1 | #*------------------------------------------------------------------- |
---|
2 | * EMSO Model Library (EML) Copyright (C) 2004 - 2007 ALSOC. |
---|
3 | * |
---|
4 | * This LIBRARY is free software; you can distribute it and/or modify |
---|
5 | * it under the therms of the ALSOC FREE LICENSE as available at |
---|
6 | * http://www.enq.ufrgs.br/alsoc. |
---|
7 | * |
---|
8 | * EMSO Copyright (C) 2004 - 2007 ALSOC, original code |
---|
9 | * from http://www.rps.eng.br Copyright (C) 2002-2004. |
---|
10 | * All rights reserved. |
---|
11 | * |
---|
12 | * EMSO is distributed under the therms of the ALSOC LICENSE as |
---|
13 | * available at http://www.enq.ufrgs.br/alsoc. |
---|
14 | *-------------------------------------------------------------------- |
---|
15 | * Author: Gerson Balbueno Bicca |
---|
16 | * $Id: PHE.mso 250 2007-04-27 16:32:02Z bicca $ |
---|
17 | *------------------------------------------------------------------*# |
---|
18 | using "HEX_Engine"; |
---|
19 | |
---|
20 | Model PHE_PressureDrop |
---|
21 | |
---|
22 | ATTRIBUTES |
---|
23 | Pallete = false; |
---|
24 | Brief = "to be documented"; |
---|
25 | Info = |
---|
26 | "to be documented"; |
---|
27 | |
---|
28 | VARIABLES |
---|
29 | |
---|
30 | DPchannel as press_delta (Brief="Channel Pressure Drop",Default=0.01, Lower=1E-10,DisplayUnit='kPa', Symbol ="\Delta P^{channel}"); |
---|
31 | DPports as press_delta (Brief="Ports Pressure Drop",Default=0.01, Lower=1E-10,DisplayUnit='kPa', Symbol ="\Delta P^{ports}"); |
---|
32 | Pdrop as press_delta (Brief="Total Pressure Drop",Default=0.01, Lower=1E-10,DisplayUnit='kPa', Symbol ="\Delta P"); |
---|
33 | fi as fricfactor (Brief="Friction Factor", Default=0.05, Lower=1E-10, Upper=2000); |
---|
34 | Vchannel as velocity (Brief="Stream Velocity in Channel",Lower=1E-8, Symbol ="V^{channel}"); |
---|
35 | Vports as velocity (Brief="Stream Velocity in Ports",Lower=1E-8, Symbol ="V^{ports}"); |
---|
36 | Npassage as positive (Brief="Number of Channels per Pass", Symbol ="N^{passage}"); |
---|
37 | |
---|
38 | end |
---|
39 | |
---|
40 | Model PHE_HeatTransfer |
---|
41 | |
---|
42 | ATTRIBUTES |
---|
43 | Pallete = false; |
---|
44 | Brief = "to be documented"; |
---|
45 | Info = |
---|
46 | "to be documented"; |
---|
47 | |
---|
48 | VARIABLES |
---|
49 | |
---|
50 | Re as positive (Brief="Reynolds Number",Default=100,Lower=1); |
---|
51 | PR as positive (Brief="Prandtl Number",Default=0.5,Lower=1e-8); |
---|
52 | NTU as positive (Brief="Number of Units Transference",Default=0.05,Lower=1E-10); |
---|
53 | WCp as positive (Brief="Stream Heat Capacity",Lower=1E-3,Default=1E3,Unit='W/K'); |
---|
54 | hcoeff as heat_trans_coeff (Brief="Film Coefficient",Default=1,Lower=1E-12, Upper=1E6); |
---|
55 | Gchannel as flux_mass (Brief ="Channel Mass Flux", Default=1, Lower=1E-6, Symbol ="G^{channel}"); |
---|
56 | Gports as flux_mass (Brief ="Ports Mass Flux", Default=1, Lower=1E-6, Symbol ="G^{ports}"); |
---|
57 | Phi as positive (Brief="Viscosity Correction",Default=1,Lower=1E-6, Symbol="\phi"); |
---|
58 | |
---|
59 | end |
---|
60 | |
---|
61 | Model Main_PHE |
---|
62 | |
---|
63 | ATTRIBUTES |
---|
64 | Pallete = false; |
---|
65 | Brief = "to be documented"; |
---|
66 | Info = |
---|
67 | "to be documented"; |
---|
68 | |
---|
69 | VARIABLES |
---|
70 | |
---|
71 | HeatTransfer as PHE_HeatTransfer (Brief="PHE Heat Transfer", Symbol = " "); |
---|
72 | PressureDrop as PHE_PressureDrop (Brief="PHE Pressure Drop", Symbol = " "); |
---|
73 | Properties as Physical_Properties (Brief="PHE Properties", Symbol = " "); |
---|
74 | |
---|
75 | end |
---|
76 | |
---|
77 | Model Thermal_PHE |
---|
78 | |
---|
79 | ATTRIBUTES |
---|
80 | Pallete = false; |
---|
81 | Brief = "to be documented"; |
---|
82 | Info = |
---|
83 | "to be documented"; |
---|
84 | |
---|
85 | VARIABLES |
---|
86 | Cr as positive (Brief="Heat Capacity Ratio",Default=0.5,Lower=1E-6); |
---|
87 | Cmin as positive (Brief="Minimum Heat Capacity",Lower=1E-10,Default=1E3,Unit='W/K'); |
---|
88 | Cmax as positive (Brief="Maximum Heat Capacity",Lower=1E-10,Default=1E3,Unit='W/K'); |
---|
89 | NTU as positive (Brief="Number of Units Transference",Default=0.05,Lower=1E-10); |
---|
90 | Eft as positive (Brief="Effectiveness",Default=0.5,Lower=0.1,Upper=1.1, Symbol = "\varepsilon"); |
---|
91 | Q as power (Brief="Heat Transfer", Default=7000, Lower=1E-6, Upper=1E10); |
---|
92 | Uc as heat_trans_coeff (Brief="Overall Heat Transfer Coefficient Clean",Default=1,Lower=1E-6,Upper=1E10); |
---|
