source: trunk/sample/miscellaneous/FDM/FDM.mso @ 977

Last change on this file since 977 was 977, checked in by Argimiro Resende Secchi, 6 years ago

examples of finite difference

File size: 2.0 KB
Line 
1#*---------------------------------------------------------------------
2* EMSO Model Library (EML) Copyright (C) 2004 - 2016 ALSOC.
3*
4* This LIBRARY is free software; you can distribute it and/or modify
5* it under the therms of the ALSOC FREE LICENSE as available at
6* http://www.enq.ufrgs.br/alsoc.
7*
8* EMSO Copyright (C) 2004 - 2016 ALSOC, original code
9* from http://www.rps.eng.br Copyright (C) 2002-2004.
10* All rights reserved.
11*
12* EMSO is distributed under the therms of the ALSOC LICENSE as
13* available at http://www.enq.ufrgs.br/alsoc.
14*
15*----------------------------------------------------------------------
16* Author: Argimiro R. Secchi
17* COPPE/UFRJ - Group of Modeling, Simulation, Control,
18*                               and Optimization of Processes
19* $Id$
20*--------------------------------------------------------------------*#
21
22using "types";
23
24Model MDF
25       
26        PARAMETERS
27        opcao as Switcher (Valid=["MDF1"],Default="MDF1");
28        N as Integer (Brief="Number of discretization points");
29        xi as Real(Brief="Lower boundary");
30        xf as Real(Brief="Uppper boundary");
31
32        VARIABLES
33        x(N+1) as Real(Brief="mesh points");
34        dx as Real(Brief="mesh interval");
35
36        y(N+1) as Real(Brief="Dependent variable");
37        dif1x(N+1) as Real(Brief="First derivative of y");
38        dif2x(N) as Real(Brief="Second derivative of y");
39       
40        EQUATIONS
41       
42        #mesh uniform interval
43        dx=(xf-xi)/N;
44
45        #mesh points
46        for i in [1:N+1] do
47               
48                x(i) = xi + (i-1)*dx;
49       
50        end
51
52        switch opcao
53       
54                case "MDF1":
55                        #First derivative approximation at boundary x=x0
56                        dif1x(1)=(y(2)-y(1))/(dx);
57       
58                        #First derivative approximation at boundary x=xf
59                        dif1x(N+1)=(y(N+1)-y(N))/(dx);
60       
61                        #First derivative approximation at internal points
62                        for i in [2:N] do
63                                dif1x(i)=(y(i+1)-y(i-1))/(2*(dx));
64                        end
65       
66                        dif2x(1) = 0; # dummy
67                        #Second derivative approximation at internal points
68                        for i in [2:N] do
69                                dif2x(i)=(y(i+1) - 2*y(i) + y(i-1))/((dx)^2);
70                        end
71               
72                #case "MDF2":
73               
74                        #ADD OTHER SCHEMES
75                       
76        end             
77
78end
Note: See TracBrowser for help on using the repository browser.