1 | #*------------------------------------------------------------------- |
---|
2 | * EMSO Model Library (EML) Copyright (C) 2004 - 2007 ALSOC. |
---|
3 | * |
---|
4 | * This LIBRARY is free software; you can distribute it and/or modify |
---|
5 | * it under the therms of the ALSOC FREE LICENSE as available at |
---|
6 | * http://www.enq.ufrgs.br/alsoc. |
---|
7 | * |
---|
8 | * EMSO Copyright (C) 2004 - 2007 ALSOC, original code |
---|
9 | * from http://www.rps.eng.br Copyright (C) 2002-2004. |
---|
10 | * All rights reserved. |
---|
11 | * |
---|
12 | * EMSO is distributed under the therms of the ALSOC LICENSE as |
---|
13 | * available at http://www.enq.ufrgs.br/alsoc. |
---|
14 | * |
---|
15 | *-------------------------------------------------------------------- |
---|
16 | * Models to simulate a power plant. |
---|
17 | *-------------------------------------------------------------------- |
---|
18 | * Author: Argimiro R. Secchi |
---|
19 | * $Id: power_plant.mso 195 2007-03-07 20:30:12Z arge $ |
---|
20 | *-------------------------------------------------------------------*# |
---|
21 | |
---|
22 | # Declaracao de tipos |
---|
23 | CalorEspecifico as Real(Default=1e-3,Lower=0,Upper=1,Unit='MJ/kg/K'); |
---|
24 | CoefGlobal_area as Real(Default=10,Lower=0,Upper=1e3,Unit='1000*kW/K'); |
---|
25 | Dif_Pres as Real(Default=0,Lower=-50,Upper=50,Unit='MPa'); |
---|
26 | Dif_Temp as Real(Default=0,Lower=-300,Upper=300,Unit='K'); |
---|
27 | Eficiencia as Real(Default=0.75,Lower=0,Upper=1); |
---|
28 | EnergiaInterna as Real(Default=2,Lower=0,Upper=10,Unit='MJ/kg'); |
---|
29 | Entalpia as Real(Default=3,Lower=1e-3,Upper=7,Unit='MJ/kg'); |
---|
30 | EntalpiaMol as Real(Default=3,Lower=1e-3,Upper=7,Unit='kJ/kmol'); |
---|
31 | Entropia as Real(Default=5,Lower=1e-3,Upper=10,Unit='kJ/kg/K'); |
---|
32 | Fracao as Real(Default=0.5,Lower=0,Upper=1); |
---|
33 | Potencia as Real(Default=10,Lower=0,Upper=500,Unit='1000*kW', Color="Red"); |
---|
34 | Pressao as Real(Default=1,Lower=5e-4,Upper=20,Unit='MPa'); |
---|
35 | MassaEspecifica as Real(Default=1e3,Lower=1e-3,Upper=1e6,Unit='kg/m^3'); |
---|
36 | NoType as Real(Default=1,Lower=-2,Upper=2); |
---|
37 | Temperatura as Real(Default=600,Lower=273.16,Upper=900,Unit='K'); |
---|
38 | VazaoMassica as Real(Default=50,Lower=0,Upper=1e4,Unit='kg/s'); |
---|
39 | VolumeEspecifico as Real(Default=1e-3,Lower=1e-6,Upper=500,Unit='m^3/kg'); |
---|
40 | Pot_sinal as Potencia(Color="Red", LineDashed=true); |
---|
41 | positive as Real (Brief = "Positive General Constant", Default=1.0, Lower=-1e-6); |
---|
42 | mol as positive (Brief = "Moles", Default=2500, Upper=1e9, final Unit = 'kmol'); |
---|
43 | fraction as Real (Brief = "Fraction" , Default=0.5, Lower=-1e-6, Upper=1.00001); |
---|
44 | molweight as Real (Brief = "Molar Weight", Default=75, Lower=1, Upper=1e8, final Unit = 'kg/kmol'); |
---|
45 | Volume as Real (Default=1e-3,Lower=1e-6,Upper=500,Unit='m^3'); |
---|
46 | Reacao_mol as Real (Brief = "Molar Reaction Rate", Default=0, Lower=-1e6, Upper=1e6, final Unit = 'kmol/h/m^3'); |
---|
47 | VazaoMolar as Real(Default=50,Lower=0,Upper=1e4,Unit='kmol/s'); |
---|
48 | |
---|
49 | Model Corrente |
---|
50 | #Brief="Corrente para conexão entre os equipamentos" |
---|
51 | VARIABLES |
---|
52 | F as VazaoMassica; |
---|
53 | P as Pressao; |
---|
54 | T as Temperatura; |
---|
55 | S as Entropia; # (Lower=-2); |
---|
56 | H as Entalpia; # (Lower=-100); |
---|
57 | end |
---|
58 | |
---|
59 | Model CorrenteZ as Corrente |
---|
60 | PARAMETERS |
---|
61 | outer Ncomp as Integer; |
---|
62 | |
---|
63 | VARIABLES |
---|
64 | z(NComp) as fraction; |
---|
65 | end |
---|
66 | |
---|
67 | Model CorrenteVap as CorrenteZ |
---|
68 | ATTRIBUTES |
---|
69 | Pallete = false; |
---|
70 | Brief = "Vapour Material Stream"; |
---|
71 | Info = |
---|
72 | "Model for vapour material streams. |
---|
73 | This model should be used only when the phase of the stream |
---|
74 | is known ''a priori''."; |
---|
75 | |
---|
76 | PARAMETERS |
---|
77 | outer PP as Plugin(Brief = "External Physical Properties"); |
---|
78 | |
---|
79 | EQUATIONS |
---|
80 | "Vapour Enthalpy" |
---|
81 | H = PP.VapourEnthalpy(T, P, z); |
---|
82 | "Vapour Entropy" |
---|
83 | S = PP.VapourEntropy(T, P, z); |
