1 | #*--------------------------------------------------------------------- |
---|
2 | * EMSO Model Library (EML) Copyright (C) 2004 - 2007 ALSOC. |
---|
3 | * |
---|
4 | * This LIBRARY is free software; you can distribute it and/or modify |
---|
5 | * it under the therms of the ALSOC FREE LICENSE as available at |
---|
6 | * http://www.enq.ufrgs.br/alsoc. |
---|
7 | * |
---|
8 | * EMSO Copyright (C) 2004 - 2007 ALSOC, original code |
---|
9 | * from http://www.rps.eng.br Copyright (C) 2002-2004. |
---|
10 | * All rights reserved. |
---|
11 | * |
---|
12 | * EMSO is distributed under the therms of the ALSOC LICENSE as |
---|
13 | * available at http://www.enq.ufrgs.br/alsoc. |
---|
14 | * |
---|
15 | *---------------------------------------------------------------------- |
---|
16 | * Model of an equilibrium reactor |
---|
17 | *---------------------------------------------------------------------- |
---|
18 | * |
---|
19 | * Description: |
---|
20 | * Thermodynamic equilibrium modeling of a reactor based on |
---|
21 | * equilibrium constants approach. |
---|
22 | * |
---|
23 | * Assumptions: |
---|
24 | * * single-phases involved |
---|
25 | * * thermodynamic equilibrium |
---|
26 | * * steady-state |
---|
27 | * |
---|
28 | * Specify: |
---|
29 | * * inlet stream |
---|
30 | * * stoichiometric matrix |
---|
31 | * * equilibrium temperature |
---|
32 | * |
---|
33 | *---------------------------------------------------------------------- |
---|
34 | * Author: Rodolfo Rodrigues |
---|
35 | * $Id$ |
---|
36 | *--------------------------------------------------------------------*# |
---|
37 | |
---|
38 | using "tank_basic"; |
---|
39 | |
---|
40 | |
---|
41 | #*--------------------------------------------------------------------- |
---|
42 | * only vapour phase |
---|
43 | *--------------------------------------------------------------------*# |
---|
44 | Model equil_vap as tank_vap |
---|
45 | ATTRIBUTES |
---|
46 | Pallete = true; |
---|
47 | Icon = "icon/cstr"; |
---|
48 | Brief = "Model of a generic vapour-phase equilibrium CSTR"; |
---|
49 | Info = " |
---|
50 | == Assumptions == |
---|
51 | * only vapour-phase |
---|
52 | * thermodynamic equilibrium |
---|
53 | * steady-state |
---|
54 | |
---|
55 | == Specify == |
---|
56 | * inlet stream |
---|
57 | * stoichiometric matrix |
---|
58 | * equilibrium temperature |
---|
59 | "; |
---|
60 | |
---|
61 | PARAMETERS |
---|
62 | NReac as Integer (Brief="Number of reactions", Default=1); |
---|
63 | stoic(NComp,NReac) as Real (Brief="Stoichiometric matrix", Symbol="\nu"); |
---|
64 | Rg as Real (Brief="Universal gas constant", Unit='J/mol/K', Default=8.314); |
---|
65 | fs(NComp) as pressure (Brief="Fugacity in standard state", Default=1, DisplayUnit='atm'); |
---|
66 | To as temperature (Brief="Reference temperature", Default=298.15); |
---|
67 | |
---|
68 | VARIABLES |
---|
69 | out Outlet as vapour_stream(Brief="Outlet stream", PosX=1, PosY=1, Symbol="_{out}"); |
---|
70 | |
---|
71 | G(NComp) as energy_mol (Brief="Gibbs free-energy of formation"); |