93 | Ud as heat_trans_coeff (Brief="Overall Heat Transfer Coefficient Dirty",Default=1,Lower=1E-6,Upper=1E10); |
---|
94 | |
---|
95 | end |
---|
96 | |
---|
97 | Model PHE_Geometry |
---|
98 | |
---|
99 | ATTRIBUTES |
---|
100 | Pallete = false; |
---|
101 | Brief = "Parameters for a gasketed plate heat exchanger."; |
---|
102 | |
---|
103 | PARAMETERS |
---|
104 | |
---|
105 | outer PP as Plugin (Brief="External Physical Properties", Type="PP"); |
---|
106 | outer NComp as Integer (Brief="Number of Chemical Components",Hidden=true); |
---|
107 | |
---|
108 | Pi as constant (Brief="Pi Number",Default=3.14159265, Hidden=true,Symbol = "\pi"); |
---|
109 | N1 as Integer (Brief="Auxiliar Constant", Hidden=true,Default = 15); |
---|
110 | N2 as Integer (Brief="Auxiliar Constant",Hidden=true,Default = 14); |
---|
111 | Kp1(N1) as constant (Brief="First constant in Kumar calculation for Pressure Drop", Hidden=true); |
---|
112 | Kp2(N1) as constant (Brief="Second constant in Kumar calculation for Pressure Drop", Hidden=true); |
---|
113 | Kc1(N2) as constant (Brief="First constant in Kumar calculation for Heat Transfer", Hidden=true); |
---|
114 | Kc2(N2) as constant (Brief="Second constant Kumar calculation for Heat Transfer", Hidden=true); |
---|
115 | M(NComp) as molweight (Brief="Component Mol Weight", Hidden=true); |
---|
116 | |
---|
117 | |
---|
118 | Lv as length (Brief="Vertical Ports Distance",Lower=0.1); |
---|
119 | Nplates as Integer (Brief="Total Number of Plates in The Whole Heat Exchanger",Default=25, Symbol ="N_{plates}"); |
---|
120 | NpassHot as Integer (Brief="Number of Passes for Hot Side", Symbol ="Npasshot"); |
---|
121 | NpassCold as Integer (Brief="Number of Passes for Cold Side", Symbol ="Npasscold"); |
---|
122 | Dports as length (Brief="Ports Diameter",Lower=1e-6, Symbol ="D_{ports}"); |
---|
123 | Lw as length (Brief="Plate Width",Lower=0.1); |
---|
124 | pitch as length (Brief="Plate Pitch",Lower=0.1); |
---|
125 | pt as length (Brief="Plate Thickness",Lower=0.1); |
---|
126 | Kwall as conductivity (Brief="Plate Thermal Conductivity",Default=1.0, Symbol ="K_{wall}"); |
---|
127 | Rfh as positive (Brief="Hot Side Fouling Resistance",Unit='m^2*K/kW',Default=1e-6,Lower=0); |
---|
128 | Rfc as positive (Brief="Cold Side Fouling Resistance",Unit='m^2*K/kW',Default=1e-6,Lower=0); |
---|
129 | PhiFactor as Real (Brief="Enlargement Factor",Lower=1e-6, Symbol ="\phi"); |
---|
130 | |
---|
131 | Atotal as area (Brief="Total Effective Area",Lower=1e-6, Symbol ="A_{total}", Protected=true); |
---|
132 | Aports as area (Brief="Port Opening Area of Plate",Lower=1e-6, Symbol ="A_{ports}", Protected=true); |
---|
133 | Achannel as area (Brief="Cross-Sectional Area for Channel Flow",Lower=1e-6, Symbol ="A_{channel}", Protected=true); |
---|
134 | Dh as length (Brief="Equivalent Diameter of Channel",Lower=1e-6, Protected=true); |
---|
135 | Depth as length (Brief="Corrugation Depth",Lower=1e-6, Protected=true); |
---|
136 | Nchannels as Integer (Brief="Total Number of Channels in The Whole Heat Exchanger", Protected=true); |
---|
137 | Lp as length (Brief="Plate Vertical Distance between Port Centers",Lower=0.1, Protected=true); |
---|
138 | Lpack as length (Brief="Compact Plate Pack Length",Lower=0.1, Protected=true); |
---|
139 | Lh as length (Brief="Plate Horizontal Distance between Port Centers",Lower=0.1, Protected=true); |
---|
140 | |
---|
141 | SET |
---|
142 | |
---|
143 | #"Vector Length of constants for Kumar's calculating Pressure Drop" |
---|
144 | N1 = 15; |
---|
145 | |
---|
146 | #"Vector Length of constants for Kumar's calculating Heat Transfer" |
---|
147 | N2 = 14; |
---|
148 | |
---|
149 | #"First constant for Kumar's calculating Pressure Drop" |
---|
150 | Kp1 = [50,19.40,2.990,47,18.290,1.441,34,11.250,0.772,24,3.240,0.760,24,2.80,0.639]; |
---|
151 | |
---|
152 | #"Second constant for Kumar's calculating Pressure Drop" |
---|
153 | Kp2 = [1,0.589,0.183,1,0.652,0.206,1,0.631,0.161,1,0.457,0.215,1,0.451,0.213]; |
---|
154 | |
---|
155 | #"First constant for Kumar's calculating Heat Transfer" |
---|
156 | Kc1 = [0.718,0.348,0.718,0.400,0.300,0.630,0.291,0.130,0.562,0.306,0.108,0.562,0.331,0.087]; |
---|
157 | |
---|
158 | #"Second constant for Kumar's calculating Heat Transfer" |
---|
159 | Kc2 = [0.349,0.663,0.349,0.598,0.663,0.333,0.591,0.732,0.326,0.529,0.703,0.326,0.503,0.718]; |
---|
160 | |
---|
161 | #"Component Molecular Weight" |
---|
162 | M = PP.MolecularWeight(); |
---|
163 | |
---|
164 | #"Pi Number" |
---|
