[1] | 1 | #*------------------------------------------------------------------- |
---|
[72] | 2 | * EMSO Model Library (EML) Copyright (C) 2004 - 2007 ALSOC. |
---|
| 3 | * |
---|
| 4 | * This LIBRARY is free software; you can distribute it and/or modify |
---|
| 5 | * it under the therms of the ALSOC FREE LICENSE as available at |
---|
| 6 | * http://www.enq.ufrgs.br/alsoc. |
---|
| 7 | * |
---|
| 8 | * EMSO Copyright (C) 2004 - 2007 ALSOC, original code |
---|
| 9 | * from http://www.rps.eng.br Copyright (C) 2002-2004. |
---|
| 10 | * All rights reserved. |
---|
| 11 | * |
---|
| 12 | * EMSO is distributed under the therms of the ALSOC LICENSE as |
---|
| 13 | * available at http://www.enq.ufrgs.br/alsoc. |
---|
| 14 | * |
---|
[1] | 15 | *---------------------------------------------------------------------- |
---|
| 16 | * Author: Paula B. Staudt |
---|
| 17 | * $Id: reboiler.mso 325 2007-07-29 00:41:04Z arge $ |
---|
| 18 | *--------------------------------------------------------------------*# |
---|
| 19 | |
---|
| 20 | using "streams"; |
---|
| 21 | |
---|
| 22 | Model reboiler |
---|
[262] | 23 | ATTRIBUTES |
---|
| 24 | Pallete = true; |
---|
[300] | 25 | Icon = "icon/Reboiler"; |
---|
[262] | 26 | Brief = "Model of a dynamic reboiler - kettle."; |
---|
[267] | 27 | Info = " |
---|
| 28 | <h2>Assumptions</h2> |
---|
| 29 | <ul> |
---|
| 30 | <li>perfect mixing of both phases; |
---|
| 31 | <li>thermodynamics equilibrium; |
---|
| 32 | <li>no liquid entrainment in the vapour stream. |
---|
| 33 | </ul> |
---|
[262] | 34 | |
---|
[267] | 35 | <h2>Specify</h2> |
---|
| 36 | <ul> |
---|
| 37 | <li> the inlet stream; |
---|
| 38 | <li> the liquid inlet stream; |
---|
| 39 | <li> the outlet flows: OutletV.F and OutletL.F; |
---|
| 40 | <li> the heat supply. |
---|
| 41 | </ul> |
---|
[262] | 42 | |
---|
[267] | 43 | <h2>Initial Conditions</h2> |
---|
| 44 | <ul> |
---|
| 45 | <li> the reboiler temperature (OutletL.T); |
---|
| 46 | <li> the reboiler liquid level (Level); |
---|
| 47 | <li> (NoComps - 1) OutletL (OR OutletV) compositions. |
---|
| 48 | </ul> |
---|
[262] | 49 | "; |
---|
| 50 | |
---|
[1] | 51 | PARAMETERS |
---|
[210] | 52 | outer PP as Plugin(Brief = "External Physical Properties", Type="PP"); |
---|
[125] | 53 | outer NComp as Integer; |
---|
[1] | 54 | Across as area (Brief="Cross Section Area of reboiler"); |
---|
| 55 | V as volume (Brief="Total volume of reboiler"); |
---|
| 56 | |
---|
| 57 | VARIABLES |
---|
[325] | 58 | in Inlet as stream(Brief="Feed Stream", PosX=0.8127, PosY=0); |
---|
| 59 | in InletL as stream(Brief="Liquid inlet stream", PosX=0, PosY=0.5254); |
---|
| 60 | out OutletL as liquid_stream(Brief="Liquid outlet stream", PosX=0.2413, PosY=1); |
---|
| 61 | out OutletV as vapour_stream(Brief="Vapour outlet stream", PosX=0.5079, PosY=0); |
---|
| 62 | in InletQ as energy_stream (Brief="Heat supplied", PosX=1, PosY=0.6123); |
