1 | #*------------------------------------------------------------------- |
---|
2 | * EMSO Model Library (EML) Copyright (C) 2004 - 2007 ALSOC. |
---|
3 | * |
---|
4 | * This LIBRARY is free software; you can distribute it and/or modify |
---|
5 | * it under the therms of the ALSOC FREE LICENSE as available at |
---|
6 | * http://www.enq.ufrgs.br/alsoc. |
---|
7 | * |
---|
8 | * EMSO Copyright (C) 2004 - 2007 ALSOC, original code |
---|
9 | * from http://www.rps.eng.br Copyright (C) 2002-2004. |
---|
10 | * All rights reserved. |
---|
11 | * |
---|
12 | * EMSO is distributed under the therms of the ALSOC LICENSE as |
---|
13 | * available at http://www.enq.ufrgs.br/alsoc. |
---|
14 | * |
---|
15 | *---------------------------------------------------------------------- |
---|
16 | * Author: Paula B. Staudt |
---|
17 | * $Id: condenser.mso 353 2007-08-30 16:12:27Z arge $ |
---|
18 | *--------------------------------------------------------------------*# |
---|
19 | |
---|
20 | using "streams"; |
---|
21 | |
---|
22 | Model condenser |
---|
23 | ATTRIBUTES |
---|
24 | Pallete = true; |
---|
25 | Icon = "icon/Condenser"; |
---|
26 | Brief = "Model of a dynamic condenser."; |
---|
27 | Info = |
---|
28 | "== Assumptions == |
---|
29 | * perfect mixing of both phases; |
---|
30 | * thermodynamics equilibrium. |
---|
31 | |
---|
32 | == Specify == |
---|
33 | * the inlet stream; |
---|
34 | * the outlet flows: OutletV.F and OutletL.F; |
---|
35 | * the heat supply. |
---|
36 | |
---|
37 | == Initial Conditions == |
---|
38 | * the condenser temperature (OutletL.T); |
---|
39 | * the condenser liquid level (Level); |
---|
40 | * (NoComps - 1) OutletL (OR OutletV) compositions. |
---|
41 | "; |
---|
42 | |
---|
43 | PARAMETERS |
---|
44 | outer PP as Plugin(Brief = "External Physical Properties", Type="PP"); |
---|
45 | outer NComp as Integer; |
---|
46 | V as volume (Brief="Condenser total volume"); |
---|
47 | Across as area (Brief="Cross Section Area of reboiler"); |
---|
48 | |
---|
49 | VARIABLES |
---|
50 | in InletV as stream(Brief="Vapour inlet stream", PosX=0.1164, PosY=0, Symbol="_{inV}"); |
---|
51 | out OutletL as liquid_stream(Brief="Liquid outlet stream", PosX=0.4513, PosY=1, Symbol="_{outL}"); |
---|
52 | out OutletV as vapour_stream(Brief="Vapour outlet stream", PosX=0.4723, PosY=0, Symbol="_{outV}"); |
---|
53 | in InletQ as energy_stream (Brief="Cold supplied", PosX=1, PosY=0.6311, Symbol="_{in}"); |
---|
54 | |
---|
55 | M(NComp) as mol (Brief="Molar Holdup in the tray"); |
---|
56 | ML as mol (Brief="Molar liquid holdup"); |
---|
57 | MV as mol (Brief="Molar vapour holdup"); |
---|
58 | E as energy (Brief="Total Energy Holdup on tray"); |
---|
59 | vL as volume_mol (Brief="Liquid Molar Volume"); |
---|
60 | vV as volume_mol (Brief="Vapour Molar volume"); |
---|
61 | Level as length (Brief="Level of liquid phase"); |
---|
62 | |
---|
63 | EQUATIONS |
---|
64 | "Component Molar Balance" |
---|
65 | diff(M) = InletV.F*InletV.z - OutletL.F*OutletL.z |
---|
66 | - OutletV.F*OutletV.z; |
---|
67 | |
---|
68 | "Energy Balance" |
---|
69 | diff(E) = InletV.F*InletV.h - OutletL.F*OutletL.h |
---|
70 | - OutletV.F*OutletV.h + InletQ.Q; |
---|
71 | |
---|
72 | "Molar Holdup" |
---|
73 | M = ML*OutletL.z + MV*OutletV.z; |
---|
74 | |
---|
75 | "Energy Holdup" |
---|
76 | E = ML*OutletL.h + MV*OutletV.h - OutletV.P*V; |
---|
77 | |
---|
78 | "Mol fraction normalisation" |
---|