165 | Pi = 3.14159265; |
---|
166 | |
---|
167 | #"Plate Vertical Distance between Port Centers" |
---|
168 | Lp = Lv - Dports; |
---|
169 | |
---|
170 | #"Corrugation Depth" |
---|
171 | Depth=pitch-pt; |
---|
172 | |
---|
173 | #"Plate Horizontal Distance between Port Centers" |
---|
174 | Lh=Lw-Dports; |
---|
175 | |
---|
176 | #"Hydraulic Diameter" |
---|
177 | Dh=2*Depth/PhiFactor; |
---|
178 | |
---|
179 | #"Ports Area" |
---|
180 | Aports=0.25*Pi*Dports*Dports; |
---|
181 | |
---|
182 | #"Channel Area" |
---|
183 | Achannel=Depth*Lw; |
---|
184 | |
---|
185 | #"Pack Length" |
---|
186 | Lpack=Depth*(Nplates-1)+Nplates*pt; |
---|
187 | |
---|
188 | #"Total Number of Channels" |
---|
189 | Nchannels = Nplates -1; |
---|
190 | |
---|
191 | #"Exchange Surface Area" |
---|
192 | Atotal =(Nplates-2)*Lw*Lp*PhiFactor; |
---|
193 | |
---|
194 | end |
---|
195 | |
---|
196 | Model PHE |
---|
197 | |
---|
198 | ATTRIBUTES |
---|
199 | Icon = "icon/phe"; |
---|
200 | Pallete = true; |
---|
201 | Brief = "Shortcut model for Plate and Frame heat exchanger."; |
---|
202 | Info = |
---|
203 | "Model of a gasketed plate heat exchanger. |
---|
204 | The heat transfer and pressure loss calculations are based on Kumar [1] work. |
---|
205 | The following assumptions are considered in order to derive the mathematical model [2]: |
---|
206 | |
---|
207 | == Assumptions == |
---|
208 | * Steady-State operation; |
---|
209 | * No phase changes; |
---|
210 | * No heat loss to the surroundings. |
---|
211 | * Uniform distribution of flow through the channels of a pass. |
---|
212 | |
---|
213 | == Specify == |
---|
214 | * The Inlet streams: Hot and Cold; |
---|
215 | |
---|
216 | == Setting The PHE Parameters == |
---|
217 | *ChevronAngle |
---|
218 | *Nplates |
---|
219 | *NpassHot |
---|
220 | *NpassCold |
---|
221 | *Dports |
---|
222 | *PhiFactor |
---|
223 | *Lv |
---|
224 | *Lw |
---|
225 | *pitch |
---|
226 | *pt |
---|
227 | *Kwall |
---|
228 | *Rfc |
---|
229 | *Rfh |
---|
230 | |
---|
231 | == Setting The PHE Option Parameters == |
---|
232 | *SideOne: cold or hot |
---|
233 | |
---|
234 | == References == |
---|
235 | |
---|
236 | [1] E.A.D. Saunders, Heat Exchangers: Selection, Design and |
---|
237 | Construction, Longman, Harlow, 1988. |
---|
238 | |
---|
239 | [2] J.A.W. Gut, J.M. Pinto, Modeling of plate heat exchangers |
---|
240 | with generalized configurations, Int. J. Heat Mass Transfer |
---|
241 | 46 (14) (2003) 2571\2585. |
---|
242 | "; |
---|
243 | |
---|
244 | PARAMETERS |
---|
245 | |
---|
246 | outer PP as Plugin (Brief="External Physical Properties", Type="PP"); |
---|
247 | outer NComp as Integer (Brief="Number of Chemical Components"); |
---|
248 | |
---|
249 | ChevronAngle as Switcher (Brief="Chevron Corrugation Inclination Angle in Degrees ",Valid=["A30_Deg","A45_Deg","A50_Deg","A60_Deg","A65_Deg"],Default="A30_Deg"); |
---|
250 | SideOne as Switcher (Brief="Fluid Alocation in the Side I - (The odd channels)",Valid=["hot","cold"],Default="hot"); |
---|
251 | |
---|
252 | VARIABLES |
---|
253 | |
---|
254 | Geometry as PHE_Geometry (Brief="Plate Heat Exchanger Geometrical Parameters", Symbol=" "); |
---|
255 | in InletHot as stream (Brief="Inlet Hot Stream", PosX=0, PosY=0.75, Symbol="^{inHot}"); |
---|
256 | in InletCold as stream (Brief="Inlet Cold Stream", PosX=0, PosY=0.25, Symbol="^{inCold}"); |
---|
257 | out OutletHot as streamPH (Brief="Outlet Hot Stream", PosX=1, PosY=0.25, Symbol="^{outHot}"); |
---|
258 | out OutletCold as streamPH (Brief="Outlet Cold Stream", PosX=1, PosY=0.75, Symbol="^{outCold}"); |
---|
259 | |
---|
260 | |
---|
261 | HotSide as Main_PHE (Brief="Plate Heat Exchanger Hot Side", Symbol="_{hot}"); |
---|
262 | ColdSide as Main_PHE (Brief="Plate Heat Exchanger Cold Side", Symbol="_{cold}"); |
---|
263 | Thermal as Thermal_PHE (Brief="Thermal Results", Symbol = " "); |
---|
264 | |
---|
265 | EQUATIONS |
---|
266 | |
---|
267 | "Hot Stream Average Temperature" |
---|
268 | HotSide.Properties.Average.T = 0.5*InletHot.T + 0.5*OutletHot.T; |
---|
269 | |
---|
270 | "Cold Stream Average Temperature" |
---|
271 | ColdSide.Properties.Average.T = 0.5*InletCold.T + 0.5*OutletCold.T; |
---|
272 | |
---|
273 | "Hot Stream Average Pressure" |
---|
274 | HotSide.Properties.Average.P = 0.5*InletHot.P+0.5*OutletHot.P; |
---|
275 | |
---|
276 | "Cold Stream Average Pressure" |
---|
277 | ColdSide.Properties.Average.P = 0.5*InletCold.P+0.5*OutletCold.P; |
---|
278 | |
---|
279 | "Cold Stream Wall Temperature" |
---|