---|
[1] | 63 | |
---|
| 64 | M(NComp) as mol (Brief="Molar Holdup in the tray"); |
---|
| 65 | ML as mol (Brief="Molar liquid holdup"); |
---|
| 66 | MV as mol (Brief="Molar vapour holdup"); |
---|
| 67 | E as energy (Brief="Total Energy Holdup on tray"); |
---|
| 68 | vL as volume_mol (Brief="Liquid Molar Volume"); |
---|
| 69 | vV as volume_mol (Brief="Vapour Molar volume"); |
---|
| 70 | Level as length (Brief="Level of liquid phase"); |
---|
| 71 | rhoV as dens_mass (Brief="Vapour Density"); |
---|
| 72 | |
---|
| 73 | EQUATIONS |
---|
| 74 | "Component Molar Balance" |
---|
| 75 | diff(M)= Inlet.F*Inlet.z + InletL.F*InletL.z |
---|
| 76 | - OutletL.F*OutletL.z - OutletV.F*OutletV.z; |
---|
| 77 | |
---|
| 78 | "Energy Balance" |
---|
| 79 | diff(E) = Inlet.F*Inlet.h + InletL.F*InletL.h |
---|
[310] | 80 | - OutletL.F*OutletL.h - OutletV.F*OutletV.h + InletQ.Q; |
---|
[1] | 81 | |
---|
| 82 | "Molar Holdup" |
---|
| 83 | M = ML*OutletL.z + MV*OutletV.z; |
---|
| 84 | |
---|
| 85 | "Energy Holdup" |
---|
| 86 | E = ML*OutletL.h + MV*OutletV.h - OutletL.P*V; |
---|
| 87 | |
---|
| 88 | "Mol fraction normalisation" |
---|
| 89 | sum(OutletL.z)=1.0; |
---|
| 90 | sum(OutletL.z)=sum(OutletV.z); |
---|
| 91 | |
---|
| 92 | "Vapour Density" |
---|
| 93 | rhoV = PP.VapourDensity(OutletV.T, OutletV.P, OutletV.z); |
---|
| 94 | |
---|
| 95 | "Liquid Volume" |
---|
| 96 | vL = PP.LiquidVolume(OutletL.T, OutletL.P, OutletL.z); |
---|
| 97 | |
---|
| 98 | "Vapour Volume" |
---|
| 99 | vV = PP.VapourVolume(OutletV.T, OutletV.P, OutletV.z); |
---|
| 100 | |
---|
| 101 | "Chemical Equilibrium" |
---|
| 102 | PP.LiquidFugacityCoefficient(OutletL.T, OutletL.P, OutletL.z)*OutletL.z = |
---|
| 103 | PP.VapourFugacityCoefficient(OutletV.T, OutletV.P, OutletV.z)*OutletV.z; |
---|
| 104 | |
---|
| 105 | "Mechanical Equilibrium" |
---|
| 106 | OutletL.P = OutletV.P; |
---|
| 107 | |
---|
| 108 | "Thermal Equilibrium" |
---|
| 109 | OutletL.T = OutletV.T; |
---|
| 110 | |
---|
| 111 | "Geometry Constraint" |
---|
| 112 | V = ML*vL + MV*vV; |
---|
| 113 | |
---|
| 114 | "Level of liquid phase" |
---|
| 115 | Level = ML*vL/Across; |
---|
| 116 | end |
---|
| 117 | |
---|
| 118 | #*---------------------------------------------------------------------- |
---|
| 119 | * Model of a Steady State reboiler with no thermodynamics equilibrium |
---|
| 120 | *---------------------------------------------------------------------*# |
---|
| 121 | Model reboilerSteady |
---|
[262] | 122 | ATTRIBUTES |
---|
| 123 | Pallete = true; |
---|
[300] | 124 | Icon = "icon/ReboilerSteady"; |
---|
[262] | 125 | Brief = "Model of a Steady State reboiler with no thermodynamics equilibrium - thermosyphon."; |
---|
| 126 | Info = |
---|
| 127 | "Assumptions: |
---|
| 128 | * perfect mixing of both phases; |
---|
| 129 | * no thermodynamics equilibrium; |
---|