79 | sum(OutletL.z)=1.0; |
---|
80 | sum(OutletL.z)=sum(OutletV.z); |
---|
81 | |
---|
82 | "Liquid Volume" |
---|
83 | vL = PP.LiquidVolume(OutletL.T, OutletL.P, OutletL.z); |
---|
84 | "Vapour Volume" |
---|
85 | vV = PP.VapourVolume(OutletV.T, OutletV.P, OutletV.z); |
---|
86 | |
---|
87 | "Chemical Equilibrium" |
---|
88 | PP.LiquidFugacityCoefficient(OutletL.T, OutletL.P, OutletL.z)*OutletL.z = |
---|
89 | PP.VapourFugacityCoefficient(OutletV.T, OutletV.P, OutletV.z)*OutletV.z; |
---|
90 | |
---|
91 | "Thermal Equilibrium" |
---|
92 | OutletL.T = OutletV.T; |
---|
93 | |
---|
94 | "Mechanical Equilibrium" |
---|
95 | OutletV.P = OutletL.P; |
---|
96 | |
---|
97 | "Geometry Constraint" |
---|
98 | V = ML*vL + MV*vV; |
---|
99 | |
---|
100 | "Level of liquid phase" |
---|
101 | Level = ML*vL/Across; |
---|
102 | end |
---|
103 | |
---|
104 | |
---|
105 | #*---------------------------------------------------------------------- |
---|
106 | * Model of a Steady State condenser with no thermodynamics equilibrium |
---|
107 | *---------------------------------------------------------------------*# |
---|
108 | Model condenserSteady |
---|
109 | ATTRIBUTES |
---|
110 | Pallete = true; |
---|
111 | Icon = "icon/CondenserSteady"; |
---|
112 | Brief = "Model of a Steady State condenser with no thermodynamics equilibrium."; |
---|
113 | Info = |
---|
114 | "== Assumptions == |
---|
115 | * perfect mixing of both phases; |
---|
116 | * no thermodynamics equilibrium. |
---|
117 | |
---|
118 | == Specify == |
---|
119 | * the inlet stream; |
---|
120 | * the pressure drop in the condenser; |
---|
121 | * the heat supply. |
---|
122 | "; |
---|
123 | |
---|
124 | PARAMETERS |
---|
125 | outer PP as Plugin(Brief = "External Physical Properties", Type="PP"); |
---|
126 | outer NComp as Integer; |
---|
127 | |
---|
128 | VARIABLES |
---|
129 | in InletV as stream(Brief="Vapour inlet stream", PosX=0.3431, PosY=0, Symbol="_{inV}"); |
---|
130 | out OutletL as liquid_stream(Brief="Liquid outlet stream", PosX=0.34375, PosY=1, Symbol="_{outL}"); |
---|
131 | in InletQ as energy_stream (Brief="Cold supplied", PosX=1, PosY=0.5974, Symbol="_{in}"); |
---|
132 | DP as press_delta (Brief="Pressure Drop in the condenser"); |
---|
133 | |
---|
134 | EQUATIONS |
---|
135 | "Molar Balance" |
---|
136 | InletV.F = OutletL.F; |
---|
137 | InletV.z = OutletL.z; |
---|
138 | |
---|
139 | "Energy Balance" |
---|
140 | InletV.F*InletV.h = OutletL.F*OutletL.h + InletQ.Q; |
---|
141 | |
---|
142 | "Pressure" |
---|
143 | DP = InletV.P - OutletL.P; |
---|
144 | end |
---|
145 | |
---|
146 | #*------------------------------------------------------------------- |
---|
147 | * Condenser with reaction in liquid phase |
---|
148 | *--------------------------------------------------------------------*# |
---|
149 | Model condenserReact |
---|
150 | ATTRIBUTES |
---|
151 | Pallete = true; |
---|
152 | Icon = "icon/Condenser"; |
---|
153 | Brief = "Model of a Condenser with reaction in liquid phase."; |
---|
154 | Info = |
---|
155 | "== Assumptions == |
---|
156 | * perfect mixing of both phases; |
---|
157 | * thermodynamics equilibrium; |
---|
158 | * the reaction only takes place in liquid phase. |
---|
159 | |
---|
160 | == Specify == |
---|
161 | * the reaction related variables; |
---|
162 | * the inlet stream; |
---|
163 | * the outlet flows: OutletV.F and OutletL.F; |
---|
164 | * the heat supply. |
---|
165 | |
---|