280 | ColdSide.Properties.Wall.Twall = 0.5*HotSide.Properties.Average.T + 0.5*ColdSide.Properties.Average.T; |
---|
281 | |
---|
282 | "Hot Stream Wall Temperature" |
---|
283 | HotSide.Properties.Wall.Twall = 0.5*HotSide.Properties.Average.T + 0.5*ColdSide.Properties.Average.T; |
---|
284 | |
---|
285 | "Hot Stream Average Molecular Weight" |
---|
286 | HotSide.Properties.Average.Mw = sum(Geometry.M*InletHot.z); |
---|
287 | |
---|
288 | "Cold Stream Average Molecular Weight" |
---|
289 | ColdSide.Properties.Average.Mw = sum(Geometry.M*InletCold.z); |
---|
290 | |
---|
291 | if InletCold.v equal 0 |
---|
292 | |
---|
293 | then |
---|
294 | |
---|
295 | "Average Heat Capacity Cold Stream" |
---|
296 | ColdSide.Properties.Average.Cp = PP.LiquidCp(ColdSide.Properties.Average.T,ColdSide.Properties.Average.P,InletCold.z); |
---|
297 | |
---|
298 | "Average Mass Density Cold Stream" |
---|
299 | ColdSide.Properties.Average.rho = PP.LiquidDensity(ColdSide.Properties.Average.T,ColdSide.Properties.Average.P,InletCold.z); |
---|
300 | |
---|
301 | "Inlet Mass Density Cold Stream" |
---|
302 | ColdSide.Properties.Inlet.rho = PP.LiquidDensity(InletCold.T,InletCold.P,InletCold.z); |
---|
303 | |
---|
304 | "Outlet Mass Density Cold Stream" |
---|
305 | ColdSide.Properties.Outlet.rho = PP.LiquidDensity(OutletCold.T,OutletCold.P,OutletCold.z); |
---|
306 | |
---|
307 | "Average Viscosity Cold Stream" |
---|
308 | ColdSide.Properties.Average.Mu = PP.LiquidViscosity(ColdSide.Properties.Average.T,ColdSide.Properties.Average.P,InletCold.z); |
---|
309 | |
---|
310 | "Average Conductivity Cold Stream" |
---|
311 | ColdSide.Properties.Average.K = PP.LiquidThermalConductivity(ColdSide.Properties.Average.T,ColdSide.Properties.Average.P,InletCold.z); |
---|
312 | |
---|
313 | "Viscosity Cold Stream at wall temperature" |
---|
314 | ColdSide.Properties.Wall.Mu = PP.LiquidViscosity(ColdSide.Properties.Wall.Twall,ColdSide.Properties.Average.P,InletCold.z); |
---|
315 | |
---|
316 | else |
---|
317 | |
---|
318 | "Average Heat Capacity ColdStream" |
---|
319 | ColdSide.Properties.Average.Cp = PP.VapourCp(ColdSide.Properties.Average.T,ColdSide.Properties.Average.P,InletCold.z); |
---|
320 | |
---|
321 | "Average Mass Density Cold Stream" |
---|
322 | ColdSide.Properties.Average.rho = PP.VapourDensity(ColdSide.Properties.Average.T,ColdSide.Properties.Average.P,InletCold.z); |
---|
323 | |
---|
324 | "Inlet Mass Density Cold Stream" |
---|
325 | ColdSide.Properties.Inlet.rho = PP.VapourDensity(InletCold.T,InletCold.P,InletCold.z); |
---|
326 | |
---|
327 | "Outlet Mass Density Cold Stream" |
---|
328 | ColdSide.Properties.Outlet.rho = PP.VapourDensity(OutletCold.T,OutletCold.P,OutletCold.z); |
---|
329 | |
---|
330 | "Average Viscosity Cold Stream" |
---|
331 | ColdSide.Properties.Average.Mu = PP.VapourViscosity(ColdSide.Properties.Average.T,ColdSide.Properties.Average.P,InletCold.z); |
---|
332 | |
---|
333 | "Average Conductivity Cold Stream" |
---|
334 | ColdSide.Properties.Average.K = PP.VapourThermalConductivity(ColdSide.Properties.Average.T,ColdSide.Properties.Average.P,InletCold.z); |
---|
335 | |
---|
336 | "Viscosity Cold Stream at wall temperature" |
---|
337 | ColdSide.Properties.Wall.Mu = PP.VapourViscosity(ColdSide.Properties.Wall.Twall,ColdSide.Properties.Average.P,InletCold.z); |
---|
338 | |
---|
339 | end |
---|
340 | |
---|
341 | if InletHot.v equal 0 |
---|
342 | |
---|
343 | then |
---|
344 | |
---|
345 | "Average Heat Capacity Hot Stream" |
---|
346 | HotSide.Properties.Average.Cp = PP.LiquidCp(HotSide.Properties.Average.T,HotSide.Properties.Average.P,InletHot.z); |
---|
347 | |
---|
348 | "Average Mass Density Hot Stream" |
---|
349 | HotSide.Properties.Average.rho = PP.LiquidDensity(HotSide.Properties.Average.T,HotSide.Properties.Average.P,InletHot.z); |
---|
350 | |
---|
351 | "Inlet Mass Density Hot Stream" |
---|
352 | HotSide.Properties.Inlet.rho = PP.LiquidDensity(InletHot.T,InletHot.P,InletHot.z); |
---|
353 | |
---|
354 | "Outlet Mass Density Hot Stream" |
---|
355 | HotSide.Properties.Outlet.rho = PP.LiquidDensity(OutletHot.T,OutletHot.P,OutletHot.z); |
---|
356 | |
---|
357 | "Average Viscosity Hot Stream" |
---|
358 | HotSide.Properties.Average.Mu = PP.LiquidViscosity(HotSide.Properties.Average.T,HotSide.Properties.Average.P,InletHot.z); |
---|
359 | |
---|
360 | "Average Conductivity Hot Stream" |
---|
361 | HotSide.Properties.Average.K = PP.LiquidThermalConductivity(HotSide.Properties.Average.T,HotSide.Properties.Average.P,InletHot.z); |
---|
362 | |
