1 | #*--------------------------------------------------------------------- |
---|
2 | * EMSO Model Library (EML) Copyright (C) 2004 - 2007 ALSOC. |
---|
3 | * |
---|
4 | * This LIBRARY is free software; you can distribute it and/or modify |
---|
5 | * it under the therms of the ALSOC FREE LICENSE as available at |
---|
6 | * http://www.enq.ufrgs.br/alsoc. |
---|
7 | * |
---|
8 | * EMSO Copyright (C) 2004 - 2007 ALSOC, original code |
---|
9 | * from http://www.rps.eng.br Copyright (C) 2002-2004. |
---|
10 | * All rights reserved. |
---|
11 | * |
---|
12 | * EMSO is distributed under the therms of the ALSOC LICENSE as |
---|
13 | * available at http://www.enq.ufrgs.br/alsoc. |
---|
14 | * |
---|
15 | *---------------------------------------------------------------------- |
---|
16 | * Model of a tank basic |
---|
17 | *---------------------------------------------------------------------- |
---|
18 | * |
---|
19 | * Description: |
---|
20 | * Generic model for a dynamic tank. |
---|
21 | * |
---|
22 | * Assumptions: |
---|
23 | * * single- and two-phases involved |
---|
24 | * * dynamic |
---|
25 | * |
---|
26 | *---------------------------------------------------------------------- |
---|
27 | * Author: Rodolfo Rodrigues |
---|
28 | * $Id$ |
---|
29 | *--------------------------------------------------------------------*# |
---|
30 | |
---|
31 | using "streams"; |
---|
32 | using "vol_tank"; |
---|
33 | |
---|
34 | |
---|
35 | Model tank_basic |
---|
36 | ATTRIBUTES |
---|
37 | Brief = "Basic model for a dynamic tank"; |
---|
38 | |
---|
39 | PARAMETERS |
---|
40 | outer PP as Plugin (Brief="External physical properties", Type="PP"); |
---|
41 | outer NComp as Integer (Brief="Number of components", Default=1); |
---|
42 | |
---|
43 | VARIABLES |
---|
44 | in Inlet as stream (Brief="Inlet stream", PosX=0, PosY=0, Symbol="_{in}"); |
---|
45 | Outletm as stream (Brief="Intermediary outlet stream", Symbol="_{outm}"); |
---|
46 | Tank as vol_tank (Brief="Routine to volume tank calculation", Symbol="_{tank}"); |
---|
47 | |
---|
48 | M(NComp)as mol (Brief="Component molar holdup"); |
---|
49 | Mt as mol (Brief="Total component molar holdup"); |
---|
50 | E as energy (Brief="Internal energy"); |
---|
51 | Q as heat_rate(Brief="Reactor duty", Default=0); |
---|
52 | |
---|
53 | EQUATIONS |
---|
54 | "Component molar balance" |
---|
55 | diff(M) = Inlet.F*Inlet.z - Outletm.F*Outletm.z; |
---|
56 | |
---|
57 | "Component molar" |
---|
58 | M = Mt*Outletm.z; |
---|
59 | |
---|
60 | "Mole fraction normalisation" |
---|
61 | sum(Outletm.z) = 1; |
---|
62 | |
---|
63 | "Energy balance" |
---|
64 | diff(E) = Inlet.F*Inlet.h - Outletm.F*Outletm.h + Q; |
---|
65 | end |
---|
66 | |
---|
67 | |
---|
68 | #*--------------------------------------------------------------------- |
---|
69 | * only vapour phase |
---|
70 | *--------------------------------------------------------------------*# |
---|
71 | Model tank_vap as tank_basic |
---|
72 | ATTRIBUTES |
---|
73 | Brief = "Model of a generic vapour-phase tank"; |
---|
74 | |
---|
75 | EQUATIONS |
---|
76 | "Vapourisation fraction" |
---|
77 | Outletm.v = 1; |
---|
78 | |
---|
79 | "Vapour Enthalpy" |
---|
80 | Outletm.h = PP.VapourEnthalpy(Outletm.T,Outletm.P,Outletm.z); |
---|
81 | |
---|
82 | "Volume constraint" |
---|
83 | Tank.V = Mt*PP.VapourVolume(Outletm.T,Outletm.P,Outletm.z); |
---|
84 | |
---|
85 | "Total internal energy" |
---|
86 | E = Mt*Outletm.h; |
---|
87 | end |
---|
88 | |
---|
89 | |
---|
90 | #*--------------------------------------------------------------------- |
---|
91 | * only liquid phase |