166 | == Initial Conditions == |
---|
167 | * the condenser temperature (OutletL.T); |
---|
168 | * the condenser liquid level (Level); |
---|
169 | * (NoComps - 1) OutletL (OR OutletV) compositions. |
---|
170 | "; |
---|
171 | |
---|
172 | PARAMETERS |
---|
173 | outer PP as Plugin(Type="PP"); |
---|
174 | outer NComp as Integer; |
---|
175 | V as volume (Brief="Condenser total volume"); |
---|
176 | Across as area (Brief="Cross Section Area of reboiler"); |
---|
177 | |
---|
178 | stoic(NComp) as Real(Brief="Stoichiometric matrix"); |
---|
179 | Hr as energy_mol; |
---|
180 | Pstartup as pressure; |
---|
181 | |
---|
182 | VARIABLES |
---|
183 | in InletV as stream(Brief="Vapour inlet stream", PosX=0.1164, PosY=0, Symbol="_{inV}"); |
---|
184 | out OutletL as liquid_stream(Brief="Liquid outlet stream", PosX=0.4513, PosY=1, Symbol="_{outL}"); |
---|
185 | out OutletV as vapour_stream(Brief="Vapour outlet stream", PosX=0.4723, PosY=0, Symbol="_{outV}"); |
---|
186 | in InletQ as energy_stream (Brief="Cold supplied", PosX=1, PosY=0.6311, Symbol="_{in}"); |
---|
187 | |
---|
188 | M(NComp) as mol (Brief="Molar Holdup in the tray"); |
---|
189 | ML as mol (Brief="Molar liquid holdup"); |
---|
190 | MV as mol (Brief="Molar vapour holdup"); |
---|
191 | E as energy (Brief="Total Energy Holdup on tray"); |
---|
192 | vL as volume_mol (Brief="Liquid Molar Volume"); |
---|
193 | vV as volume_mol (Brief="Vapour Molar volume"); |
---|
194 | Level as length (Brief="Level of liquid phase"); |
---|
195 | Vol as volume; |
---|
196 | r3 as reaction_mol (Brief = "Reaction resulting ethyl acetate", DisplayUnit = 'mol/l/s'); |
---|
197 | C(NComp) as conc_mol (Brief = "Molar concentration", Lower = -1); |
---|
198 | |
---|
199 | EQUATIONS |
---|
200 | "Molar Concentration" |
---|
201 | OutletL.z = vL * C; |
---|
202 | |
---|
203 | "Reaction" |
---|
204 | r3 = exp(-7150*'K'/OutletL.T)*(4.85e4*C(1)*C(2) - 1.23e4*C(3)*C(4)) * 'l/mol/s'; |
---|
205 | |
---|
206 | "Component Molar Balance" |
---|
207 | diff(M) = InletV.F*InletV.z - OutletL.F*OutletL.z |
---|
208 | - OutletV.F*OutletV.z + stoic*r3*ML*vL; |
---|
209 | |
---|
210 | "Energy Balance" |
---|
211 | diff(E) = InletV.F*InletV.h - OutletL.F*OutletL.h |
---|
212 | - OutletV.F*OutletV.h + InletQ.Q + Hr * r3 * ML*vL; |
---|
213 | |
---|
214 | "Molar Holdup" |
---|
215 | M = ML*OutletL.z + MV*OutletV.z; |
---|
216 | |
---|
217 | "Energy Holdup" |
---|
218 | E = ML*OutletL.h + MV*OutletV.h - OutletV.P*V; |
---|
219 | |
---|
220 | "Mol fraction normalisation" |
---|
221 | sum(OutletL.z)=1.0; |
---|
222 | |
---|
223 | "Liquid Volume" |
---|
224 | vL = PP.LiquidVolume(OutletL.T, OutletL.P, OutletL.z); |
---|
225 | "Vapour Volume" |
---|
226 | vV = PP.VapourVolume(OutletV.T, OutletV.P, OutletV.z); |
---|
227 | |
---|
228 | "Thermal Equilibrium" |
---|
229 | OutletL.T = OutletV.T; |
---|
230 | |
---|
231 | "Mechanical Equilibrium" |
---|
232 | OutletV.P = OutletL.P; |
---|
233 | |
---|
234 | "Geometry Constraint" |
---|
235 | V = ML*vL + MV*vV; |
---|
236 | |
---|
237 | Vol = ML*vL; |
---|
238 | |
---|
239 | "Level of liquid phase" |
---|
240 | Level = ML*vL/Across; |
---|
241 | |
---|
242 | "Chemical Equilibrium" |
---|
243 | PP.LiquidFugacityCoefficient(OutletL.T, OutletL.P, OutletL.z)*OutletL.z = |
---|
244 | PP.VapourFugacityCoefficient(OutletV.T, OutletV.P, OutletV.z)*OutletV.z; |
---|
245 | |
---|
246 | sum(OutletL.z)=sum(OutletV.z); |
---|
247 | |
---|
248 | end |
---|