---|
363 | "Viscosity Hot Stream at wall temperature" |
---|
364 | HotSide.Properties.Wall.Mu = PP.LiquidViscosity(HotSide.Properties.Wall.Twall,HotSide.Properties.Average.P,InletHot.z); |
---|
365 | |
---|
366 | |
---|
367 | else |
---|
368 | |
---|
369 | "Average Heat Capacity Hot Stream" |
---|
370 | HotSide.Properties.Average.Cp = PP.VapourCp(HotSide.Properties.Average.T,HotSide.Properties.Average.P,InletHot.z); |
---|
371 | |
---|
372 | "Average Mass Density Hot Stream" |
---|
373 | HotSide.Properties.Average.rho = PP.VapourDensity(HotSide.Properties.Average.T,HotSide.Properties.Average.P,InletHot.z); |
---|
374 | |
---|
375 | "Inlet Mass Density Hot Stream" |
---|
376 | HotSide.Properties.Inlet.rho = PP.VapourDensity(InletHot.T,InletHot.P,InletHot.z); |
---|
377 | |
---|
378 | "Outlet Mass Density Hot Stream" |
---|
379 | HotSide.Properties.Outlet.rho = PP.VapourDensity(OutletHot.T,OutletHot.P,OutletHot.z); |
---|
380 | |
---|
381 | "Average Viscosity Hot Stream" |
---|
382 | HotSide.Properties.Average.Mu = PP.VapourViscosity(HotSide.Properties.Average.T,HotSide.Properties.Average.P,InletHot.z); |
---|
383 | |
---|
384 | "Average Conductivity Hot Stream" |
---|
385 | HotSide.Properties.Average.K = PP.VapourThermalConductivity(HotSide.Properties.Average.T,HotSide.Properties.Average.P,InletHot.z); |
---|
386 | |
---|
387 | "Viscosity Hot Stream at wall temperature" |
---|
388 | HotSide.Properties.Wall.Mu = PP.VapourViscosity(HotSide.Properties.Wall.Twall,HotSide.Properties.Average.P,InletHot.z); |
---|
389 | |
---|
390 | end |
---|
391 | |
---|
392 | "Energy Balance Hot Stream" |
---|
393 | Thermal.Q = InletHot.F*(InletHot.h-OutletHot.h); |
---|
394 | |
---|
395 | "Energy Balance Cold Stream" |
---|
396 | Thermal.Q = InletCold.F*(OutletCold.h - InletCold.h); |
---|
397 | |
---|
398 | "Flow Mass Inlet Cold Stream" |
---|
399 | ColdSide.Properties.Inlet.Fw = sum(Geometry.M*InletCold.z)*InletCold.F; |
---|
400 | |
---|
401 | "Flow Mass Outlet Cold Stream" |
---|
402 | ColdSide.Properties.Outlet.Fw = sum(Geometry.M*OutletCold.z)*OutletCold.F; |
---|
403 | |
---|
404 | "Flow Mass Inlet Hot Stream" |
---|
405 | HotSide.Properties.Inlet.Fw = sum(Geometry.M*InletHot.z)*InletHot.F; |
---|
406 | |
---|
407 | "Flow Mass Outlet Hot Stream" |
---|
408 | HotSide.Properties.Outlet.Fw = sum(Geometry.M*OutletHot.z)*OutletHot.F; |
---|
409 | |
---|
410 | "Molar Balance Hot Stream" |
---|
411 | OutletHot.F = InletHot.F; |
---|
412 | |
---|
413 | "Molar Balance Cold Stream" |
---|
414 | OutletCold.F = InletCold.F; |
---|
415 | |
---|
416 | "Hot Stream Molar Fraction Constraint" |
---|
417 | OutletHot.z=InletHot.z; |
---|
418 | |
---|
419 | "Cold Stream Molar Fraction Constraint" |
---|
420 | OutletCold.z=InletCold.z; |
---|
421 | |
---|
422 | switch SideOne |
---|
423 | |
---|
424 | case "cold": |
---|
425 | |
---|
426 | "Total Number of Passages Cold Side" |
---|
427 | ColdSide.PressureDrop.Npassage = (2*Geometry.Nchannels+1+(-1)^(Geometry.Nchannels+1))/(4*Geometry.NpassCold); |
---|
428 | |
---|
429 | "Total Number of Passages Hot Side" |
---|
430 | HotSide.PressureDrop.Npassage = (2*Geometry.Nchannels-1+(-1)^(Geometry.Nchannels))/(4*Geometry.NpassHot); |
---|
431 | |
---|
432 | case "hot": |
---|
433 | |
---|
434 | "Total Number of Passages Cold Side" |
---|
435 | HotSide.PressureDrop.Npassage = (2*Geometry.Nchannels+1+(-1)^(Geometry.Nchannels+1))/(4*Geometry.NpassHot); |
---|
436 | |
---|
437 | "Total Number of Passages Hot Side" |
---|
438 | ColdSide.PressureDrop.Npassage = (2*Geometry.Nchannels-1+(-1)^(Geometry.Nchannels))/(4*Geometry.NpassCold); |
---|
439 | |
---|
440 | end |
---|
441 | |
---|
442 | "Hot Stream Mass Flux in the Channel" |
---|
443 | HotSide.HeatTransfer.Gchannel=HotSide.Properties.Inlet.Fw/(HotSide.PressureDrop.Npassage*Geometry.Achannel); |
---|
444 | |
---|
445 | "Hot Stream Mass Flux in the Ports" |
---|
446 | HotSide.HeatTransfer.Gports=HotSide.Properties.Inlet.Fw/Geometry.Aports; |
---|
447 | |
---|
448 | "Cold Stream Mass Flux in the Ports" |
---|
449 | ColdSide.HeatTransfer.Gports=ColdSide.Properties.Inlet.Fw/Geometry.Aports; |
---|
450 | |
---|
451 | "Cold Stream Mass Flux in the Channel" |
---|
452 | ColdSide.HeatTransfer.Gchannel=ColdSide.Properties.Inlet.Fw/(ColdSide.PressureDrop.Npassage*Geometry.Achannel); |
---|
453 | |
---|
454 | "Hot Stream Pressure Drop in Ports" |
---|
455 | HotSide.PressureDrop.DPports =1.5*Geometry.NpassHot*HotSide.HeatTransfer.Gports^2/(2*HotSide.Properties.Average.rho); |
---|
456 | |
---|