---|
84 | end |
---|
85 | |
---|
86 | Model Fonte2 |
---|
87 | ATTRIBUTES |
---|
88 | Pallete = true; |
---|
89 | Icon = "icon/fonte2"; |
---|
90 | Brief="Corrente de saída"; |
---|
91 | Info = " "; |
---|
92 | |
---|
93 | PARAMETERS |
---|
94 | outer PP2 as Plugin(Brief="Steam tables"); |
---|
95 | |
---|
96 | VARIABLES |
---|
97 | out Fout as Corrente(Symbol="_{out}", PosX = 1, PosY = 0.5); |
---|
98 | |
---|
99 | EQUATIONS |
---|
100 | [Fout.S,Fout.H] = PP2.propPTl(Fout.P,Fout.T); |
---|
101 | end |
---|
102 | |
---|
103 | |
---|
104 | Model Sumidouro |
---|
105 | ATTRIBUTES |
---|
106 | Pallete = true; |
---|
107 | Icon = "icon/sumidouro"; |
---|
108 | Brief="Sumidouro de corrente de processo"; |
---|
109 | Info = " "; |
---|
110 | |
---|
111 | VARIABLES |
---|
112 | in Fin as Corrente(Symbol="_{in}", PosX = 0, PosY = 0.5 ); |
---|
113 | end |
---|
114 | |
---|
115 | |
---|
116 | Model SumidouroQ |
---|
117 | ATTRIBUTES |
---|
118 | Pallete = true; |
---|
119 | Icon = "icon/sumidouroQ"; |
---|
120 | Brief="Sumidouro de calor"; |
---|
121 | |
---|
122 | VARIABLES |
---|
123 | in Qin as Potencia(Symbol="_{in}", PosX = 0, PosY = 0.5); |
---|
124 | end |
---|
125 | |
---|
126 | |
---|
127 | # Modelo de turbina sem sangria |
---|
128 | Model Turbina |
---|
129 | ATTRIBUTES |
---|
130 | Pallete = true; |
---|
131 | Icon = "icon/turbina"; |
---|
132 | |
---|
133 | |
---|
134 | PARAMETERS |
---|
135 | outer PP2 as Plugin(Brief="Steam tables"); |
---|
136 | |
---|
137 | VARIABLES |
---|
138 | H_IS as Entalpia; |
---|
139 | EF_T as Eficiencia (Brief="Eficiencia da turbina"); |
---|
140 | in Fin as Corrente (Symbol="_{in}", PosX = 0, PosY = 0.25); |
---|
141 | out POT_TURB as Potencia (Brief="Potencia da turbina",PosX = 1, PosY = 0.5); |
---|
142 | out Fout as Corrente (Symbol="_{out}", PosX = 1, PosY = 1); |
---|
143 | |
---|
144 | EQUATIONS |
---|
145 | |
---|
146 | H_IS = PP2.propPS(Fout.P,Fin.S); |
---|
147 | |
---|
148 | Fout.H = (H_IS - Fin.H) * EF_T + Fin.H; |
---|
149 | |
---|
150 | [Fout.S,Fout.T] = PP2.propPH(Fout.P,Fout.H); |
---|
151 | |
---|
152 | Fin.F * (Fin.H - Fout.H) = POT_TURB; |
---|
153 | |
---|
154 | Fout.F = Fin.F; |
---|
155 | end |
---|
156 | |
---|
157 | # Modelo de turbina com sangria |
---|
158 | Model Turbina_sangra |
---|
159 | ATTRIBUTES |
---|
160 | Pallete = true; |
---|
161 | Icon = "icon/turbina_sa"; |
---|
162 | |
---|
163 | |
---|
164 | PARAMETERS |
---|
165 | outer PP2 as Plugin(Brief="Steam tables"); |
---|
166 | |
---|
167 | VARIABLES |
---|
168 | H_IS as Entalpia; |
---|
169 | EF_T as Eficiencia(Brief="Eficiencia da turbina"); |
---|
170 | out POT_TURB as Potencia(Brief="Potencia da turbina", PosX = 0.9, PosY = 0.45); |
---|
171 | y as Fracao(Brief="Fracao massica da sangria"); |
---|
172 | in Fin as Corrente (Symbol="_{in}", PosX = 0, PosY = 0.25); |
---|
173 | out Fout as Corrente (Symbol="_{out}", PosX = 1, PosY = 0.85); |
---|
174 | out Fouts as Corrente (Symbol="_{outx}", PosX = 0.85, PosY = 1); #(Brief="Sangria da Turbina"); |
---|
175 | |
---|
176 | EQUATIONS |
---|
177 | |
---|
178 | H_IS = PP2.propPS(Fout.P,Fin.S); |
---|
179 | |
---|
180 | Fout.H = (H_IS - Fin.H) * EF_T + Fin.H; |
---|
181 | |
---|
182 | [Fout.S,Fout.T] = PP2.propPH(Fout.P,Fout.H); |
---|
183 | |
---|
184 | Fin.F * (Fin.H - Fout.H) = POT_TURB; |
---|
185 | |
---|
186 | Fouts.F = Fin.F * y; |
---|
187 | Fout.F = Fin.F - Fouts.F; |
---|
188 | Fouts.P = Fout.P; |
---|
189 | Fouts.T = Fout.T; |
---|
190 | Fouts.S = Fout.S; |
---|
191 | Fouts.H = Fout.H; |
---|
192 | end |
---|
193 | |
---|
194 | # Modelo de condensador com uma alimentacao |
---|
195 | Model Condensador |
---|
196 | ATTRIBUTES |
---|
197 | Pallete = true; |
---|
198 | Icon = "icon/condensador"; |
---|
199 | |
---|
200 | PARAMETERS |
---|
201 | outer PP2 as Plugin(Brief="Steam tables"); |
---|
202 | |
---|
203 | VARIABLES |
---|
204 | out Q_COND as Potencia (Brief="Taxa de calor removido",PosX = 1, PosY = 0.5); |
---|
205 | G_S as Dif_Temp (Brief="Grau de sub-resfriamento"); |
---|
206 | in Fin as Corrente (Symbol="_{in}", PosX = 0.5, PosY = 0); |
---|
207 | out Fout as Corrente (Symbol="_{out}", PosX = 0.5, PosY = 1); |
---|
208 | |
---|
209 | EQUATIONS |
---|
210 | |
---|
211 | Fout.P = Fin.P; |
---|
