[1] | 1 | #*------------------------------------------------------------------- |
---|
[72] | 2 | * EMSO Model Library (EML) Copyright (C) 2004 - 2007 ALSOC. |
---|
| 3 | * |
---|
| 4 | * This LIBRARY is free software; you can distribute it and/or modify |
---|
| 5 | * it under the therms of the ALSOC FREE LICENSE as available at |
---|
| 6 | * http://www.enq.ufrgs.br/alsoc. |
---|
| 7 | * |
---|
| 8 | * EMSO Copyright (C) 2004 - 2007 ALSOC, original code |
---|
| 9 | * from http://www.rps.eng.br Copyright (C) 2002-2004. |
---|
| 10 | * All rights reserved. |
---|
| 11 | * |
---|
| 12 | * EMSO is distributed under the therms of the ALSOC LICENSE as |
---|
| 13 | * available at http://www.enq.ufrgs.br/alsoc. |
---|
| 14 | * |
---|
[1] | 15 | *---------------------------------------------------------------------- |
---|
| 16 | * Author: Paula B. Staudt |
---|
| 17 | * $Id: condenser.mso 300 2007-07-04 22:55:05Z arge $ |
---|
| 18 | *--------------------------------------------------------------------*# |
---|
| 19 | |
---|
| 20 | using "streams"; |
---|
| 21 | |
---|
| 22 | Model condenser |
---|
[262] | 23 | ATTRIBUTES |
---|
| 24 | Pallete = true; |
---|
[300] | 25 | Icon = "icon/Condenser"; |
---|
[262] | 26 | Brief = "Model of a dynamic condenser."; |
---|
| 27 | Info = |
---|
| 28 | "Assumptions: |
---|
| 29 | * perfect mixing of both phases; |
---|
| 30 | * thermodynamics equilibrium. |
---|
| 31 | |
---|
| 32 | Specify: |
---|
| 33 | * the inlet stream; |
---|
| 34 | * the outlet flows: OutletV.F and OutletL.F; |
---|
| 35 | * the heat supply. |
---|
| 36 | |
---|
| 37 | Initial Conditions: |
---|
| 38 | * the condenser temperature (OutletL.T); |
---|
| 39 | * the condenser liquid level (Level); |
---|
| 40 | * (NoComps - 1) OutletL (OR OutletV) compositions. |
---|
| 41 | "; |
---|
| 42 | |
---|
[1] | 43 | PARAMETERS |
---|
[210] | 44 | outer PP as Plugin(Brief = "External Physical Properties", Type="PP"); |
---|
[125] | 45 | outer NComp as Integer; |
---|
[1] | 46 | V as volume (Brief="Condenser total volume"); |
---|
| 47 | Across as area (Brief="Cross Section Area of reboiler"); |
---|
| 48 | |
---|
| 49 | VARIABLES |
---|
[125] | 50 | in InletV as stream(Brief="Vapour inlet stream"); |
---|
| 51 | out OutletL as liquid_stream(Brief="Liquid outlet stream"); |
---|
| 52 | out OutletV as vapour_stream(Brief="Vapour outlet stream"); |
---|
[1] | 53 | in Q as heat_rate (Brief="Heat supplied"); |
---|
| 54 | |
---|
| 55 | M(NComp) as mol (Brief="Molar Holdup in the tray"); |
---|
| 56 | ML as mol (Brief="Molar liquid holdup"); |
---|
| 57 | MV as mol (Brief="Molar vapour holdup"); |
---|
| 58 | E as energy (Brief="Total Energy Holdup on tray"); |
---|
| 59 | vL as volume_mol (Brief="Liquid Molar Volume"); |
---|
| 60 | vV as volume_mol (Brief="Vapour Molar volume"); |
---|
| 61 | Level as length (Brief="Level of liquid phase"); |
---|
| 62 | |
---|
| 63 | EQUATIONS |
---|
| 64 | "Component Molar Balance" |
---|
| 65 | diff(M) = InletV.F*InletV.z - OutletL.F*OutletL.z |
---|
| 66 | - OutletV.F*OutletV.z; |
---|
| 67 | |
---|
| 68 | "Energy Balance" |
---|
| 69 | diff(E) = InletV.F*InletV.h - OutletL.F*OutletL.h |
---|
| 70 | - OutletV.F*OutletV.h + Q; |
---|
| 71 | |
---|
| 72 | "Molar Holdup" |
---|
| 73 | M = ML*OutletL.z + MV*OutletV.z; |
---|
| 74 | |
---|
| 75 | "Energy Holdup" |
---|
| 76 | E = ML*OutletL.h + MV*OutletV.h - OutletV.P*V; |
---|
| 77 | |
---|
| 78 | "Mol fraction normalisation" |
---|
| 79 | sum(OutletL.z)=1.0; |
---|