457 | "Cold Stream Pressure Drop in Ports" |
---|
458 | ColdSide.PressureDrop.DPports =1.5*Geometry.NpassCold*ColdSide.HeatTransfer.Gports^2/(2*ColdSide.Properties.Average.rho); |
---|
459 | |
---|
460 | "Hot Stream Pressure Drop in Channels" |
---|
461 | HotSide.PressureDrop.DPchannel =2*HotSide.PressureDrop.fi*Geometry.NpassHot*Geometry.Lv*HotSide.HeatTransfer.Gchannel^2/(HotSide.Properties.Average.rho*Geometry.Dh*HotSide.HeatTransfer.Phi^0.17); |
---|
462 | |
---|
463 | "Cold Stream Pressure Drop in Channels" |
---|
464 | ColdSide.PressureDrop.DPchannel =2*ColdSide.PressureDrop.fi*Geometry.NpassCold*Geometry.Lv*ColdSide.HeatTransfer.Gchannel^2/(ColdSide.Properties.Average.rho*Geometry.Dh*ColdSide.HeatTransfer.Phi^0.17); |
---|
465 | |
---|
466 | "Hot Stream Total Pressure Drop" |
---|
467 | HotSide.PressureDrop.Pdrop =HotSide.PressureDrop.DPchannel+HotSide.PressureDrop.DPports; |
---|
468 | |
---|
469 | "Cold Stream Total Pressure Drop" |
---|
470 | ColdSide.PressureDrop.Pdrop =ColdSide.PressureDrop.DPchannel+ColdSide.PressureDrop.DPports; |
---|
471 | |
---|
472 | switch ChevronAngle #Pressure Drop Friction Factor According to kumar's (1984) |
---|
473 | |
---|
474 | case "A30_Deg": # ChevronAngle <= 30 |
---|
475 | |
---|
476 | if HotSide.HeatTransfer.Re < 10 |
---|
477 | then |
---|
478 | HotSide.PressureDrop.fi = Geometry.Kp1(1)/HotSide.HeatTransfer.Re^Geometry.Kp2(1); |
---|
479 | ColdSide.PressureDrop.fi = Geometry.Kp1(1)/ColdSide.HeatTransfer.Re^Geometry.Kp2(1); |
---|
480 | else |
---|
481 | if HotSide.HeatTransfer.Re < 100 |
---|
482 | then |
---|
483 | HotSide.PressureDrop.fi = Geometry.Kp1(2)/HotSide.HeatTransfer.Re^Geometry.Kp2(2); |
---|
484 | ColdSide.PressureDrop.fi = Geometry.Kp1(2)/ColdSide.HeatTransfer.Re^Geometry.Kp2(2); |
---|
485 | else |
---|
486 | HotSide.PressureDrop.fi = Geometry.Kp1(3)/HotSide.HeatTransfer.Re^Geometry.Kp2(3); |
---|
487 | ColdSide.PressureDrop.fi = Geometry.Kp1(3)/ColdSide.HeatTransfer.Re^Geometry.Kp2(3); |
---|
488 | end |
---|
489 | |
---|
490 | end |
---|
491 | |
---|
492 | case "A45_Deg": |
---|
493 | |
---|
494 | if HotSide.HeatTransfer.Re < 15 |
---|
495 | then |
---|
496 | HotSide.PressureDrop.fi = Geometry.Kp1(4)/HotSide.HeatTransfer.Re^Geometry.Kp2(4); |
---|
497 | ColdSide.PressureDrop.fi = Geometry.Kp1(4)/ColdSide.HeatTransfer.Re^Geometry.Kp2(4); |
---|
498 | else |
---|
499 | if HotSide.HeatTransfer.Re < 300 |
---|
500 | then |
---|
501 | HotSide.PressureDrop.fi = Geometry.Kp1(5)/HotSide.HeatTransfer.Re^Geometry.Kp2(5); |
---|
502 | ColdSide.PressureDrop.fi = Geometry.Kp1(5)/ColdSide.HeatTransfer.Re^Geometry.Kp2(5); |
---|
503 | else |
---|
504 | HotSide.PressureDrop.fi = Geometry.Kp1(6)/HotSide.HeatTransfer.Re^Geometry.Kp2(6); |
---|
505 | ColdSide.PressureDrop.fi = Geometry.Kp1(6)/ColdSide.HeatTransfer.Re^Geometry.Kp2(6); |
---|
506 | end |
---|
507 | |
---|
508 | end |
---|
509 | |
---|
510 | case "A50_Deg": |
---|
511 | |
---|
512 | if HotSide.HeatTransfer.Re < 20 |
---|
513 | then |
---|
514 | HotSide.PressureDrop.fi = Geometry.Kp1(7)/HotSide.HeatTransfer.Re^Geometry.Kp2(7); |
---|
515 | ColdSide.PressureDrop.fi = Geometry.Kp1(7)/ColdSide.HeatTransfer.Re^Geometry.Kp2(7); |
---|
516 | else |
---|
517 | if HotSide.HeatTransfer.Re < 300 |
---|
518 | then |
---|
519 | HotSide.PressureDrop.fi = Geometry.Kp1(8)/HotSide.HeatTransfer.Re^Geometry.Kp2(8); |
---|
520 | ColdSide.PressureDrop.fi = Geometry.Kp1(8)/ColdSide.HeatTransfer.Re^Geometry.Kp2(8); |
---|
521 | else |
---|
522 | HotSide.PressureDrop.fi = Geometry.Kp1(9)/HotSide.HeatTransfer.Re^Geometry.Kp2(9); |
---|
523 | ColdSide.PressureDrop.fi = Geometry.Kp1(9)/ColdSide.HeatTransfer.Re^Geometry.Kp2(9); |
---|
524 | end |
---|
525 | |
---|
526 | end |
---|
527 | |
---|
528 | case "A60_Deg": |
---|
529 | |
---|
530 | if HotSide.HeatTransfer.Re < 40 |
---|
531 | then |
---|
532 | HotSide.PressureDrop.fi = Geometry.Kp1(10)/HotSide.HeatTransfer.Re^Geometry.Kp2(10); |
---|
533 | ColdSide.PressureDrop.fi = Geometry.Kp1(10)/ColdSide.HeatTransfer.Re^Geometry.Kp2(10); |
---|
534 | else |
---|
535 | if HotSide.HeatTransfer.Re < 400 |
---|
536 | then |
---|
537 | HotSide.PressureDrop.fi = Geometry.Kp1(11)/HotSide.HeatTransfer.Re^Geometry.Kp2(11); |
---|
538 | ColdSide.PressureDrop.fi = Geometry.Kp1(11)/ColdSide.HeatTransfer.Re^Geometry.Kp2(11); |
---|
539 | else |
---|
540 | HotSide.PressureDrop.fi = Geometry.Kp1(12)/HotSide.HeatTransfer.Re^Geometry.Kp2(12); |
---|
541 | ColdSide.PressureDrop.fi = Geometry.Kp1(12)/ColdSide.HeatTransfer.Re^Geometry.Kp2(12); |
---|