---|
92 | *--------------------------------------------------------------------*# |
---|
93 | Model tank_liq as tank_basic |
---|
94 | ATTRIBUTES |
---|
95 | Brief = "Model of a generic liquid-phase tank"; |
---|
96 | |
---|
97 | EQUATIONS |
---|
98 | "Vapourisation fraction" |
---|
99 | Outletm.v = 0; |
---|
100 | |
---|
101 | "Liquid Enthalpy" |
---|
102 | Outletm.h = PP.LiquidEnthalpy(Outletm.T,Outletm.P,Outletm.z); |
---|
103 | |
---|
104 | "Volume constraint" |
---|
105 | Tank.V = Mt*PP.LiquidVolume(Outletm.T,Outletm.P,Outletm.z); |
---|
106 | |
---|
107 | "Total internal energy" |
---|
108 | E = Mt*Outletm.h - Outletm.P*Tank.V; |
---|
109 | end |
---|
110 | |
---|
111 | |
---|
112 | #*--------------------------------------------------------------------- |
---|
113 | * liquid and vapour phases |
---|
114 | *--------------------------------------------------------------------*# |
---|
115 | Model tank_liqvap |
---|
116 | ATTRIBUTES |
---|
117 | Brief = "Model of a generic two-phase tank"; |
---|
118 | |
---|
119 | PARAMETERS |
---|
120 | outer PP as Plugin(Brief="External physical properties", Type="PP"); |
---|
121 | outer NComp as Integer (Brief="Number of components", Default=1); |
---|
122 | |
---|
123 | VARIABLES |
---|
124 | in Inlet as stream (Brief="Inlet stream", PosX=0, PosY=0, Symbol="_{in}"); |
---|
125 | OutletmL as liquid_stream (Brief="Intermediary liquid outlet stream", Symbol="_{outmL}"); |
---|
126 | out OutletV as vapour_stream (Brief="Outlet vapour stream", Symbol="_{outV}"); |
---|
127 | Tank as vol_tank (Brief="Routine to volume tank calculation", Symbol="_{tank}"); |
---|
128 | |
---|
129 | M(NComp)as mol (Brief="Component molar holdup"); |
---|
130 | ML as mol (Brief="Molar liquid holdup"); |
---|
131 | MV as mol (Brief="Molar vapour holdup"); |
---|
132 | E as energy (Brief="Internal energy"); |
---|
133 | Q as heat_rate (Brief="Reactor duty", Default=0); |
---|
134 | vL as volume_mol (Brief="Liquid Molar Volume"); |
---|
135 | |
---|
136 | EQUATIONS |
---|
137 | "Component molar balance" |
---|
138 | diff(M) = Inlet.F*Inlet.z - (OutletmL.F*OutletmL.z + OutletV.F*OutletV.z); |
---|
139 | |
---|
140 | "Molar holdup" |
---|
141 | M = ML*OutletmL.z + MV*OutletV.z; |
---|
142 | |
---|
143 | |
---|
144 | "Mole fraction normalisation" |
---|
145 | sum(OutletmL.z) = 1; |
---|
146 | |
---|
147 | "Mole fraction normalisation" |
---|
148 | sum(OutletmL.z) = sum(OutletV.z); |
---|
149 | |
---|
150 | |
---|
151 | "Vapourisation fraction" |
---|
152 | OutletV.v = 1; |
---|
153 | |
---|
154 | "Vapourisation fraction" |
---|
155 | OutletmL.v = 0; |
---|
156 | |
---|
157 | |
---|
158 | "Energy balance" |
---|
159 | diff(E) = Inlet.F*Inlet.h - (OutletmL.F*OutletmL.h + OutletV.F*OutletV.h) + Q; |
---|
160 | |
---|
161 | "Total internal energy" |
---|
162 | E = ML*OutletmL.h + MV*OutletV.h; |
---|
163 | |
---|
164 | "Geometry constraint" |
---|
165 | Tank.V = ML*vL + MV*PP.VapourVolume(OutletV.T,OutletV.P,OutletV.z); |
---|
166 | |
---|
167 | |
---|
168 | "Chemical Equilibrium" |
---|
169 | PP.LiquidFugacityCoefficient(OutletmL.T,OutletmL.P,OutletmL.z)*OutletmL.z = |
---|
170 | PP.VapourFugacityCoefficient(OutletV.T,OutletV.P,OutletV.z)*OutletV.z; |
---|
171 | |
---|
172 | "Mechanical Equilibrium" |
---|
173 | OutletmL.P = OutletV.P; |
---|
174 | |
---|
175 | "Thermal Equilibrium" |
---|
176 | OutletmL.T = OutletV.T; |
---|
177 | |
---|
178 | "Liquid Volume" |
---|
179 | vL = PP.LiquidVolume(OutletmL.T,OutletmL.P,OutletmL.z); |
---|
180 | |
---|
181 | "Tank Level" |
---|
182 | ML*vL = Tank.V; |
---|
183 | end |
---|