| 80 | sum(OutletL.z)=sum(OutletV.z); |
---|
| 81 | |
---|
| 82 | "Liquid Volume" |
---|
| 83 | vL = PP.LiquidVolume(OutletL.T, OutletL.P, OutletL.z); |
---|
| 84 | "Vapour Volume" |
---|
| 85 | vV = PP.VapourVolume(OutletV.T, OutletV.P, OutletV.z); |
---|
| 86 | |
---|
| 87 | "Chemical Equilibrium" |
---|
| 88 | PP.LiquidFugacityCoefficient(OutletL.T, OutletL.P, OutletL.z)*OutletL.z = |
---|
| 89 | PP.VapourFugacityCoefficient(OutletV.T, OutletV.P, OutletV.z)*OutletV.z; |
---|
| 90 | |
---|
| 91 | "Thermal Equilibrium" |
---|
| 92 | OutletL.T = OutletV.T; |
---|
| 93 | |
---|
| 94 | "Mechanical Equilibrium" |
---|
| 95 | OutletV.P = OutletL.P; |
---|
| 96 | |
---|
| 97 | "Geometry Constraint" |
---|
| 98 | V = ML*vL + MV*vV; |
---|
| 99 | |
---|
| 100 | "Level of liquid phase" |
---|
| 101 | Level = ML*vL/Across; |
---|
| 102 | end |
---|
| 103 | |
---|
| 104 | |
---|
| 105 | #*---------------------------------------------------------------------- |
---|
| 106 | * Model of a Steady State condenser with no thermodynamics equilibrium |
---|
| 107 | *---------------------------------------------------------------------*# |
---|
| 108 | Model condenserSteady |
---|
[262] | 109 | ATTRIBUTES |
---|
| 110 | Pallete = true; |
---|
[300] | 111 | Icon = "icon/CondenserSteady"; |
---|
[262] | 112 | Brief = "Model of a Steady State condenser with no thermodynamics equilibrium."; |
---|
| 113 | Info = |
---|
| 114 | "Assumptions: |
---|
| 115 | * perfect mixing of both phases; |
---|
| 116 | * no thermodynamics equilibrium. |
---|
| 117 | |
---|
| 118 | Specify: |
---|
| 119 | * the inlet stream; |
---|
| 120 | * the pressure drop in the condenser; |
---|
| 121 | * the heat supply. |
---|
| 122 | "; |
---|
| 123 | |
---|
[1] | 124 | PARAMETERS |
---|
[210] | 125 | outer PP as Plugin(Brief = "External Physical Properties", Type="PP"); |
---|
[125] | 126 | outer NComp as Integer; |
---|
[1] | 127 | |
---|
| 128 | VARIABLES |
---|
[125] | 129 | in InletV as stream(Brief="Vapour inlet stream"); |
---|
| 130 | out OutletL as liquid_stream(Brief="Liquid outlet stream"); |
---|
[1] | 131 | in Q as heat_rate (Brief="Heat supplied"); |
---|
[65] | 132 | DP as press_delta (Brief="Pressure Drop in the condenser"); |
---|
[1] | 133 | |
---|
| 134 | EQUATIONS |
---|
| 135 | "Molar Balance" |
---|
| 136 | InletV.F = OutletL.F; |
---|
| 137 | InletV.z = OutletL.z; |
---|
| 138 | |
---|
| 139 | "Energy Balance" |
---|
| 140 | InletV.F*InletV.h = OutletL.F*OutletL.h + Q; |
---|
| 141 | |
---|
| 142 | "Pressure" |
---|
| 143 | DP = InletV.P - OutletL.P; |
---|
| 144 | end |
---|
[38] | 145 | |
---|
| 146 | #*------------------------------------------------------------------- |
---|
| 147 | * Condenser with reaction in liquid phase |
---|
| 148 | *--------------------------------------------------------------------*# |
---|
| 149 | Model condenserReact |
---|
[262] | 150 | ATTRIBUTES |
---|
| 151 | Pallete = true; |
---|
[300] | 152 | Icon = "icon/Condenser"; |
---|
[262] | 153 | Brief = "Model of a Condenser with reaction in liquid phase."; |
---|
| 154 | Info = |
---|
| 155 | "Assumptions: |
---|
| 156 | * perfect mixing of both phases; |
---|
| 157 | * thermodynamics equilibrium; |
---|
| 158 | * the reaction only takes place in liquid phase. |
---|
| 159 | |
---|
| 160 | Specify: |
---|
| 161 | * the reaction related variables; |
---|
| 162 | * the inlet stream; |
---|
| 163 | * the outlet flows: OutletV.F and OutletL.F; |
---|
| 164 | * the heat supply. |
---|
| 165 | |
---|
| 166 | Initial Conditions: |