212 | Fout.T = PP2.Tsat(Fout.P) - G_S; |
---|
213 | |
---|
214 | [Fout.S,Fout.H] = PP2.propPTl(Fout.P,Fout.T); |
---|
215 | |
---|
216 | Q_COND = Fin.F * (Fin.H - Fout.H); |
---|
217 | Fout.F = Fin.F; |
---|
218 | end |
---|
219 | |
---|
220 | # Modelo de condensador com duas alimentacoes |
---|
221 | Model Condensador_2alim |
---|
222 | PARAMETERS |
---|
223 | outer PP2 as Plugin(Brief="Steam tables"); |
---|
224 | |
---|
225 | VARIABLES |
---|
226 | Q_COND as Potencia (Brief="Taxa de calor removido"); |
---|
227 | G_S as Dif_Temp (Brief="Grau de sub-resfriamento"); |
---|
228 | in Fin1 as Corrente (Brief="Corrente com pressao igual a saida", Symbol="_{in1}"); |
---|
229 | in Fin2 as Corrente (Symbol="_{in2}"); |
---|
230 | out Fout as Corrente (Symbol="_{out}"); |
---|
231 | |
---|
232 | EQUATIONS |
---|
233 | |
---|
234 | Fout.P = Fin1.P; |
---|
235 | Fout.T = PP2.Tsat(Fout.P) - G_S; |
---|
236 | |
---|
237 | [Fout.S,Fout.H] = PP2.propPTl(Fout.P,Fout.T); |
---|
238 | |
---|
239 | Fout.F = Fin1.F + Fin2.F; |
---|
240 | Q_COND = Fin1.F * Fin1.H + Fin2.F * Fin2.H - Fout.F * Fout.H; |
---|
241 | end |
---|
242 | |
---|
243 | # Modelo de tanque de armazenamento com dois alimentacoes |
---|
244 | Model Tanque2 |
---|
245 | ATTRIBUTES |
---|
246 | Pallete = true; |
---|
247 | Icon = "icon/tanque2"; |
---|
248 | PARAMETERS |
---|
249 | outer PP2 as Plugin(Brief="Steam tables"); |
---|
250 | |
---|
251 | VARIABLES |
---|
252 | in Fin1 as Corrente (Symbol="_{in1}",PosX = 0.1, PosY = 0.20); |
---|
253 | in Fin2 as Corrente (Symbol="_{in2}",PosX = 0.1, PosY = 0.79); |
---|
254 | out Fout as Corrente (Symbol="_{out}",PosX = 0.9, PosY = 0.5); |
---|
255 | |
---|
256 | EQUATIONS |
---|
257 | |
---|
258 | Fout.F = Fin1.F + Fin2.F; |
---|
259 | Fout.F * Fout.H = Fin1.F * Fin1.H + Fin2.F * Fin2.H; |
---|
260 | |
---|
261 | [Fout.S,Fout.T] = PP2.propPH(Fout.P,Fout.H); |
---|
262 | end |
---|
263 | |
---|
264 | # Modelo de tanque de armazenamento com tres alimentacoes sem perdas |
---|
265 | Model Tanque |
---|
266 | PARAMETERS |
---|
267 | outer PP2 as Plugin(Brief="Steam tables"); |
---|
268 | |
---|
269 | VARIABLES |
---|
270 | in Fin1 as Corrente (Symbol="_{in1}"); |
---|
271 | in Fin2 as Corrente (Symbol="_{in2}"); |
---|
272 | in Fin3 as Corrente (Symbol="_{in3}"); |
---|
273 | out Fout as Corrente (Symbol="_{out}"); |
---|
274 | |
---|
275 | EQUATIONS |
---|
276 | |
---|
277 | Fout.F = Fin1.F + Fin2.F + Fin3.F; |
---|
278 | Fout.F * Fout.H = Fin1.F * Fin1.H + Fin2.F * Fin2.H + Fin3.F * Fin3.H; |
---|
279 | |
---|
280 | [Fout.S,Fout.T] = PP2.propPH(Fout.P,Fout.H); |
---|
281 | end |
---|
282 | |
---|
283 | # Modelo de tanque de armazenamento com tres alimentacoes e perdas |
---|
284 | Model Tanque3 |
---|
285 | PARAMETERS |
---|
286 | outer PP2 as Plugin(Brief="Steam tables"); |
---|
287 | |
---|
288 | VARIABLES |
---|
289 | in Fin1 as Corrente (Symbol="_{in1}"); |
---|
290 | in Fin2 as Corrente (Symbol="_{in2}"); |
---|
291 | in Fin3 as Corrente (Symbol="_{in3}"); |
---|
292 | out Fout as Corrente (Symbol="_{out}"); |
---|
293 | out Fperda as Corrente (Symbol="_{perda}"); |
---|
294 | |
---|
295 | EQUATIONS |
---|
296 | |
---|
297 | Fout.F = Fin1.F + Fin2.F + Fin3.F - Fperda.F; |
---|
298 | Fout.F * Fout.H = Fin1.F * Fin1.H + Fin2.F * Fin2.H + Fin3.F * Fin3.H - Fperda.F*Fperda.H; |
---|
299 | |
---|
300 | [Fout.S,Fout.T] = PP2.propPH(Fout.P,Fout.H); |
---|
301 | Fperda.S = Fout.S; |
---|
302 | Fperda.T = Fout.T; |
---|
303 | Fperda.P = Fout.P; |
---|
304 | Fperda.H = Fout.H; |
---|
305 | |
---|
306 | end |
---|
307 | |
---|
308 | |
---|
309 | # Modelo de tanque de armazenamento com quatro alimentacoes |
---|
310 | Model Tanque4 |
---|
311 | PARAMETERS |
---|
312 | outer PP2 as Plugin(Brief="Steam tables"); |
---|
313 | |
---|
314 | VARIABLES |
---|
315 | in Fin1 as Corrente (Symbol="_{in1}"); |
---|
316 | in Fin2 as Corrente (Symbol="_{in2}"); |
---|
317 | in Fin3 as Corrente (Symbol="_{in3}"); |
---|
318 | in Fin4 as Corrente (Symbol="_{in4}"); |
---|
319 | out Fout as Corrente (Symbol="_{out}"); |
---|
320 | |
---|
321 | EQUATIONS |
---|
322 | |
---|
323 | Fout.F = Fin1.F + Fin2.F + Fin3.F + Fin4.F; |
---|
324 | Fout.F * Fout.H = Fin1.F * Fin1.H + Fin2.F * Fin2.H + Fin3.F * Fin3.H + Fin4.F * Fin4.H; |
---|
325 | |