---|
72 | K(NReac) as Real (Brief="Equillibrium constant", Lower=0, Default=1.5); |
---|
73 | activ(NComp)as Real (Brief="Activity", Symbol="\hat{a}", Lower=0, Default=0.2); |
---|
74 | |
---|
75 | rate(NComp) as reaction_mol (Brief="Overall component rate of reaction"); |
---|
76 | extent(NReac) as flow_mol (Brief="Extent of reaction", Symbol="\xi"); |
---|
77 | conv(NComp) as Real (Brief="Fractional conversion of component", Symbol="X", Default=0); # Lower=-1e3, Upper=1e3); |
---|
78 | |
---|
79 | EQUATIONS |
---|
80 | "Outlet stream" |
---|
81 | Outlet.F*Outlet.z = Outletm.F*Outletm.z + rate*Tank.V; |
---|
82 | |
---|
83 | "Mechanical equilibrium" |
---|
84 | Outlet.P = Outletm.P; |
---|
85 | |
---|
86 | "Energy balance" |
---|
87 | Outlet.F*Outlet.h = Outletm.F*Outletm.h; |
---|
88 | |
---|
89 | "Steady-state" |
---|
90 | Outlet.F = Inlet.F + sum(sumt(stoic*extent)); |
---|
91 | |
---|
92 | "Gibbs free-energy of formation" |
---|
93 | G = PP.IdealGasGibbsOfFormation(Outlet.T); |
---|
94 | |
---|
95 | # "Gibbs free-energy of formation without Cp correction" |
---|
96 | # G = PP.IdealGasGibbsOfFormationAt25C()*Outlet.T/To |
---|
97 | # + PP.IdealGasEnthalpyOfFormationAt25C()*(1 - Outlet.T/To); |
---|
98 | |
---|
99 | for j in [1:NReac] |
---|
100 | "Gibbs free energy of reaction" |
---|
101 | sumt(G*stoic(:,j)) = -Rg*Outlet.T*ln(K(j)); |
---|
102 | # K(j) = exp(-sumt(G*stoic(:,j))/(Rg*Outlet.T)); |
---|
103 | |
---|
104 | "Equilibrium constant" |
---|
105 | K(j) = prod(activ^stoic(:,j)); |
---|
106 | end |
---|
107 | |
---|
108 | for i in [1:NComp] |
---|
109 | "Outlet molar fraction" |
---|
110 | Outlet.F*Outlet.z(i) = (Inlet.F*Inlet.z(i) + sumt(stoic(i,:)*extent)); |
---|
111 | end |
---|
112 | |
---|
113 | for i in [1:NComp] |
---|
114 | if (Outletm.z(i) > 1e-16) then |
---|
115 | "Molar conversion" |
---|
116 | Outlet.F*Outlet.z(i) = Outletm.F*Outletm.z(i)*(1 - conv(i)); |
---|
117 | else if (Outlet.z(i) > 0) then |
---|
118 | "Molar conversion" |
---|
119 | conv(i) = 1; # ? |
---|
120 | else |
---|
121 | "Molar conversion" |
---|
122 | conv(i) = 0; # ? |
---|
123 | end |
---|
124 | end |
---|
125 | end |
---|
126 | |
---|
127 | "Activity" |
---|
128 | activ = PP.VapourFugacityCoefficient(Outlet.T,Outlet.P,Outlet.z)*Outlet.P*Outlet.z/fs; |
---|
129 | end |
---|
130 | |
---|
131 | |
---|
132 | #*--------------------------------------------------------------------- |
---|
133 | * only liquid-phase |
---|
134 | *--------------------------------------------------------------------*# |
---|
135 | Model equil_liq as tank_liq |
---|
136 | ATTRIBUTES |
---|
137 | Pallete = true; |
---|
138 | Icon = "icon/cstr"; |
---|
139 | Brief = "Model of a generic liquid-phase equilibrium CSTR"; |
---|
140 | Info = " |
---|
141 | == Assumptions == |
---|
142 | * only liquid-phase |
---|
143 | * thermodynamic equilibrium |
---|
144 | * steady-state |
---|
145 | |
---|
146 | == Specify == |
---|
147 | * inlet stream |
---|
148 | * stoichiometric matrix |
---|
149 | * equilibrium temperature |
