cold.z=Inlet.Cold.z; 272 272 273 "No Phase Change In Cold Stream"274 Inlet.Cold.v=Outlet.Cold.v;275 276 "No Phase Change In Hot Stream"277 Inlet.Hot.v=Outlet.Hot.v;278 279 273 if Inner.PressureDrop.Re < 2300 280 274 … … 314 308 PARAMETERS 315 309 316 HE as Plugin (Brief="STHE Calculations",File="heatex"); 317 Pi as constant (Brief="Pi Number",Default=3.14159265); 318 Hside as Integer (Brief="Fluid Alocation Flag-Default:Outer",Lower=0,Upper=1); 319 Side as Integer (Brief="Flow Direction",Lower=0,Upper=1); 320 DoInner as length (Brief="Outside Diameter of Inner Pipe",Lower=1e-6); 321 DiInner as length (Brief="Inside Diameter of Inner Pipe",Lower=1e-10); 322 DiOuter as length (Brief="Inside Diameter of Outer pipe",Lower=1e-10); 323 Lpipe as length (Brief="Effective Tube Length",Lower=0.1); 324 Kwall as conductivity (Brief="Tube Wall Material Thermal Conductivity",Default=1.0); 310 HotSide as Switcher (Brief="Hot Side in the Exchanger",Valid=["inner","outer"],Default="outer"); 311 innerFlowRegime as Switcher (Brief="Inner Flow Regime ",Valid=["laminar","transition","turbulent"],Default="laminar"); 312 outerFlowRegime as Switcher (Brief="Outer Flow Regime ",Valid=["laminar","transition","turbulent"],Default="laminar"); 313 314 InnerLaminarCorrelation as Switcher (Brief="Heat Transfer Correlation in Laminar Flow for the Inner Side",Valid=["Hausen","Schlunder"],Default="Hausen"); 315 InnerTransitionCorrelation as Switcher (Brief="Heat Transfer Correlation in Transition Flow for the Inner Side",Valid=["Gnielinski","ESDU"],Default="Gnielinski"); 316 InnerTurbulentCorrelation as Switcher (Brief="Heat Transfer Correlation in Turbulent Flow for the Inner Side",Valid=["Petukhov","SiederTate"],Default="Petukhov"); 317 318 OuterLaminarCorrelation as Switcher (Brief="Heat Transfer Correlation in Laminar Flow for the Outer Side",Valid=["Hausen","Schlunder"],Default="Hausen"); 319 OuterTransitionCorrelation as Switcher (Brief="Heat Transfer Correlation in Transition Flow for the OuterSide",Valid=["Gnielinski","ESDU"],Default="Gnielinski"); 320 OuterTurbulentCorrelation as Switcher (Brief="Heat Transfer Correlation in Turbulent Flow for the Outer Side",Valid=["Petukhov","SiederTate"],Default="Petukhov"); 321 322 Pi as constant (Brief="Pi Number",Default=3.14159265); 323 DoInner as length (Brief="Outside Diameter of Inner Pipe",Lower=1e-6); 324 DiInner as length (Brief="Inside Diameter of Inner Pipe",Lower=1e-10); 325 DiOuter as length (Brief="Inside Diameter of Outer pipe",Lower=1e-10); 326 Lpipe as length (Brief="Effective Tube Length",Lower=0.1); 327 Kwall as conductivity (Brief="Tube Wall Material Thermal Conductivity",Default=1.0); 325 328 326 329 SET 327 330 328 331 Pi = 3.14159265; 329 Hside = HE.FluidAlocation(); 330 Side = HE.FlowDir(); 332 333 EQUATIONS 331 334 332 335 #"Inner Pipe Cross Sectional Area for Flow" … … 348 351 Outer.PressureDrop.Dh=DiOuter-DoInner; 349 352 350 EQUATIONS351 352 353 "Exchange Surface Area" 353 354 Details.A=Pi*DoInner*Lpipe; 354 355 355 if Hside equal 1 356 357 then 358 356 357 switch innerFlowRegime 358 359 case "laminar": 360 361 Inner.HeatTransfer.fi = 1/(0.79*ln(Inner.HeatTransfer.Re)-1.64)^2; 362 switch