---|
326 | [Fout.S,Fout.T] = PP2.propPH(Fout.P,Fout.H); |
---|
327 | end |
---|
328 | |
---|
329 | |
---|
330 | # Modelo de tanque de armazenamento com quatro alimentacoes e perdas |
---|
331 | |
---|
332 | |
---|
333 | |
---|
334 | Model Tanque4perdas |
---|
335 | ATTRIBUTES |
---|
336 | Pallete = true; |
---|
337 | Icon = "icon/tanque4perdas"; |
---|
338 | |
---|
339 | PARAMETERS |
---|
340 | outer PP2 as Plugin(Brief="Steam tables"); |
---|
341 | |
---|
342 | VARIABLES |
---|
343 | y as Fracao(Brief="Fracao massica de perdas"); |
---|
344 | Fsalida as VazaoMassica; |
---|
345 | in Fin1 as Corrente (Symbol="_{in1}", PosX = 0.1, PosY = 0.16); |
---|
346 | in Fin2 as Corrente (Symbol="_{in2}", PosX = 0.1, PosY = 0.35); |
---|
347 | in Fin3 as Corrente (Symbol="_{in3}", PosX = 0.1, PosY = 0.55); |
---|
348 | in Fin4 as Corrente (Symbol="_{in4}", PosX = 0.1, PosY = 0.75); |
---|
349 | out Fout as Corrente (Symbol="_{out}", PosX = 1, PosY = 0.45); |
---|
350 | out Fperda as Corrente (Symbol="_{perdas}",PosX = 0.5, PosY = 1); |
---|
351 | |
---|
352 | EQUATIONS |
---|
353 | |
---|
354 | Fout.F = Fin1.F + Fin2.F + Fin3.F + Fin4.F - Fperda.F; |
---|
355 | Fsalida= Fin1.F + Fin2.F + Fin3.F + Fin4.F; |
---|
356 | Fperda.F=y*Fsalida; |
---|
357 | |
---|
358 | Fout.F * Fout.H = Fin1.F * Fin1.H + Fin2.F * Fin2.H + Fin3.F * Fin3.H + |
---|
359 | Fin4.F * Fin4.H - Fperda.F*Fperda.H; |
---|
360 | |
---|
361 | [Fout.S,Fout.T] = PP2.propPH(Fout.P,Fout.H); |
---|
362 | Fperda.S = Fout.S; |
---|
363 | Fperda.T = Fout.T; |
---|
364 | Fperda.P = Fout.P; |
---|
365 | Fperda.H = Fout.H; |
---|
366 | end |
---|
367 | |
---|
368 | # Modelo de desaerador (tanque) com 5 entradas e saída líquido saturado (x=0) |
---|
369 | Model Desaerador5 |
---|
370 | ATTRIBUTES |
---|
371 | Pallete = true; |
---|
372 | Icon = "icon/desaerador"; |
---|
373 | PARAMETERS |
---|
374 | outer PP2 as Plugin(Brief="Steam tables"); |
---|
375 | |
---|
376 | VARIABLES |
---|
377 | in Fin1 as Corrente (Symbol="_{in1}", PosX = 1, PosY = 0.2); |
---|
378 | in Fin2 as Corrente (Symbol="_{in2}", PosX = 1, PosY = 0.45); |
---|
379 | in Fin3 as Corrente (Symbol="_{in3}", PosX = 1, PosY = 0.7); |
---|
380 | in Fin4 as Corrente (Symbol="_{in4}", PosX = 1, PosY = 0.9); |
---|
381 | in Fin5 as Corrente (Symbol="_{in5}", PosX = 0.5, PosY = 0); |
---|
382 | out Fout as Corrente (Symbol="_{out}", PosX = 0, PosY = 0.85); |
---|
383 | |
---|
384 | EQUATIONS |
---|
385 | |
---|
386 | Fout.F = Fin1.F + Fin2.F + Fin3.F + Fin4.F + Fin5.F; |
---|
387 | Fout.F * Fout.H = Fin1.F * Fin1.H + Fin2.F * Fin2.H + Fin3.F * Fin3.H + Fin4.F * Fin4.H + Fin5.F * Fin5.H; |
---|
388 | #Fout.T = PP2.Tsat(Fout.P); |
---|
389 | |
---|
390 | [Fout.S,Fout.H] = PP2.propPTl(Fout.P,Fout.T); |
---|
391 | end |
---|
392 | |
---|
393 | # Modelo de trocador de calor, dada a carga termica |
---|
394 | Model Trocador |
---|
395 | PARAMETERS |
---|
396 | outer PP2 as Plugin(Brief="Steam tables"); |
---|
397 | |
---|
398 | VARIABLES |
---|
399 | Q as Potencia; |
---|
400 | DP as Dif_Pres; |
---|
401 | in Fin as Corrente (Symbol="_{in}"); |
---|
402 | out Fout as Corrente (Symbol="_{out}"); |
---|
403 | |
---|
404 | EQUATIONS |
---|
405 | |
---|
406 | Fout.F = Fin.F; |
---|
407 | Fout.P = Fin.P - DP; |
---|
408 | Fout.F * (Fout.H - Fin.H) = Q; |
---|
409 | [Fout.S,Fout.T] = PP2.propPH(Fout.P,Fout.H); |
---|
410 | end |
---|
411 | |
---|
412 | # Modelo de torre de refrigeracao |
---|
413 | Model Torre |
---|
414 | ATTRIBUTES |
---|
415 | Pallete = true; |
---|
416 | Icon = "icon/torreresf"; |
---|
417 | |
---|
418 | PARAMETERS |
---|
419 | cpa as CalorEspecifico; |
---|
420 | |
---|
421 | VARIABLES |
---|
422 | F as VazaoMassica; |
---|
423 | in Qin as Potencia (Symbol="_{in1}", PosX = 0.1, PosY = 0.5); |
---|
424 | DTh as Dif_Temp; |
---|
425 | DTc as Dif_Temp; |
---|
426 | DTar as Dif_Temp; # grau de aquecimento do ar |
---|
427 | Th as Temperatura; |
---|
428 | Tc as Temperatura; |
---|
429 | Tar_c as Temperatura; |
---|
430 | Tar_h as Temperatura; |
---|
431 | Uat as CoefGlobal_area; |
---|
432 | |
---|
433 | EQUATIONS |
---|
434 | |
---|
435 | DTar = Tar_h - Tar_c; |
---|
436 | DTh = Th - Tar_h; |
---|
437 | DTc = Tc - Tar_c; |
---|
438 | F * cpa * (Th - Tc) = Qin; |
---|