542 | end |
---|
543 | |
---|
544 | end |
---|
545 | |
---|
546 | case "A65_Deg": # ChevronAngle >= 65 |
---|
547 | |
---|
548 | if HotSide.HeatTransfer.Re < 50 |
---|
549 | then |
---|
550 | HotSide.PressureDrop.fi = Geometry.Kp1(13)/HotSide.HeatTransfer.Re^Geometry.Kp2(13); |
---|
551 | ColdSide.PressureDrop.fi = Geometry.Kp1(13)/ColdSide.HeatTransfer.Re^Geometry.Kp2(13); |
---|
552 | else |
---|
553 | if HotSide.HeatTransfer.Re < 500 |
---|
554 | then |
---|
555 | HotSide.PressureDrop.fi = Geometry.Kp1(14)/HotSide.HeatTransfer.Re^Geometry.Kp2(14); |
---|
556 | ColdSide.PressureDrop.fi = Geometry.Kp1(14)/ColdSide.HeatTransfer.Re^Geometry.Kp2(14); |
---|
557 | else |
---|
558 | HotSide.PressureDrop.fi = Geometry.Kp1(15)/HotSide.HeatTransfer.Re^Geometry.Kp2(15); |
---|
559 | ColdSide.PressureDrop.fi = Geometry.Kp1(15)/ColdSide.HeatTransfer.Re^Geometry.Kp2(15); |
---|
560 | end |
---|
561 | |
---|
562 | end |
---|
563 | |
---|
564 | end |
---|
565 | |
---|
566 | switch ChevronAngle # Heat Transfer Coefficient According to kumar's (1984) |
---|
567 | |
---|
568 | case "A30_Deg": # ChevronAngle <= 30 |
---|
569 | |
---|
570 | if HotSide.HeatTransfer.Re < 10 |
---|
571 | then |
---|
572 | HotSide.HeatTransfer.hcoeff=(HotSide.Properties.Average.K*HotSide.HeatTransfer.PR^(1/3)*HotSide.HeatTransfer.Phi^0.17*Geometry.Kc1(1)*HotSide.HeatTransfer.Re^Geometry.Kc2(1))/Geometry.Dh; |
---|
573 | ColdSide.HeatTransfer.hcoeff =(ColdSide.Properties.Average.K*ColdSide.HeatTransfer.PR^(1/3)*ColdSide.HeatTransfer.Phi^0.17*Geometry.Kc1(1)*ColdSide.HeatTransfer.Re^Geometry.Kc2(1))/Geometry.Dh; |
---|
574 | else |
---|
575 | HotSide.HeatTransfer.hcoeff=(HotSide.Properties.Average.K*HotSide.HeatTransfer.PR^(1/3)*HotSide.HeatTransfer.Phi^0.17*Geometry.Kc1(2)*HotSide.HeatTransfer.Re^Geometry.Kc2(2))/Geometry.Dh; |
---|
576 | ColdSide.HeatTransfer.hcoeff =(ColdSide.Properties.Average.K*ColdSide.HeatTransfer.PR^(1/3)*ColdSide.HeatTransfer.Phi^0.17*Geometry.Kc1(2)*ColdSide.HeatTransfer.Re^Geometry.Kc2(2))/Geometry.Dh; |
---|
577 | end |
---|
578 | |
---|
579 | case "A45_Deg": |
---|
580 | |
---|
581 | if HotSide.HeatTransfer.Re < 10 |
---|
582 | then |
---|
583 | HotSide.HeatTransfer.hcoeff=(HotSide.Properties.Average.K*HotSide.HeatTransfer.PR^(1/3)*HotSide.HeatTransfer.Phi^0.17*Geometry.Kc1(3)*HotSide.HeatTransfer.Re^Geometry.Kc2(3))/Geometry.Dh; |
---|
584 | ColdSide.HeatTransfer.hcoeff =(ColdSide.Properties.Average.K*ColdSide.HeatTransfer.PR^(1/3)*ColdSide.HeatTransfer.Phi^0.17*Geometry.Kc1(3)*ColdSide.HeatTransfer.Re^Geometry.Kc2(3))/Geometry.Dh; |
---|
585 | else |
---|
586 | if HotSide.HeatTransfer.Re < 100 |
---|
587 | then |
---|
588 | HotSide.HeatTransfer.hcoeff=(HotSide.Properties.Average.K*HotSide.HeatTransfer.PR^(1/3)*HotSide.HeatTransfer.Phi^0.17*Geometry.Kc1(4)*HotSide.HeatTransfer.Re^Geometry.Kc2(4))/Geometry.Dh; |
---|
589 | ColdSide.HeatTransfer.hcoeff =(ColdSide.Properties.Average.K*ColdSide.HeatTransfer.PR^(1/3)*ColdSide.HeatTransfer.Phi^0.17*Geometry.Kc1(4)*ColdSide.HeatTransfer.Re^Geometry.Kc2(4))/Geometry.Dh; |
---|
590 | else |
---|
591 | HotSide.HeatTransfer.hcoeff=(HotSide.Properties.Average.K*HotSide.HeatTransfer.PR^(1/3)*HotSide.HeatTransfer.Phi^0.17*Geometry.Kc1(5)*HotSide.HeatTransfer.Re^Geometry.Kc2(5))/Geometry.Dh; |
---|
592 | ColdSide.HeatTransfer.hcoeff =(ColdSide.Properties.Average.K*ColdSide.HeatTransfer.PR^(1/3)*ColdSide.HeatTransfer.Phi^0.17*Geometry.Kc1(5)*ColdSide.HeatTransfer.Re^Geometry.Kc2(5))/Geometry.Dh; |
---|
593 | end |
---|
594 | end |
---|
595 | |
---|
596 | case "A50_Deg": |
---|
597 | |
---|
598 | if HotSide.HeatTransfer.Re < 20 |
---|
599 | then |
---|
600 | HotSide.HeatTransfer.hcoeff=(HotSide.Properties.Average.K*HotSide.HeatTransfer.PR^(1/3)*HotSide.HeatTransfer.Phi^0.17*Geometry.Kc1(6)*HotSide.HeatTransfer.Re^Geometry.Kc2(6))/Geometry.Dh; |
---|
601 | ColdSide.HeatTransfer.hcoeff =(ColdSide.Properties.Average.K*ColdSide.HeatTransfer.PR^(1/3)*ColdSide.HeatTransfer.Phi^0.17*Geometry.Kc1(6)*ColdSide.HeatTransfer.Re^Geometry.Kc2(6))/Geometry.Dh; |
---|
602 | else |
---|
603 | if HotSide.HeatTransfer.Re < 300 |
---|
604 | then |
---|
605 | HotSide.HeatTransfer.hcoeff=(HotSide.Properties.Average.K*HotSide.HeatTransfer.PR^(1/3)*HotSide.HeatTransfer.Phi^0.17*Geometry.Kc1(7)*HotSide.HeatTransfer.Re^Geometry.Kc2(7))/Geometry.Dh; |
---|
606 | ColdSide.HeatTransfer.hcoeff =(ColdSide.Properties.Average.K*ColdSide.HeatTransfer.PR^(1/3)*ColdSide.HeatTransfer.Phi^0.17*Geometry.Kc1(7)*ColdSide.HeatTransfer.Re^Geometry.Kc2(7))/Geometry.Dh; |