---|
| 167 | * the condenser temperature (OutletL.T); |
---|
| 168 | * the condenser liquid level (Level); |
---|
| 169 | * (NoComps - 1) OutletL (OR OutletV) compositions. |
---|
| 170 | "; |
---|
| 171 | |
---|
[38] | 172 | PARAMETERS |
---|
[243] | 173 | outer PP as Plugin(Type="PP"); |
---|
[125] | 174 | outer NComp as Integer; |
---|
[38] | 175 | V as volume (Brief="Condenser total volume"); |
---|
| 176 | Across as area (Brief="Cross Section Area of reboiler"); |
---|
| 177 | |
---|
| 178 | stoic(NComp) as Real(Brief="Stoichiometric matrix"); |
---|
| 179 | Hr as energy_mol; |
---|
| 180 | Pstartup as pressure; |
---|
| 181 | |
---|
| 182 | VARIABLES |
---|
[125] | 183 | in InletV as stream(Brief="Vapour inlet stream"); |
---|
| 184 | out OutletL as liquid_stream(Brief="Liquid outlet stream"); |
---|
| 185 | out OutletV as vapour_stream(Brief="Vapour outlet stream"); |
---|
[38] | 186 | |
---|
| 187 | M(NComp) as mol (Brief="Molar Holdup in the tray"); |
---|
| 188 | ML as mol (Brief="Molar liquid holdup"); |
---|
| 189 | MV as mol (Brief="Molar vapour holdup"); |
---|
| 190 | E as energy (Brief="Total Energy Holdup on tray"); |
---|
| 191 | vL as volume_mol (Brief="Liquid Molar Volume"); |
---|
| 192 | vV as volume_mol (Brief="Vapour Molar volume"); |
---|
| 193 | Level as length (Brief="Level of liquid phase"); |
---|
| 194 | Q as heat_rate (Brief="Heat supplied"); |
---|
| 195 | Vol as volume; |
---|
[243] | 196 | r3 as reaction_mol (Brief = "Reaction resulting ethyl acetate", DisplayUnit = 'mol/l/s'); |
---|
[38] | 197 | C(NComp) as conc_mol (Brief = "Molar concentration", Lower = -1); |
---|
| 198 | |
---|
| 199 | EQUATIONS |
---|
| 200 | "Molar Concentration" |
---|
| 201 | OutletL.z = vL * C; |
---|
| 202 | |
---|
[243] | 203 | "Reaction" |
---|
| 204 | r3 = exp(-7150*'K'/OutletL.T)*(4.85e4*C(1)*C(2) - 1.23e4*C(3)*C(4)) * 'l/mol/s'; |
---|
| 205 | |
---|
[38] | 206 | "Component Molar Balance" |
---|
| 207 | diff(M) = InletV.F*InletV.z - OutletL.F*OutletL.z |
---|
[243] | 208 | - OutletV.F*OutletV.z + stoic*r3*ML*vL; |
---|
[38] | 209 | |
---|
| 210 | "Energy Balance" |
---|
| 211 | diff(E) = InletV.F*InletV.h - OutletL.F*OutletL.h |
---|
[243] | 212 | - OutletV.F*OutletV.h + Q + Hr * r3 * ML*vL; |
---|
[38] | 213 | |
---|
| 214 | "Molar Holdup" |
---|
| 215 | M = ML*OutletL.z + MV*OutletV.z; |
---|
| 216 | |
---|
| 217 | "Energy Holdup" |
---|
| 218 | E = ML*OutletL.h + MV*OutletV.h - OutletV.P*V; |
---|
| 219 | |
---|
| 220 | "Mol fraction normalisation" |
---|
| 221 | sum(OutletL.z)=1.0; |
---|
| 222 | |
---|
| 223 | "Liquid Volume" |
---|
| 224 | vL = PP.LiquidVolume(OutletL.T, OutletL.P, OutletL.z); |
---|
| 225 | "Vapour Volume" |
---|
| 226 | vV = PP.VapourVolume(OutletV.T, OutletV.P, OutletV.z); |
---|
| 227 | |
---|
| 228 | "Thermal Equilibrium" |
---|
| 229 | OutletL.T = OutletV.T; |
---|
| 230 | |
---|
| 231 | "Mechanical Equilibrium" |
---|
| 232 | OutletV.P = OutletL.P; |
---|
| 233 | |
---|
| 234 | "Geometry Constraint" |
---|
| 235 | V = ML*vL + MV*vV; |
---|
| 236 | |
---|
| 237 | Vol = ML*vL; |
---|
| 238 | |
---|
| 239 | "Level of liquid phase" |
---|
| 240 | Level = ML*vL/Across; |
---|
| 241 | |
---|
| 242 | "Chemical Equilibrium" |
---|
| 243 | PP.LiquidFugacityCoefficient(OutletL.T, OutletL.P, OutletL.z)*OutletL.z = |
---|
| 244 | PP.VapourFugacityCoefficient(OutletV.T, OutletV.P, OutletV.z)*OutletV.z; |
---|
| 245 | |
---|
| 246 | sum(OutletL.z)=sum(OutletV.z); |
---|
[243] | 247 | |
---|
[38] | 248 | end |
---|