439 | Uat * (DTh - DTc) = Qin * ln(abs(DTh/DTc)); |
---|
440 | # Uat * 0.5 * (DTh + DTc) = Qin; |
---|
441 | end |
---|
442 | |
---|
443 | # Modelo de bomba |
---|
444 | Model Bomba |
---|
445 | ATTRIBUTES |
---|
446 | Pallete = true; |
---|
447 | Icon = "icon/bomba1"; |
---|
448 | |
---|
449 | |
---|
450 | PARAMETERS |
---|
451 | outer PP2 as Plugin(Brief="Steam tables"); |
---|
452 | # v_esp as VolumeEspecifico; |
---|
453 | |
---|
454 | VARIABLES |
---|
455 | H_IS as Entalpia; |
---|
456 | out POT_BMB as Pot_sinal(Brief="Potencia do motor da bomba", PosX = 0.5, PosY = 1 ); |
---|
457 | POT_EF as Potencia(Brief="Potencia injetada pela bomba"); |
---|
458 | EF_B as Eficiencia(Brief="Eficiencia da bomba"); |
---|
459 | in Fin as Corrente (Symbol="_{in}"); |
---|
460 | out Fout as Corrente (Symbol="_{out}",PosX = 0, PosY = 0.2); |
---|
461 | v_esp as VolumeEspecifico; |
---|
462 | |
---|
463 | EQUATIONS |
---|
464 | |
---|
465 | v_esp = PP2.Vesp(Fin.P,Fin.T); |
---|
466 | |
---|
467 | H_IS = PP2.propPS(Fout.P,Fin.S); |
---|
468 | |
---|
469 | (Fout.H - Fin.H) * EF_B = H_IS - Fin.H; |
---|
470 | # (Fout.H - Fin.H) * Fin.F = POT_EF; # Forma alternativa |
---|
471 | |
---|
472 | [Fout.S,Fout.T] = PP2.propPH(Fout.P,Fout.H); |
---|
473 | |
---|
474 | POT_EF = POT_BMB * EF_B; |
---|
475 | POT_EF = Fin.F * v_esp * (Fout.P - Fin.P); |
---|
476 | Fout.F = Fin.F; |
---|
477 | end |
---|
478 | |
---|
479 | |
---|
480 | # Modelo de gerador de vapor |
---|
481 | Model Gerador_Vapor |
---|
482 | ATTRIBUTES |
---|
483 | Pallete = true; |
---|
484 | Icon = "icon/caldeira"; |
---|
485 | |
---|
486 | PARAMETERS |
---|
487 | outer PP2 as Plugin(Brief="Steam tables"); |
---|
488 | |
---|
489 | VARIABLES |
---|
490 | out Q_GV as Pot_sinal (Brief="Taxa de calor gerado na caldeira", PosX = 1, PosY = 0.5); |
---|
491 | EF_GV as Eficiencia (Brief="Eficiencia do gerador de vapor"); |
---|
492 | Qra as Potencia (Brief="Taxa de calor nos reaquecedores"); |
---|
493 | Qsa as Potencia (Brief="Taxa de calor nos superaquecedores"); |
---|
494 | Qca as Potencia (Brief="Taxa de calor no evaporador"); |
---|
495 | Qec as Potencia (Brief="Taxa de calor nos economizadores"); |
---|
496 | in Fin_a as Corrente (Brief="Agua de alimentacao", Symbol="_{in_a}", PosX = 0.5, PosY = 1); |
---|
497 | in Fin_ra as Corrente (Brief="Vapor a ser Reaquecido", Symbol="_{in_ra}", PosX = 0.7, PosY = 1); |
---|
498 | out Fout_sa as Corrente (Brief="Vapor Superaquecido", Symbol="_{out_sa}", PosX = 0.5, PosY = 0); |
---|
499 | out Fout_ra as Corrente (Brief="Vapor Reaquecido", Symbol="_{out_ra}", PosX = 0.7, PosY = 0); |
---|
500 | Fvap as Corrente (Brief="Evaporador"); |
---|
501 | Feco as Corrente (Brief="Economizadores"); |
---|
502 | |
---|
503 | EQUATIONS |
---|
504 | |
---|
505 | # [Fin_a.S,Fin_a.H] = PP2.propPTl(Fin_a.P,Fin_a.T); # Reduntante no ciclo fechado |
---|
506 | |
---|
507 | "Economizadores ECO1 + ECO1" |
---|
508 | # Feco.F = Fin_a.F; # Reduntante no ciclo fechado |
---|
509 | [Feco.S,Feco.H] = PP2.propPTv(Feco.P,Feco.T); |
---|
510 | Qec = Feco.F * (Feco.H - Fin_a.H); |
---|
511 | |
---|
512 | "Evaporador - Camisa dagua" |
---|
513 | Fvap.F = Feco.F; |
---|
514 | [Fvap.S,Fvap.H] = PP2.propPTv(Fvap.P,Fvap.T); |
---|
515 | Qca = Fvap.F * (Fvap.H - Feco.H); |
---|
516 | |
---|
517 | "Superaquecedores BT + AT" |
---|
518 | Fout_sa.F = Fvap.F; |
---|
519 | [Fout_sa.S,Fout_sa.H] = PP2.propPTv(Fout_sa.P,Fout_sa.T); |
---|
520 | Qsa = Fout_sa.F * (Fout_sa.H - Fvap.H); |
---|
521 | |
---|
522 | "Reaquecedores BT + AT" |
---|
523 | Fout_ra.F = Fin_ra.F; |
---|
524 | [Fout_ra.S,Fout_ra.H] = PP2.propPTv(Fout_ra.P,Fout_ra.T); |
---|
525 | Qra = Fout_ra.F * (Fout_ra.H - Fin_ra.H); |
---|
526 | |
---|
527 | "Caldeira" |
---|
528 | Q_GV * EF_GV = Qec + Qca + Qsa + Qra; |
---|
529 | end |
---|
530 | |
---|
531 | |
---|
532 | # Modelo de gerador de vapor modificado |
---|
533 | Model Gerador_VaporMod |
---|
534 | ATTRIBUTES |
---|
535 | Pallete = true; |
---|
536 | Icon = "icon/caldeira"; |
---|
537 | |
---|
538 | |
---|
539 | PARAMETERS |
---|
540 | outer PP2 as Plugin(Brief="Steam tables"); |
---|
541 | |
---|
542 | VARIABLES |
---|
543 | out Q_GV as Pot_sinal (Brief="Taxa de calor gerado na caldeira", PosX = 1, PosY = 0.5); |
---|