| 130 | * no liquid entrainment in the vapour stream. |
---|
| 131 | |
---|
| 132 | Specify: |
---|
| 133 | * the InletL stream; |
---|
| 134 | * the heat supply OR the outlet temperature (OutletV.T); |
---|
| 135 | "; |
---|
| 136 | |
---|
[1] | 137 | PARAMETERS |
---|
[210] | 138 | outer PP as Plugin(Brief = "External Physical Properties", Type="PP"); |
---|
[125] | 139 | outer NComp as Integer; |
---|
[1] | 140 | DP as press_delta (Brief="Pressure Drop in the reboiler"); |
---|
| 141 | |
---|
| 142 | VARIABLES |
---|
[325] | 143 | in InletL as stream(Brief="Liquid inlet stream", PosX=0.3345, PosY=1); |
---|
| 144 | out OutletV as vapour_stream(Brief="Vapour outlet stream", PosX=0.3369, PosY=0); |
---|
| 145 | in InletQ as energy_stream (Brief="Heat supplied", PosX=1, PosY=0.6111); |
---|
[1] | 146 | vV as volume_mol (Brief="Vapour Molar volume"); |
---|
| 147 | rhoV as dens_mass (Brief="Vapour Density"); |
---|
| 148 | |
---|
| 149 | EQUATIONS |
---|
| 150 | "Molar Balance" |
---|
| 151 | InletL.F = OutletV.F; |
---|
| 152 | InletL.z = OutletV.z; |
---|
| 153 | |
---|
| 154 | "Vapour Volume" |
---|
| 155 | vV = PP.VapourVolume(OutletV.T, OutletV.P, OutletV.z); |
---|
| 156 | |
---|
| 157 | "Vapour Density" |
---|
| 158 | rhoV = PP.VapourDensity(OutletV.T, OutletV.P, OutletV.z); |
---|
| 159 | |
---|
| 160 | "Energy Balance" |
---|
[310] | 161 | InletL.F*InletL.h + InletQ.Q = OutletV.F*OutletV.h; |
---|
[1] | 162 | |
---|
| 163 | "Pressure" |
---|
| 164 | DP = InletL.P - OutletV.P; |
---|
| 165 | end |
---|
| 166 | |
---|
[72] | 167 | #*---------------------------------------------------------------------- |
---|
| 168 | * Model of a Steady State reboiler with fake calculation of |
---|
| 169 | * vaporisation fraction and output temperature, but with a real |
---|
| 170 | * calculation of the output stream enthalpy |
---|
| 171 | *---------------------------------------------------------------------*# |
---|
[46] | 172 | Model reboilerSteady_fakeH |
---|
[262] | 173 | ATTRIBUTES |
---|
| 174 | Pallete = true; |
---|
[300] | 175 | Icon = "icon/ReboilerSteady"; |
---|
[262] | 176 | Brief = "Model of a Steady State reboiler with fake calculation of outlet conditions."; |
---|
| 177 | Info = |
---|
| 178 | "Model of a Steady State reboiler with fake calculation of |
---|
| 179 | vaporisation fraction and output temperature, but with a real |
---|
| 180 | calculation of the output stream enthalpy. |
---|
| 181 | "; |
---|
| 182 | |
---|
[46] | 183 | PARAMETERS |
---|
[210] | 184 | outer PP as Plugin(Brief = "External Physical Properties", Type="PP"); |
---|
[125] | 185 | outer NComp as Integer; |
---|
[46] | 186 | DP as press_delta (Brief="Pressure Drop in the reboiler"); |
---|
[176] | 187 | k as Real (Brief = "Flow Constant", Unit='mol/J'); |
---|
[46] | 188 | |
---|
| 189 | VARIABLES |
---|
[325] | 190 | in InletL as stream(Brief="Liquid inlet stream", PosX=0.3345, PosY=1); |
