source: trunk/eml/mixers_splitters/sepComp.mso @ 233

Last change on this file since 233 was 176, checked in by Argimiro Resende Secchi, 16 years ago

Fix some new language syntax.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 4.2 KB
Line 
1#*-------------------------------------------------------------------
2* EMSO Model Library (EML) Copyright (C) 2004 - 2007 ALSOC.
3*
4* This LIBRARY is free software; you can distribute it and/or modify
5* it under the therms of the ALSOC FREE LICENSE as available at
6* http://www.enq.ufrgs.br/alsoc.
7*
8* EMSO Copyright (C) 2004 - 2007 ALSOC, original code
9* from http://www.rps.eng.br Copyright (C) 2002-2004.
10* All rights reserved.
11*
12* EMSO is distributed under the therms of the ALSOC LICENSE as
13* available at http://www.enq.ufrgs.br/alsoc.
14*
15*-------------------------------------------------------------------
16* Model of a separator of components
17*--------------------------------------------------------------------
18*
19*       Streams:
20*               * a inlet stream
21*               * "Noutlet" outlet streams
22*
23*       Assumptions:
24*               * thermodynamics equilibrium
25*               * adiabatic
26*                       
27*       Specify:
28*               * the inlet stream
29*               * (NComp - 1) molar fractions to (Noutlet - 1) outlet streams
30*               * (Noutlet - 1) frac (fraction of split of the outlet streams):
31*                               
32*                                       frac(i) = (Mole Flow of the outlet stream "i" /
33*                                                                       Mole Flow of the inlet stream)
34*                                                                                                       where i = 1, 2,...,Noutlet
35*                       or
36*
37*                 (Noutlet - 1) recovery (Recovery of the component specified in the outlet stream i):
38*
39*                                       recovery(i) = (Mole Flow of the component specified in the Outlet stream i/
40*                                                                               Mole Flow of the component specified in the inlet stream)
41*                                                                                                       where i = 1, 2,...,Noutlet
42*
43*----------------------------------------------------------------------
44* Author: Maurício Carvalho Maciel
45* $Id: sepComp.mso 176 2007-03-04 04:56:54Z arge $
46*--------------------------------------------------------------------*#
47
48
49using "streams";
50
51
52Model sepComp_n
53       
54PARAMETERS
55
56outer PP                        as Plugin       (Brief = "External Physical Properties", Type="PP");
57outer   NComp           as Integer      (Brief = "Number of chemical components", Lower = 1);
58                NOutlet                 as Integer      (Brief = "Number of Outlet Streams", Lower = 1);
59                mainComp        as Integer      (Brief = "Component specified", Default = 1, Lower = 1);
60       
61VARIABLES
62
63in              Inlet                                   as stream;
64out     Outlet(NOutlet)         as stream;
65
66        frac(NOutlet)                   as fraction (Brief = "Distribution of the Outlet streams");
67        recovery(NOutlet)       as fraction (Brief = "Recovery of the component specified");
68
69EQUATIONS
70       
71"Flow"
72        sum(Outlet.F) = Inlet.F;
73       
74       
75for i in [1:NOutlet-1]
76
77"Mol fraction normalisation"
78        sum(Outlet(i).z) = 1;
79
80end
81       
82       
83for i in [1:NComp]
84       
85"Composition"
86        sum(Outlet.F*Outlet.z(i)) = Inlet.F*Inlet.z(i);
87       
88end     
89       
90       
91for i in [1:NOutlet]
92       
93"Flow"
94        Outlet(i).F = Inlet.F*frac(i);
95       
96"Recovery"
97        recovery(i)*Inlet.z(mainComp) = frac(i)*Outlet(i).z(mainComp);
98       
99"Pressure"
100        Outlet(i).P = Inlet.P;
101       
102"Enthalpy"
103        Outlet(i).h = (1-Outlet(i).v)*PP.LiquidEnthalpy(Outlet(i).T, Outlet(i).P, Outlet(i).z) +
104                                Outlet(i).v*PP.VapourEnthalpy(Outlet(i).T, Outlet(i).P, Outlet(i).z);
105       
106"Temperature"   
107        Outlet(i).T = Inlet.T;
108
109"Vapourization Fraction"
110        Outlet(i).v = PP.VapourFraction(Outlet(i).T, Outlet(i).P, Outlet(i).z);
111       
112end
113
114end
115
116
117Model sepComp
118       
119PARAMETERS
120
121outer PP                        as Plugin       (Brief = "External Physical Properties", Type="PP");
122outer   NComp           as Integer      (Brief = "Number of chemical components", Lower = 1);
123                mainComp        as Integer      (Brief = "Component specified", Default = 1, Lower = 1);
124       
125VARIABLES
126
127in              Inlet           as stream;
128out     Outlet1         as stream;
129out     Outlet2         as stream;
130       
131        frac                    as fraction (Brief = "Fraction to Outlet 1");
132        recovery        as fraction (Brief = "Recovery of the component specified");
133
134        EQUATIONS
135       
136"Flow"
137        Outlet1.F = Inlet.F * frac;
138        Outlet1.F + Outlet2.F = Inlet.F;
139       
140        recovery*Inlet.z(mainComp) = frac*Outlet1.z(mainComp);
141       
142        sum(Outlet1.z) = 1;
143       
144for i in [1:NComp]
145       
146 "Composition"
147        Outlet1.F*Outlet1.z(i) + Outlet2.F*Outlet2.z(i) = Inlet.F*Inlet.z(i);
148
149end
150       
151"Pressure"
152        Outlet1.P = Inlet.P;
153        Outlet2.P = Inlet.P;
154       
155"Enthalpy"
156        Outlet1.h = (1-Outlet1.v)*PP.LiquidEnthalpy(Outlet1.T, Outlet1.P, Outlet1.z) +
157                                Outlet1.v*PP.VapourEnthalpy(Outlet1.T, Outlet1.P, Outlet1.z);
158        Outlet2.h = (1-Outlet2.v)*PP.LiquidEnthalpy(Outlet2.T, Outlet2.P, Outlet2.z) +
159                                Outlet2.v*PP.VapourEnthalpy(Outlet2.T, Outlet2.P, Outlet2.z);
160       
161"Temperature"
162        Outlet1.T = Inlet.T;
163        Outlet2.T = Inlet.T;
164       
165"Vapourization Fraction"
166        Outlet1.v = PP.VapourFraction(Outlet1.T, Outlet1.P, Outlet1.z);
167        Outlet2.v = PP.VapourFraction(Outlet2.T, Outlet2.P, Outlet2.z);
168
169end
170
171 
Note: See TracBrowser for help on using the repository browser.