InnerLaminarCorrelation 363 364 case "Hausen": 365 Inner.HeatTransfer.Nu = 3.665 + ((0.19*((DiInner/Lpipe)*Inner.HeatTransfer.Re*Inner.HeatTransfer.PR)^0.8)/(1+0.117*((DiInner/Lpipe)*Inner.HeatTransfer.Re*Inner.HeatTransfer.PR)^0.467)); 366 367 case "Schlunder": 368 Inner.HeatTransfer.Nu = (49.027896+4.173281*Inner.HeatTransfer.Re*Inner.HeatTransfer.PR*(DiInner/Lpipe))^(1/3); 369 370 end 371 372 when Inner.HeatTransfer.Re > 2300 switchto "transition"; 373 374 case "transition": 375 376 Inner.HeatTransfer.fi = 1/(0.79*ln(Inner.HeatTransfer.Re)-1.64)^2; 377 switch InnerTransitionCorrelation 378 379 case "Gnielinski": 380 Inner.HeatTransfer.Nu*(1+(12.7*sqrt(0.125*Inner.HeatTransfer.fi)*((Inner.HeatTransfer.PR)^(2/3) -1))) = 0.125*Inner.HeatTransfer.fi*(Inner.HeatTransfer.Re-1000)*Inner.HeatTransfer.PR; 381 382 case "ESDU": 383 Inner.HeatTransfer.Nu =1;#to be implemented 384 385 end 386 387 when Inner.HeatTransfer.Re < 2300 switchto "laminar"; 388 when Inner.HeatTransfer.Re > 10000 switchto "turbulent"; 389 390 case "turbulent": 391 392 switch InnerTurbulentCorrelation 393 394 case "Petukhov": 395 Inner.HeatTransfer.fi = 1/(1.82*log(Inner.HeatTransfer.Re)-1.64)^2; 396 Inner.HeatTransfer.Nu*(1.07+(12.7*sqrt(0.125*Inner.HeatTransfer.fi)*((Inner.HeatTransfer.PR)^(2/3) -1))) = 0.125*Inner.HeatTransfer.fi*Inner.HeatTransfer.Re*Inner.HeatTransfer.PR; 397 398 case "SiederTate": 399 Inner.HeatTransfer.Nu = 0.027*(Inner.HeatTransfer.PR)^(1/3)*(Inner.HeatTransfer.Re)^(4/5); 400 Inner.HeatTransfer.fi = 1/(1.82*log(Inner.HeatTransfer.Re)-1.64)^2; 401 402 end 403 404 when Inner.HeatTransfer.Re < 10000 switchto "transition"; 405 406 end 407 408 switch outerFlowRegime 409 410 case "laminar": 411 412 Outer.HeatTransfer.fi = 1/(0.79*ln(Outer.HeatTransfer.Re)-1.64)^2; 413 switch OuterLaminarCorrelation 414 415 case "Hausen": 416 Outer.HeatTransfer.Nu = 3.665 + ((0.19*((Outer.HeatTransfer.Dh/Lpipe)*Outer.HeatTransfer.Re*Outer.HeatTransfer.PR)^0.8)/(1+0.117*((Outer.HeatTransfer.Dh/Lpipe)*Outer.HeatTransfer.Re*Outer.HeatTransfer.PR)^0.467)); 417 418 case "Schlunder": 419 Outer.HeatTransfer.Nu = (49.027896+4.173281*Outer.HeatTransfer.Re*Outer.HeatTransfer.PR*(Outer.HeatTransfer.Dh/Lpipe))^(1/3); 420 421 end 422 423 when Outer.HeatTransfer.Re > 2300 switchto "transition"; 424 425 case "transition": 426 427 switch OuterTransitionCorrelation 428 429 case "Gnielinski": 430 Outer.HeatTransfer.fi = 1/(0.79*ln(Outer.HeatTransfer.Re)-1.64)^2; 431 Outer.HeatTransfer.Nu*(1+(12.7*sqrt(0.125*Outer.HeatTransfer.fi)*((Outer.HeatTransfer.PR)^(2/3) -1))) = 0.125*Outer.HeatTransfer.fi*(Outer.HeatTransfer.Re-1000)*Outer.HeatTransfer.PR; 432 433 case "ESDU": 434 Outer.HeatTransfer.Nu =1;#to be implemented 435 Outer.HeatTransfer.fi = 1/(0.79*ln(Outer.HeatTransfer.Re)-1.64)^2; 436 end 437 438 when Outer.HeatTransfer.Re < 2300 switchto "laminar"; 439 when Outer.HeatTransfer.Re > 10000 switchto "turbulent"; 440 441 case "turbulent": 442 443 switch OuterTurbulentCorrelation 444 445 case "Petukhov": 446 Outer.HeatTransfer.fi = 1/(1.82*log(Outer.HeatTransfer.Re)-1.64)^2; 447 Outer.HeatTransfer.Nu*(1.07+(12.7*sqrt(0.125*Outer.HeatTransfer.fi)*((Outer.HeatTransfer.PR)^(2/3) -1))) = 