[1] | 1 | #*------------------------------------------------------------------- |
---|
[72] | 2 | * EMSO Model Library (EML) Copyright (C) 2004 - 2007 ALSOC. |
---|
| 3 | * |
---|
| 4 | * This LIBRARY is free software; you can distribute it and/or modify |
---|
| 5 | * it under the therms of the ALSOC FREE LICENSE as available at |
---|
| 6 | * http://www.enq.ufrgs.br/alsoc. |
---|
| 7 | * |
---|
| 8 | * EMSO Copyright (C) 2004 - 2007 ALSOC, original code |
---|
| 9 | * from http://www.rps.eng.br Copyright (C) 2002-2004. |
---|
| 10 | * All rights reserved. |
---|
| 11 | * |
---|
| 12 | * EMSO is distributed under the therms of the ALSOC LICENSE as |
---|
| 13 | * available at http://www.enq.ufrgs.br/alsoc. |
---|
| 14 | * |
---|
[1] | 15 | *---------------------------------------------------------------------- |
---|
| 16 | * Author: Maurício Carvalho Maciel |
---|
| 17 | * $Id: batch_dist.mso 325 2007-07-29 00:41:04Z arge $ |
---|
| 18 | *--------------------------------------------------------------------*# |
---|
| 19 | using "streams"; |
---|
| 20 | |
---|
| 21 | Model Diff_Dist |
---|
[262] | 22 | ATTRIBUTES |
---|
| 23 | Pallete = true; |
---|
[300] | 24 | Icon = "icon/BatchDist"; |
---|
[318] | 25 | Brief = "Model of a Batch Differential Distillation."; |
---|
[262] | 26 | Info = |
---|
| 27 | "Assumptions: |
---|
| 28 | * perfect mixing of both phases; |
---|
| 29 | * thermodynamics equilibrium; |
---|
| 30 | * no liquid entrainment in the vapour stream. |
---|
[1] | 31 | |
---|
[262] | 32 | Specify: |
---|
| 33 | * the inlet stream; |
---|
| 34 | * the liquid inlet stream; |
---|
| 35 | * the molar flow of the vapour outlet stream. |
---|
| 36 | |
---|
| 37 | Initial Conditions: |
---|
| 38 | * the distillator temperature (T); |
---|
| 39 | * the distillator liquid level (Level); |
---|
| 40 | * (NoComps - 1) compositions in the distillator or in the OutletV. |
---|
| 41 | "; |
---|
| 42 | |
---|
[1] | 43 | PARAMETERS |
---|
[176] | 44 | outer PP as Plugin (Brief = "External Physical Properties", Type="PP"); |
---|
| 45 | outer NComp as Integer (Brief = "Number of chemical components", Lower = 1); |
---|
[318] | 46 | Across as area (Brief = "Cross Section Area"); |
---|
| 47 | V as volume (Brief = "Total volume"); |
---|
[1] | 48 | |
---|
| 49 | VARIABLES |
---|
[325] | 50 | in Inlet as stream (Brief="Feed stream", PosX=0, PosY=0.9385); |
---|
| 51 | in InletL as stream (Brief="Liquid inlet stream", PosX=0.5, PosY=0.1984); # FIXME |
---|
| 52 | out OutletV as vapour_stream (Brief="Vapour outlet stream", PosX=1, PosY=0.1984); |
---|
| 53 | in InletQ as energy_stream (Brief="Heat supplied", PosX=1, PosY=0.9578); |
---|
[1] | 54 | |
---|
| 55 | M(NComp) as mol (Brief="Molar Holdup in the distillator"); |
---|
| 56 | ML as mol (Brief="Molar liquid holdup"); |
---|
| 57 | MV as mol (Brief="Molar vapour holdup"); |
---|
| 58 | E as energy (Brief="Total Energy holdup on distillator"); |
---|
| 59 | volL as volume_mol (Brief="Liquid Molar Volume"); |
---|
| 60 | volV as volume_mol (Brief="Vapour Molar volume"); |
---|
| 61 | Level as length (Brief="Level of liquid phase", Default=1, Lower=0); |
---|
| 62 | T as temperature (Brief="Temperature on distillator"); |
---|
| 63 | P as pressure (Brief="Pressure on distillator"); |
---|
| 64 | x(NComp) as fraction (Brief = "Molar Fraction of the Liquid of the distillator"); |
---|
| 65 | h as enth_mol (Brief="Molar Enthalpy of the liquid of the distillator"); |
---|
| 66 | |
---|
| 67 | EQUATIONS |
---|
| 68 | |
---|
| 69 | "Component Molar Balance" |
---|
| 70 | diff(M)= Inlet.F*Inlet.z + InletL.F*InletL.z - OutletV.F*OutletV.z; |
---|
| 71 | |
---|
| 72 | "Energy Balance" |
---|
[318] | 73 | diff(E) = Inlet.F*Inlet.h + InletL.F*InletL.h - OutletV.F*OutletV.h + InletQ.Q; |
---|
[1] | 74 | |
---|
| 75 | "Molar Holdup" |
---|
| 76 | M = ML*x + MV*OutletV.z; |
---|
| 77 | |
---|
| 78 | "Energy Holdup" |
---|
| 79 | E = ML*h + MV*OutletV.h - P*V; |
---|
| 80 | |
---|
| 81 | "Mol fraction normalisation" |
---|
| 82 | sum(x)=1.0; |
---|
| 83 | sum(x)=sum(OutletV.z); |
---|
| 84 | |
---|
| 85 | "Liquid Volume" |
---|
| 86 | volL = PP.LiquidVolume(T, P, x); |
---|
| 87 | |
---|
| 88 | "Vapour Volume" |
---|
| 89 | volV = PP.VapourVolume(OutletV.T, OutletV.P, OutletV.z); |
---|
| 90 | |
---|
| 91 | "Chemical Equilibrium" |
---|
| 92 | PP.LiquidFugacityCoefficient(T, P, x)*x = |
---|
| 93 | PP.VapourFugacityCoefficient(OutletV.T, OutletV.P, OutletV.z)*OutletV.z; |
---|
| 94 | |
---|
| 95 | "Mechanical Equilibrium" |
---|
| 96 | P = OutletV.P; |
---|
| 97 | |
---|
| 98 | "Thermal Equilibrium" |
---|
| 99 | T = OutletV.T; |
---|
| 100 | |
---|
| 101 | "Geometry Constraint" |
---|
| 102 | V = ML*volL + MV*volV; |
---|
| 103 | |
---|
| 104 | "Level of liquid phase" |
---|
| 105 | Level = ML*volL/Across; |
---|
| 106 | |
---|
| 107 | "Enthalpy" |
---|
| 108 | h = PP.LiquidEnthalpy(T, P, x); |
---|
| 109 | |
---|
| 110 | end |
---|
| 111 | |
---|
| 112 | |
---|
| 113 | |
---|