---|
| 191 | out OutletV as vapour_stream(Brief="Vapour outlet stream", PosX=0.3369, PosY=0); |
---|
| 192 | in InletQ as energy_stream (Brief="Heat supplied", PosX=1, PosY=0.6111); |
---|
[46] | 193 | |
---|
| 194 | EQUATIONS |
---|
| 195 | "Molar Balance" |
---|
| 196 | InletL.F = OutletV.F; |
---|
| 197 | InletL.z = OutletV.z; |
---|
| 198 | |
---|
| 199 | "Energy Balance" |
---|
[310] | 200 | InletL.F*InletL.h + InletQ.Q = OutletV.F*OutletV.h; |
---|
[46] | 201 | |
---|
| 202 | "Pressure" |
---|
| 203 | DP = InletL.P - OutletV.P; |
---|
| 204 | |
---|
| 205 | "Fake Vapourisation Fraction" |
---|
| 206 | OutletV.v = 1.0; |
---|
| 207 | |
---|
| 208 | "Fake output temperature" |
---|
[176] | 209 | OutletV.T = 300*'K'; |
---|
[46] | 210 | |
---|
| 211 | "Pressure Drop through the reboiler" |
---|
[310] | 212 | OutletV.F = k*InletQ.Q; |
---|
[46] | 213 | end |
---|
| 214 | |
---|
[38] | 215 | #*------------------------------------------------------------------- |
---|
| 216 | * Model of a dynamic reboiler with reaction |
---|
| 217 | *-------------------------------------------------------------------*# |
---|
| 218 | Model reboilerReact |
---|
[262] | 219 | ATTRIBUTES |
---|
| 220 | Pallete = true; |
---|
[300] | 221 | Icon = "icon/Reboiler"; |
---|
[262] | 222 | Brief = "Model of a dynamic reboiler with reaction."; |
---|
| 223 | Info = |
---|
| 224 | "Assumptions: |
---|
| 225 | * perfect mixing of both phases; |
---|
| 226 | * thermodynamics equilibrium; |
---|
| 227 | * no liquid entrainment in the vapour stream; |
---|
| 228 | * the reaction takes place only in the liquid phase. |
---|
| 229 | |
---|
| 230 | Specify: |
---|
| 231 | * the kinetics variables; |
---|
| 232 | * the inlet stream; |
---|
| 233 | * the liquid inlet stream; |
---|
| 234 | * the outlet flows: OutletV.F and OutletL.F; |
---|
| 235 | * the heat supply. |
---|
| 236 | |
---|
| 237 | Initial Conditions: |
---|
| 238 | * the reboiler temperature (OutletL.T); |
---|
| 239 | * the reboiler liquid level (Level); |
---|
| 240 | * (NoComps - 1) OutletL (OR OutletV) compositions. |
---|
| 241 | "; |
---|
| 242 | |
---|
[38] | 243 | PARAMETERS |
---|
[243] | 244 | outer PP as Plugin(Type="PP"); |
---|
[125] | 245 | outer NComp as Integer; |
---|
[38] | 246 | Across as area (Brief="Cross Section Area of reboiler"); |
---|
| 247 | V as volume (Brief="Total volume of reboiler"); |
---|
| 248 | |
---|
| 249 | stoic(NComp) as Real(Brief="Stoichiometric matrix"); |
---|
| 250 | Hr as energy_mol; |
---|
| 251 | Pstartup as pressure; |
---|
| 252 | |
---|
| 253 | VARIABLES |
---|
[325] | 254 | in Inlet as stream(Brief="Feed Stream", PosX=0.8127, PosY=0); |
---|
| 255 | in InletL as stream(Brief="Liquid inlet stream", PosX=0, PosY=0.5254); |
---|
| 256 | out OutletL as liquid_stream(Brief="Liquid outlet stream", PosX=0.2413, PosY=1); |
---|
| 257 | out OutletV as vapour_stream(Brief="Vapour outlet stream", PosX=0.5079, PosY=0); |