---|
150 | "; |
---|
151 | |
---|
152 | PARAMETERS |
---|
153 | NReac as Integer (Brief="Number of reactions", Default=1); |
---|
154 | stoic(NComp,NReac) as Real (Brief="Stoichiometric matrix", Symbol="\nu"); |
---|
155 | Rg as Real (Brief="Universal gas constant", Unit='J/mol/K', Default=8.314); |
---|
156 | Ps as pressure (Brief="Standard pressure", Default=1, DisplayUnit='bar'); |
---|
157 | To as temperature (Brief="Reference temperature", Default=298.15); |
---|
158 | |
---|
159 | VARIABLES |
---|
160 | out Outlet as liquid_stream(Brief="Outlet stream", PosX=1, PosY=1, Symbol="_{out}"); |
---|
161 | |
---|
162 | G(NReac) as enth_mol (Brief="Gibbs free-energy of formation"); |
---|
163 | K(NReac) as fraction (Brief="Equillibrium constant"); |
---|
164 | activ(NComp)as Real (Brief="Activity", Symbol="\hat{a}"); |
---|
165 | |
---|
166 | rate(NComp) as reaction_mol (Brief="Overall component rate of reaction"); |
---|
167 | extent(NReac)as flow_mol (Brief="Extent of reaction", Symbol="\xi"); |
---|
168 | conv(NComp) as Real (Brief="Fractional conversion of component", Symbol="X", Default=0); |
---|
169 | |
---|
170 | EQUATIONS |
---|
171 | "Outlet stream" |
---|
172 | Outlet.F*Outlet.z = Outletm.F*Outletm.z + rate*Tank.V; |
---|
173 | |
---|
174 | "Mechanical equilibrium" |
---|
175 | Outlet.P = Outletm.P; |
---|
176 | |
---|
177 | "Energy balance" |
---|
178 | Outlet.F*Outlet.h = Outletm.F*Outletm.h; |
---|
179 | |
---|
180 | "Steady-state" |
---|
181 | Outlet.F = Inlet.F + sum(sumt(stoic*extent)); |
---|
182 | |
---|
183 | "Gibbs free-energy of formation" |
---|
184 | G = PP.IdealGasGibbsOfFormation(Outlet.T); |
---|
185 | |
---|
186 | # "Gibbs free-energy of formation without Cp correction" |
---|
187 | # G = PP.IdealGasGibbsOfFormationAt25C()*Outlet.T/To |
---|
188 | # + PP.IdealGasEnthalpyOfFormationAt25C()*(1 - Outlet.T/To); |
---|
189 | |
---|
190 | "Gibbs free energy of reaction" |
---|
191 | sumt(G*stoic) = -Rg*Outlet.T*ln(K); |
---|
192 | # K = exp(-sumt(G*stoic)/(Rg*Outlet.T)); |
---|
193 | |
---|
194 | for j in [1:NReac] |
---|
195 | "Equilibrium constant" |
---|
196 | K(j) = prod(activ^stoic(:,j)); |
---|
197 | end |
---|
198 | |
---|
199 | for i in [1:NComp] |
---|
200 | "Outlet molar fraction" |
---|
201 | Outlet.F*Outlet.z(i) = (Inlet.F*Inlet.z(i) + sumt(stoic(i,:)*extent)); |
---|
202 | end |
---|
203 | |
---|
204 | for i in [1:NComp] |
---|
205 | if (Outletm.z(i) > 1e-16) then |
---|
206 | "Molar conversion" |
---|
207 | Outlet.F*Outlet.z(i) = Outletm.F*Outletm.z(i)*(1 - conv(i)); |
---|
208 | else if (Outlet.z(i) > 0) then |
---|
209 | "Molar conversion" |
---|
210 | conv(i) = 1; # ? |
---|
211 | else |
---|
212 | "Molar conversion" |
---|
213 | conv(i) = 0; # ? |
---|
214 | end |
---|
215 | end |
---|
216 | end |
---|
217 | |
---|
218 | "Activity" |
---|
219 | activ = PP.LiquidFugacityCoefficient(Outlet.T,Outlet.P,Outlet.z)*Outlet.z |
---|
220 | *exp(PP.LiquidVolume(Outlet.T,Outlet.P,Outlet.z)*(Outlet.P - Ps)/Rg/Outlet.T); |
---|
221 | end |
---|