544 | EF_GV as Eficiencia (Brief="Eficiencia do gerador de vapor"); |
---|
545 | Qpre as Potencia (Brief="Taxa de calor no pre aquecedor de ar"); |
---|
546 | Qsa as Potencia (Brief="Taxa de calor nos superaquecedores"); |
---|
547 | Qca as Potencia (Brief="Taxa de calor no evaporador"); |
---|
548 | Qec as Potencia (Brief="Taxa de calor nos economizadores"); |
---|
549 | in Fin_a as Corrente (Brief="Agua de alimentacao", Symbol="_{in_a}", PosX = 0.5, PosY = 1); |
---|
550 | out Fout_sa as Corrente (Brief="Vapor Superaquecido", Symbol="_{out_sa}", PosX = 0.5, PosY = 0); |
---|
551 | Fvap as Corrente (Brief="Evaporador"); |
---|
552 | Feco as Corrente (Brief="Economizadores"); |
---|
553 | |
---|
554 | EQUATIONS |
---|
555 | |
---|
556 | # [Fin_a.S,Fin_a.H] = PP2.propPTl(Fin_a.P,Fin_a.T); # Reduntante no ciclo fechado |
---|
557 | |
---|
558 | "Economizadores ECO1 + ECO1" |
---|
559 | # Feco.F = Fin_a.F; # Reduntante no ciclo fechado |
---|
560 | [Feco.S,Feco.H] = PP2.propPTv(Feco.P,Feco.T); |
---|
561 | Qec = Feco.F * (Feco.H - Fin_a.H); |
---|
562 | |
---|
563 | "Evaporador - Camisa dagua" |
---|
564 | Fvap.F = Feco.F; |
---|
565 | [Fvap.S,Fvap.H] = PP2.propPTv(Fvap.P,Fvap.T); |
---|
566 | Qca = Fvap.F * (Fvap.H - Feco.H); |
---|
567 | |
---|
568 | "Superaquecedores BT + AT" |
---|
569 | Fout_sa.F = Fvap.F; |
---|
570 | [Fout_sa.S,Fout_sa.H] = PP2.propPTv(Fout_sa.P,Fout_sa.T); |
---|
571 | Qsa = Fout_sa.F * (Fout_sa.H - Fvap.H); |
---|
572 | |
---|
573 | "Caldeira" |
---|
574 | Q_GV * EF_GV = Qec + Qca + Qsa + Qpre; |
---|
575 | end |
---|
576 | |
---|
577 | |
---|
578 | # Modelo simplificado gerador de vapor |
---|
579 | Model Gerador_Vapor_Simples |
---|
580 | PARAMETERS |
---|
581 | outer PP2 as Plugin(Brief="Steam tables"); |
---|
582 | |
---|
583 | VARIABLES |
---|
584 | Q_GV as Potencia; |
---|
585 | EF_GV as Eficiencia; |
---|
586 | in Fin as Corrente (Symbol="_{in}"); |
---|
587 | out Fout as Corrente (Symbol="_{out}"); |
---|
588 | |
---|
589 | EQUATIONS |
---|
590 | |
---|
591 | Fout.P = Fin.P; |
---|
592 | |
---|
593 | [Fout.S,Fout.H] = PP2.propPTv(Fout.P,Fout.T); |
---|
594 | |
---|
595 | Q_GV * EF_GV = Fin.F * (Fout.H - Fin.H); |
---|
596 | # Fout.F = Fin.F; |
---|
597 | end |
---|
598 | |
---|
599 | # Modelo de gerador eletrico |
---|
600 | Model Gerador_Eletrico |
---|
601 | ATTRIBUTES |
---|
602 | Pallete = true; |
---|
603 | Icon = "icon/gerador"; |
---|
604 | |
---|
605 | PARAMETERS |
---|
606 | EF_GE as Eficiencia(Brief="Eficiencia do gerador eletrico"); |
---|
607 | |
---|
608 | VARIABLES |
---|
609 | out POT_GE as Pot_sinal(Brief="Potencia do gerador eletrico", PosX = 1, PosY = 0.5); |
---|
610 | POT_TURB as Potencia(Brief="Potencia total das turbinas"); |
---|
611 | in POT_TURB1 as Potencia(Brief="Potencia total da turbina", PosX = 0, PosY = 0.5); |
---|
612 | in POT_TURB2 as Potencia(Brief="Potencia total da turbina", PosX = 0.02, PosY = 0.25); |
---|
613 | in POT_TURB3 as Potencia(Brief="Potencia total da turbina", PosX = 0.02, PosY = 0.75); |
---|
614 | in POT_TURB4 as Potencia(Brief="Potencia total da turbina", PosX = 0.5, PosY = 1); |
---|
615 | |
---|
616 | EQUATIONS |
---|
617 | "Potencia total das turbinas" |
---|
618 | POT_TURB = POT_TURB1 + POT_TURB2 + POT_TURB3 + POT_TURB4; |
---|
619 | |
---|
620 | "Potencia do Gerador Eletrico" |
---|
621 | POT_GE = EF_GE * POT_TURB; |
---|
622 | end |
---|
623 | |
---|
624 | # Modelo de gerador eletrico |
---|
625 | Model Gerador_Eletrico_Simples |
---|
626 | ATTRIBUTES |
---|
627 | Pallete = true; |
---|
628 | Icon = "icon/gerador"; |
---|
629 | |
---|
630 | PARAMETERS |
---|
631 | EF_GE as Eficiencia(Brief="Eficiencia do gerador eletrico"); |
---|
632 | |
---|
633 | VARIABLES |
---|
634 | out POT_GE as Pot_sinal(Brief="Potencia do gerador eletrico", PosX = 1, PosY = 0.5); |
---|
635 | end |
---|
636 | |
---|
637 | |
---|
638 | # Modelo de separador de corrente |
---|
639 | Model Splitter |
---|
640 | ATTRIBUTES |
---|
641 | Pallete = true; |
---|
642 | Icon = "icon/splitter"; |
---|
643 | |
---|
644 | VARIABLES |
---|
645 | y as Fracao(Brief="Fracao de massa para a segunda corrente"); |
---|
646 | in Fin as Corrente (Symbol="_{in}", PosX = 0, PosY = 0.5); |
---|
647 | out Fout as Corrente (Symbol="_{out}", PosX = 1, PosY = 0.25); |
---|