---|
| 258 | in InletQ as energy_stream (Brief="Heat supplied", PosX=1, PosY=0.6123); |
---|
[38] | 259 | |
---|
| 260 | M(NComp) as mol (Brief="Molar Holdup in the tray"); |
---|
| 261 | ML as mol (Brief="Molar liquid holdup"); |
---|
| 262 | MV as mol (Brief="Molar vapour holdup"); |
---|
| 263 | E as energy (Brief="Total Energy Holdup on tray"); |
---|
| 264 | vL as volume_mol (Brief="Liquid Molar Volume"); |
---|
| 265 | vV as volume_mol (Brief="Vapour Molar volume"); |
---|
| 266 | Level as length (Brief="Level of liquid phase"); |
---|
| 267 | Vol as volume; |
---|
| 268 | startup as Real; |
---|
| 269 | rhoV as dens_mass; |
---|
[243] | 270 | r3 as reaction_mol (Brief = "Reaction resulting ethyl acetate", DisplayUnit = 'mol/l/s'); |
---|
[38] | 271 | C(NComp) as conc_mol (Brief = "Molar concentration", Lower = -1); |
---|
| 272 | |
---|
| 273 | EQUATIONS |
---|
| 274 | "Molar Concentration" |
---|
| 275 | OutletL.z = vL * C; |
---|
| 276 | |
---|
[243] | 277 | "Reaction" |
---|
| 278 | r3 = exp(-7150*'K'/OutletL.T)*(4.85e4*C(1)*C(2) - 1.23e4*C(3)*C(4)) * 'l/mol/s'; |
---|
| 279 | |
---|
[38] | 280 | "Component Molar Balance" |
---|
| 281 | diff(M)= Inlet.F*Inlet.z + InletL.F*InletL.z |
---|
[243] | 282 | - OutletL.F*OutletL.z - OutletV.F*OutletV.z + stoic*r3*ML*vL; |
---|
[38] | 283 | |
---|
| 284 | "Energy Balance" |
---|
| 285 | diff(E) = Inlet.F*Inlet.h + InletL.F*InletL.h |
---|
[310] | 286 | - OutletL.F*OutletL.h - OutletV.F*OutletV.h + InletQ.Q + Hr * r3 * vL*ML; |
---|
[38] | 287 | |
---|
| 288 | "Molar Holdup" |
---|
| 289 | M = ML*OutletL.z + MV*OutletV.z; |
---|
| 290 | |
---|
| 291 | "Energy Holdup" |
---|
| 292 | E = ML*OutletL.h + MV*OutletV.h - OutletL.P*V; |
---|
| 293 | |
---|
| 294 | "Mol fraction normalisation" |
---|
| 295 | sum(OutletL.z)=1.0; |
---|
| 296 | |
---|
| 297 | "Liquid Volume" |
---|
| 298 | vL = PP.LiquidVolume(OutletL.T, OutletL.P, OutletL.z); |
---|
| 299 | "Vapour Volume" |
---|
| 300 | vV = PP.VapourVolume(OutletV.T, OutletV.P, OutletV.z); |
---|
| 301 | "Vapour Density" |
---|
| 302 | rhoV = PP.VapourDensity(OutletV.T, OutletV.P, OutletV.z); |
---|
| 303 | |
---|
| 304 | "Level of liquid phase" |
---|
| 305 | Level = ML*vL/Across; |
---|
| 306 | |
---|
| 307 | Vol = ML*vL; |
---|
| 308 | |
---|
| 309 | "Mechanical Equilibrium" |
---|
| 310 | OutletL.P = OutletV.P; |
---|
| 311 | |
---|
| 312 | "Thermal Equilibrium" |
---|
| 313 | OutletL.T = OutletV.T; |
---|
| 314 | |
---|
| 315 | "Geometry Constraint" |
---|
[243] | 316 | V = ML*vL + MV*vV; |
---|
[38] | 317 | |
---|
| 318 | "Chemical Equilibrium" |
---|
| 319 | PP.LiquidFugacityCoefficient(OutletL.T, OutletL.P, OutletL.z)*OutletL.z = |
---|
| 320 | PP.VapourFugacityCoefficient(OutletV.T, OutletV.P, OutletV.z)*OutletV.z; |
---|
| 321 | |
---|
| 322 | sum(OutletL.z)=sum(OutletV.z); |
---|
| 323 | |
---|
| 324 | end |
---|