0.125*Outer.HeatTransfer.fi*Outer.HeatTransfer.Re*Outer.HeatTransfer.PR; 448 449 case "SiederTate": 450 Outer.HeatTransfer.Nu = 0.027*(Outer.HeatTransfer.PR)^(1/3)*(Outer.HeatTransfer.Re)^(4/5); 451 Outer.HeatTransfer.fi = 1/(1.82*log(Outer.HeatTransfer.Re)-1.64)^2; 452 end 453 454 when Outer.HeatTransfer.Re < 10000 switchto "transition"; 455 456 end 457 458 459 switch HotSide 460 461 case "outer": 462 463 "Inner Pipe Film Coefficient" 464 Inner.HeatTransfer.hcoeff = (Inner.HeatTransfer.Nu*Properties.Cold.Average.K/DiInner)*Inner.HeatTransfer.Phi; 465 466 "Outer Pipe Film Coefficient" 467 Outer.HeatTransfer.hcoeff= (Outer.HeatTransfer.Nu*Properties.Hot.Average.K/Outer.HeatTransfer.Dh)*Outer.HeatTransfer.Phi; 468 359 469 "Pressure Drop Hot Stream" 360 470 Outlet.Hot.P = Inlet.Hot.P - Outer.PressureDrop.Pdrop; … … 363 473 Outlet.Cold.P = Inlet.Cold.P - Inner.PressureDrop.Pdrop; 364 474 365 "Outer Pipe Film Coefficient"366 Outer.HeatTransfer.hcoeff= HE.PipeFilmCoeff(Outer.HeatTransfer.Re,Outer.HeatTransfer.PR,Properties.Hot.Average.K,Outer.HeatTransfer.Dh,Lpipe)*Outer.HeatTransfer.Phi;367 368 "Inner Pipe Film Coefficient"369 Inner.HeatTransfer.hcoeff= HE.PipeFilmCoeff(Inner.HeatTransfer.Re,Inner.HeatTransfer.PR,Properties.Cold.Average.K,DiInner,Lpipe)*Inner.HeatTransfer.Phi;370 371 475 "Outer Pipe Pressure Drop" 372 476 Outer.PressureDrop.Pdrop = (2*Outer.PressureDrop.fi*Lpipe*Properties.Hot.Average.rho*Outer.HeatTransfer.Vmean^2)/(Outer.PressureDrop.Dh*Outer.HeatTransfer.Phi); … … 376 480 377 481 "Outer Pipe Phi correction" 378 Outer.HeatTransfer.Phi = HE.PhiCorrection(Properties.Hot.Average.Mu,Properties.Hot.Wall.Mu);482 Outer.HeatTransfer.Phi = (Properties.Hot.Average.Mu/Properties.Hot.Wall.Mu)^0.14; 379 483 380 484 "Inner Pipe Phi correction" 381 Inner.HeatTransfer.Phi = HE.PhiCorrection(Properties.Cold.Average.Mu,Properties.Cold.Wall.Mu);485 Inner.HeatTransfer.Phi = (Properties.Cold.Average.Mu/Properties.Cold.Wall.Mu)^0.14; 382 486 383 487 "Outer Pipe Prandtl Number" … … 405 509 Inner.HeatTransfer.Vmean*(Inner.HeatTransfer.As*Properties.Cold.Average.rho) = Properties.Cold.Inlet.Fw; 406 510 407 else 408 511 case "inner": 512 513 "Outer Pipe Film Coefficient" 514 Outer.HeatTransfer.hcoeff = (Outer.HeatTransfer.Nu*Properties.Cold.Average.K/Outer.HeatTransfer.Dh)*Outer.HeatTransfer.Phi; 515 516 "InnerPipe Film Coefficient" 517 Inner.HeatTransfer.hcoeff= (Inner.HeatTransfer.Nu*Properties.Hot.Average.K/DiInner)*Inner.HeatTransfer.Phi; 518 409 519 "Pressure Drop Hot Stream" 410 520 Outlet.Hot.P = Inlet.Hot.P - Inner.PressureDrop.Pdrop; … … 413 523 Outlet.Cold.P = Inlet.Cold.P - Outer.PressureDrop.Pdrop; 414 524 415 "Inner Pipe Film Coefficient"416 Inner.HeatTransfer.hcoeff= HE.PipeFilmCoeff(Inner.HeatTransfer.Re,Inner.HeatTransfer.PR,Properties.Hot.Average.K,DiInner,Lpipe)*Inner.HeatTransfer.Phi;417 418 "Outer Pipe Film Coefficient"419 Outer.HeatTransfer.hcoeff= HE.PipeFilmCoeff(Outer.HeatTransfer.Re,Outer.HeatTransfer.PR,Properties.Cold.Average.K,Outer.HeatTransfer.Dh,Lpipe)*Outer.HeatTransfer.Phi;420 421 525 "Outer Pipe Pressure Drop" 422 526 Outer.PressureDrop.Pdrop = (2*Outer.PressureDrop.fi*Lpipe*Properties.Cold.Average.rho*Outer.HeatTransfer.Vmean^2)/(Outer.PressureDrop.Dh*Outer.HeatTransfer.Phi); … … 426 530 427 531 "Outer Pipe Phi correction" 428 Outer.HeatTransfer.Phi = HE.PhiCorrection(Properties.Cold.Average.Mu,Properties.Cold.Wall.Mu);532 Outer.HeatTransfer.Phi = (Properties.Cold.Average.Mu/Properties.Cold.Wall.Mu)^0.14; 429 533 430 534 "Inner Pipe Phi correction" 431 Inner.HeatTransfer.Phi = HE.PhiCorrection(Properties.Hot.Average.Mu,Properties.Hot.Wall.Mu);535 Inner.HeatTransfer.Phi = (Properties.Hot.Average.Mu/Properties.Hot.Wall.Mu)^0.14; 432 536 433 537 "Outer Pipe Prandtl Number" … … 540 644 end 541 645 542 Model DoublePipe_LMTD as DoublePipe_Basic_LMTD646 Model DoublePipe_LMTD as DoublePipe_Basic_LMTD 543 647 544 648 ATTRIBUTES … … 547 651 Info = 548 652 "write some information"; 549 653 654 PARAMETERS 655 656 FlowDirection as Switcher(Brief="Flow Direction",Valid=["counter","cocurrent"],Default="cocurrent"); 657 550 658 EQUATIONS 551 659 552 if Side equal 0 553 554 then660 switch FlowDirection 661 662 case "cocurrent": 555 663 "Temperature Difference at Inlet - Cocurrent Flow" 556 664 DT0 = Inlet.Hot.T - Inlet.Cold.T; … … 559 667 DTL = Outlet.Hot.T - Outlet.Cold.T; 560 668 561 else669 case "counter": 562 670 "Temperature Difference at Inlet - Counter Flow" 563 671 DT0 = Inlet.Hot.T - Outlet.Cold.T; … … 576 684 Info = 577 685 "write some information"; 578 686 687 PARAMETERS 688 689 FlowDirection as Switcher(Brief="Flow Direction",Valid=["counter","cocurrent"],Default="cocurrent"); 690 579 691 EQUATIONS 580 692 … … 587 699 else 588 700 589 if Side equal 0 590 591 then 701 switch FlowDirection 702 703 case "cocurrent": 704 592 705 "Effectiveness in Cocurrent Flow" 593 706 Eft*(1+Details.Cr) = (1-exp(-Details.NTU*(1+Details.Cr))); 594 707 595 else708 case "counter": 596 709 597 710 if Details.Cr equal 1 -
branches/newlanguage/eml/heat_exchangers/HEX_Engine.mso
r147 r150 391 391 "write some information"; 392 392 393 PARAMETERS 394 As as area (Brief="Cross Sectional Area for Flow",Default=0.05,Lower=1e-8); 395 Dh as length (Brief="Hydraulic Diameter of Pipe for Heat Transfer",Lower=1e-8); 396 397 VARIABLES 393 VARIABLES 394 As as area (Brief="Cross Sectional Area for Flow",Default=0.05,Lower=1e-8); 395 Dh as length (Brief="Hydraulic Diameter of Pipe for Heat Transfer",Lower=1e-8); 398 396 Re as positive (Brief="Reynolds Number",Default=100,Lower=1); 399 397 hcoeff as heat_trans_coeff (Brief="Film Coefficient",Default=1,Lower=1e-12, Upper=1e6); 398 fi as fricfactor (Brief="Friction Factor", Default=0.05, Lower=1e-10, Upper=2000); 399 Nu as positive (Brief="Nusselt Number",Default=0.5,Lower=1e-8); 400 400 PR as positive (Brief="Prandtl Number",Default=0.5,Lower=1e-8); 401 401 Phi as positive (Brief="Phi Correction",Default=1,Lower=1e-3); … … 412 412 "write some information"; 413 413 414 PARAMETERS 414 VARIABLES 415 415 416 Dh as length (Brief="Hydraulic Diameter of Pipe for Pressure Drop",Lower=1e-6); 416 417 VARIABLES418 417 Pdrop as press_delta (Brief="Pressure Drop",Default=0.01, Lower=1e-10); 419 418 fi as fricfactor (Brief="Friction Factor", Default=0.05, Lower=1e-10, Upper=2000);
Note: See TracChangeset
for help on using the changeset viewer.