648 | out Fouts as Corrente(Brief="Segunda corrente", Symbol="_{outx}", PosX = 1, PosY = 0.75); |
---|
649 | |
---|
650 | EQUATIONS |
---|
651 | |
---|
652 | Fout.P = Fin.P; |
---|
653 | Fout.T = Fin.T; |
---|
654 | Fout.S = Fin.S; |
---|
655 | Fout.H = Fin.H; |
---|
656 | |
---|
657 | Fouts.P = Fin.P; |
---|
658 | Fouts.T = Fin.T; |
---|
659 | Fouts.S = Fin.S; |
---|
660 | Fouts.H = Fin.H; |
---|
661 | |
---|
662 | Fouts.F = Fin.F * y; |
---|
663 | Fout.F = Fin.F - Fouts.F; |
---|
664 | end |
---|
665 | |
---|
666 | |
---|
667 | # Modelo de separador de corrente de 4 saidas |
---|
668 | Model Splitter4 |
---|
669 | ATTRIBUTES |
---|
670 | Pallete = true; |
---|
671 | Icon = "icon/splitter4"; |
---|
672 | |
---|
673 | VARIABLES |
---|
674 | y(3) as Fracao(Brief="Fracao de massa"); |
---|
675 | in Fin as Corrente (Symbol="_{in}", PosX = 1, PosY = 0.5); |
---|
676 | out Fout1 as Corrente (Symbol="_{out1}", PosX = 0, PosY = 0.19); |
---|
677 | out Fout2 as Corrente(Symbol="_{out2}", PosX = 0, PosY = 0.4); |
---|
678 | out Fout3 as Corrente (Symbol="_{out3}", PosX = 0, PosY = 0.62); |
---|
679 | out Fout4 as Corrente(Symbol="_{out4}", PosX = 0, PosY = 0.85); |
---|
680 | |
---|
681 | |
---|
682 | EQUATIONS |
---|
683 | |
---|
684 | Fout1.P = Fin.P; |
---|
685 | Fout1.T = Fin.T; |
---|
686 | Fout1.S = Fin.S; |
---|
687 | Fout1.H = Fin.H; |
---|
688 | |
---|
689 | Fout2.P = Fin.P; |
---|
690 | Fout2.T = Fin.T; |
---|
691 | Fout2.S = Fin.S; |
---|
692 | Fout2.H = Fin.H; |
---|
693 | |
---|
694 | Fout3.P = Fin.P; |
---|
695 | Fout3.T = Fin.T; |
---|
696 | Fout3.S = Fin.S; |
---|
697 | Fout3.H = Fin.H; |
---|
698 | |
---|
699 | Fout4.P = Fin.P; |
---|
700 | Fout4.T = Fin.T; |
---|
701 | Fout4.S = Fin.S; |
---|
702 | Fout4.H = Fin.H; |
---|
703 | |
---|
704 | Fout1.F = Fin.F * y(1); |
---|
705 | Fout2.F = Fin.F * y(2); |
---|
706 | Fout3.F = Fin.F * y(3); |
---|
707 | #Fout4.F = Fin.F * y(4); |
---|
708 | |
---|
709 | |
---|
710 | Fout4.F = Fin.F - Fout1.F - Fout2.F - Fout3.F; |
---|
711 | end |
---|
712 | |
---|
713 | # Modelo de flash provisório, pois o PP tem cálculo de flash mas |
---|
714 | # esta função não está disponibilizada no plugin (esta função seria mais |
---|
715 | # eficiente nos cálculos, não teria cálculos repetitivos) |
---|
716 | Model Flash |
---|
717 | |
---|
718 | ATTRIBUTES |
---|
719 | Pallete = true; |
---|
720 | Icon = "icon/flash"; |
---|
721 | |
---|
722 | PARAMETERS |
---|
723 | outer PP2 as Plugin(Brief="Steam tables"); |
---|
724 | |
---|
725 | VARIABLES |
---|
726 | TIT as Fracao (Upper=2); |
---|
727 | # S_ad as Entropia; |
---|
728 | in Fin as Corrente (Symbol="_{in}",PosX = 1, PosY = 0.5); |
---|
729 | out FoutL as Corrente (Symbol="_{outL}", PosX = 0.4, PosY = 1); |
---|
730 | out FoutV as Corrente (Symbol="_{outV}", PosX = 0.4, PosY = 0); |
---|
731 | |
---|
732 | EQUATIONS |
---|
733 | |
---|
734 | Fin.F = FoutL.F + FoutV.F; |
---|
735 | FoutV.F = TIT * Fin.F; |
---|
736 | |
---|
737 | FoutL.T = FoutV.T; |
---|
738 | FoutL.P = FoutV.P; |
---|
739 | |
---|
740 | # [S_ad,FoutL.T] = PP2.propPH(FoutL.P,Fin.H); |
---|
741 | # [FoutV.S,FoutV.H] = PP2.propPTv(FoutV.P,FoutV.T+0.1*'K'); # perturbado para evitar ir para liq. |
---|
742 | # [FoutL.S,FoutL.H] = PP2.propPTl(FoutL.P,FoutL.T-0.1*'K'); # perturbado para evitar ir para vap. |
---|
743 | |
---|
744 | [FoutL.S,FoutL.H,FoutV.S,FoutV.H,FoutL.T,TIT] = PP2.FlashPH(FoutL.P,Fin.H); |
---|
745 | |
---|
746 | # TIT * (FoutV.H - FoutL.H) = Fin.H - FoutL.H; |
---|
747 | end |
---|
748 | |
---|
749 | Model ETA_CICLO |
---|
750 | ATTRIBUTES |
---|
751 | Pallete = true; |
---|
752 | Icon = "icon/eficiencia"; |
---|
753 | |
---|
754 | VARIABLES |
---|
755 | EF_CIC as Eficiencia; |
---|
756 | in POT_BMB1 as Pot_sinal(Symbol = "_{inB1}", PosX = 0.2, PosY = 0); |
---|
757 | in POT_BMB2 as Pot_sinal(Symbol = "_{inB2}", PosX = 0.4, PosY = 0); |
---|
758 | in POT_BMB3 as Pot_sinal(Symbol = "_{inB3}", PosX = 0.6, PosY = 0); |
---|
759 | in POT_BMB4 as Pot_sinal(Symbol = "_{inB4}", PosX = 0.8, PosY = 0); |
---|
760 | in POT_BMB5 as Pot_sinal(Symbol = "_{inB5}", PosX = 0.25, PosY = 1); |
---|
761 | in POT_GE as Pot_sinal(Symbol = "_{inGE}", PosX = 0.5, PosY = 1); |
---|
762 | in POT_GV as Pot_sinal(Symbol = "_{inGV}", PosX = 0.75, PosY = 1); |
---|
763 | |
---|
764 | |
---|
765 | EQUATIONS |
---|
766 | "Eficiencia do Ciclo" |
---|
767 | EF_CIC * POT_GV = POT_GE - POT_BMB1 - POT_BMB2 - POT_BMB3 - POT_BMB4 - POT_BMB5; |
---|
768 | |
---|
769 | end |
---|
770 | |
---|
771 | |
---|
772 | #*--------------------------------------------------------------------- |
---|
773 | * only vapour phase |
---|
774 | *--------------------------------------------------------------------*# |
---|
775 | Model Equil_vap |
---|
776 | ATTRIBUTES |
---|
777 | Pallete = true; |
---|
778 | Icon = "icon/cstr"; |
---|
779 | Brief = "Model of a generic vapour-phase equilibrium CSTR"; |
---|
780 | Info = " |
---|
781 | == Assumptions == |
---|
782 | * only vapour-phase |
---|
783 | * thermodynamic equilibrium |
---|
784 | * steady-state |
---|
785 | |
---|
786 | == Specify == |
---|
787 | * inlet stream |
---|
788 | * stoichiometric matrix |
---|
789 | * equilibrium temperature |
---|
790 | "; |
---|
791 | |
---|
792 | PARAMETERS |
---|
793 | outer PP as Plugin(Brief = "External Physical Properties"); |
---|
794 | NReac as Integer (Brief="Number of reactions", Default=1); |
---|
795 | stoic(NComp,NReac) as Real (Brief="Stoichiometric matrix", Symbol="\nu"); |
---|
796 | Rg as Real (Brief="Universal gas constant", Unit='J/mol/K', Default=8.314); |
---|
797 | fs(NComp) as Pressao (Brief="Fugacity in standard state", Default=1, DisplayUnit='atm'); |
---|
798 | To as Temperatura (Brief="Reference temperature", Default=298.15); |
---|
799 | V as Volume; |
---|
800 | Mw(NComp) as molweight; |
---|
801 | |
---|
802 | VARIABLES |
---|
803 | in Inlet as CorrenteZ (Brief="Inlet stream", PosX=0, PosY=0, Symbol="_{in}"); |
---|
804 | out Outlet as CorrenteVap (Brief="Outlet stream", PosX=1, PosY=1, Symbol="_{out}"); |
---|
805 | |
---|
806 | G(NComp) as EntalpiaMol (Brief="Gibbs free-energy of formation"); |
---|
807 | K(NReac) as Real (Brief="Equillibrium constant", Lower=0, Default=1.5); |
---|
808 | activ(NComp)as Real (Brief="Activity", Symbol="\hat{a}", Lower=0, Default=0.2); |
---|
809 | |
---|
810 | rate(NComp) as Reacao_mol (Brief="Overall component rate of reaction"); |
---|
811 | extent(NReac) as VazaoMolar (Brief="Extent of reaction", Symbol="\xi"); |
---|
812 | conv(NComp) as Real (Brief="Fractional conversion of component", Symbol="X", Default=0); # Lower=-1e3, Upper=1e3); |
---|
813 | |
---|
814 | SET |
---|
815 | Mw = PP.MolecularWeight(); |
---|
816 | |
---|
817 | EQUATIONS |
---|
818 | "Outlet stream" |
---|
819 | Outlet.F*Outlet.z = Inlet.F*Inlet.z + rate*V*Mw; |
---|
820 | |
---|
821 | "Mechanical equilibrium" |
---|
822 | Outlet.P = Inlet.P; |
---|
823 | |
---|
824 | "Energy balance" |
---|
825 | Outlet.F*Outlet.H = Inlet.F*Inlet.H; |
---|
826 | |
---|
827 | "Steady-state" |
---|
828 | Outlet.F = Inlet.F + sum(sumt(stoic*extent)*Mw); |
---|
829 | |
---|
830 | "Gibbs free-energy of formation" |
---|
831 | G = PP.IdealGasGibbsOfFormation(Outlet.T); |
---|
832 | |
---|
833 | # "Gibbs free-energy of formation without Cp correction" |
---|
834 | # G = PP.IdealGasGibbsOfFormationAt25C()*Outlet.T/To |
---|
835 | # + PP.IdealGasEnthalpyOfFormationAt25C()*(1 - Outlet.T/To); |
---|
836 | |
---|
837 | for j in [1:NReac] do |
---|
838 | "Gibbs free energy of reaction" |
---|
839 | sumt(G*stoic(:,j)) = -Rg*Outlet.T*ln(K(j)); |
---|
840 | # K(j) = exp(-sumt(G*stoic(:,j))/(Rg*Outlet.T)); |
---|
841 | |
---|
842 | "Equilibrium constant" |
---|
843 | K(j) = prod(activ^stoic(:,j)); |
---|
844 | end |
---|
845 | |
---|
846 | for i in [1:NComp] do |
---|
847 | "Outlet molar fraction" |
---|
848 | Outlet.F*Outlet.z(i) = (Inlet.F*Inlet.z(i) + sumt(stoic(i,:)*extent)*Mw); |
---|
849 | end |
---|
850 | |
---|
851 | for i in [1:NComp] do |
---|
852 | if (Inlet.z(i) > 1e-16) then |
---|
853 | "Molar conversion" |
---|
854 | Outlet.F*Outlet.z(i) = Inlet.F*Inlet.z(i)*(1 - conv(i)); |
---|
855 | else if (Outlet.z(i) > 0) then |
---|
856 | "Molar conversion" |
---|
857 | conv(i) = 1; # ? |
---|
858 | else |
---|
859 | "Molar conversion" |
---|
860 | conv(i) = 0; # ? |
---|
861 | end |
---|
862 | end |
---|
863 | end |
---|
864 | |
---|
865 | "Activity" |
---|
866 | activ = PP.VapourFugacityCoefficient(Outlet.T,Outlet.P,Outlet.z)*Outlet.P*Outlet.z/fs; |
---|
867 | end |
---|
868 | |
---|