---|
607 | else |
---|
608 | HotSide.HeatTransfer.hcoeff=(HotSide.Properties.Average.K*HotSide.HeatTransfer.PR^(1/3)*HotSide.HeatTransfer.Phi^0.17*Geometry.Kc1(8)*HotSide.HeatTransfer.Re^Geometry.Kc2(8))/Geometry.Dh; |
---|
609 | ColdSide.HeatTransfer.hcoeff =(ColdSide.Properties.Average.K*ColdSide.HeatTransfer.PR^(1/3)*ColdSide.HeatTransfer.Phi^0.17*Geometry.Kc1(8)*ColdSide.HeatTransfer.Re^Geometry.Kc2(8))/Geometry.Dh; |
---|
610 | end |
---|
611 | end |
---|
612 | |
---|
613 | case "A60_Deg": |
---|
614 | |
---|
615 | if HotSide.HeatTransfer.Re < 20 |
---|
616 | then |
---|
617 | HotSide.HeatTransfer.hcoeff=(HotSide.Properties.Average.K*HotSide.HeatTransfer.PR^(1/3)*HotSide.HeatTransfer.Phi^0.17*Geometry.Kc1(9)*HotSide.HeatTransfer.Re^Geometry.Kc2(9))/Geometry.Dh; |
---|
618 | ColdSide.HeatTransfer.hcoeff =(ColdSide.Properties.Average.K*ColdSide.HeatTransfer.PR^(1/3)*ColdSide.HeatTransfer.Phi^0.17*Geometry.Kc1(9)*ColdSide.HeatTransfer.Re^Geometry.Kc2(9))/Geometry.Dh; |
---|
619 | else |
---|
620 | if HotSide.HeatTransfer.Re < 400 |
---|
621 | then |
---|
622 | HotSide.HeatTransfer.hcoeff=(HotSide.Properties.Average.K*HotSide.HeatTransfer.PR^(1/3)*HotSide.HeatTransfer.Phi^0.17*Geometry.Kc1(10)*HotSide.HeatTransfer.Re^Geometry.Kc2(10))/Geometry.Dh; |
---|
623 | ColdSide.HeatTransfer.hcoeff =(ColdSide.Properties.Average.K*ColdSide.HeatTransfer.PR^(1/3)*ColdSide.HeatTransfer.Phi^0.17*Geometry.Kc1(10)*ColdSide.HeatTransfer.Re^Geometry.Kc2(10))/Geometry.Dh; |
---|
624 | else |
---|
625 | HotSide.HeatTransfer.hcoeff=(HotSide.Properties.Average.K*HotSide.HeatTransfer.PR^(1/3)*HotSide.HeatTransfer.Phi^0.17*Geometry.Kc1(11)*HotSide.HeatTransfer.Re^Geometry.Kc2(11))/Geometry.Dh; |
---|
626 | ColdSide.HeatTransfer.hcoeff =(ColdSide.Properties.Average.K*ColdSide.HeatTransfer.PR^(1/3)*ColdSide.HeatTransfer.Phi^0.17*Geometry.Kc1(11)*ColdSide.HeatTransfer.Re^Geometry.Kc2(11))/Geometry.Dh; |
---|
627 | end |
---|
628 | end |
---|
629 | |
---|
630 | case "A65_Deg": # ChevronAngle >= 65 |
---|
631 | |
---|
632 | if HotSide.HeatTransfer.Re < 20 |
---|
633 | then |
---|
634 | HotSide.HeatTransfer.hcoeff=(HotSide.Properties.Average.K*HotSide.HeatTransfer.PR^(1/3)*HotSide.HeatTransfer.Phi^0.17*Geometry.Kc1(12)*HotSide.HeatTransfer.Re^Geometry.Kc2(12))/Geometry.Dh; |
---|
635 | ColdSide.HeatTransfer.hcoeff =(ColdSide.Properties.Average.K*ColdSide.HeatTransfer.PR^(1/3)*ColdSide.HeatTransfer.Phi^0.17*Geometry.Kc1(12)*ColdSide.HeatTransfer.Re^Geometry.Kc2(12))/Geometry.Dh; |
---|
636 | else |
---|
637 | if HotSide.HeatTransfer.Re < 500 |
---|
638 | then |
---|
639 | HotSide.HeatTransfer.hcoeff=(HotSide.Properties.Average.K*HotSide.HeatTransfer.PR^(1/3)*HotSide.HeatTransfer.Phi^0.17*Geometry.Kc1(13)*HotSide.HeatTransfer.Re^Geometry.Kc2(13))/Geometry.Dh; |
---|
640 | ColdSide.HeatTransfer.hcoeff =(ColdSide.Properties.Average.K*ColdSide.HeatTransfer.PR^(1/3)*ColdSide.HeatTransfer.Phi^0.17*Geometry.Kc1(13)*ColdSide.HeatTransfer.Re^Geometry.Kc2(13))/Geometry.Dh; |
---|
641 | else |
---|
642 | HotSide.HeatTransfer.hcoeff=(HotSide.Properties.Average.K*HotSide.HeatTransfer.PR^(1/3)*HotSide.HeatTransfer.Phi^0.17*Geometry.Kc1(14)*HotSide.HeatTransfer.Re^Geometry.Kc2(14))/Geometry.Dh; |
---|
643 | ColdSide.HeatTransfer.hcoeff =(ColdSide.Properties.Average.K*ColdSide.HeatTransfer.PR^(1/3)*ColdSide.HeatTransfer.Phi^0.17*Geometry.Kc1(14)*ColdSide.HeatTransfer.Re^Geometry.Kc2(14))/Geometry.Dh; |
---|
644 | end |
---|
645 | end |
---|
646 | |
---|
647 | end |
---|
648 | |
---|
649 | "Hot Stream Velocity in Channels" |
---|
650 | HotSide.PressureDrop.Vchannel =HotSide.HeatTransfer.Gchannel/HotSide.Properties.Average.rho; |
---|
651 | |
---|
652 | "Cold Stream Velocity in Channels" |
---|
653 | ColdSide.PressureDrop.Vchannel =ColdSide.HeatTransfer.Gchannel/ColdSide.Properties.Average.rho; |
---|
654 | |
---|
655 | "Hot Stream Velocity in Ports" |
---|
656 | HotSide.PressureDrop.Vports =HotSide.Properties.Inlet.Fw/(Geometry.Aports*HotSide.Properties.Inlet.rho); |
---|
657 | |
---|
658 | "Cold Stream Velocity in Ports" |
---|
659 | ColdSide.PressureDrop.Vports =ColdSide.Properties.Inlet.Fw/(Geometry.Aports*ColdSide.Properties.Inlet.rho); |
---|
660 | |
---|
661 | "Hot Stream Reynolds Number" |
---|
662 | HotSide.HeatTransfer.Re =Geometry.Dh*HotSide.HeatTransfer.Gchannel/HotSide.Properties.Average.Mu; |
---|
663 | |
---|
664 | "Cold Stream Reynolds Number" |
---|
665 | ColdSide.HeatTransfer.Re =Geometry.Dh*ColdSide.HeatTransfer.Gchannel/ColdSide.Properties.Average.Mu; |
---|
666 | |
---|
667 | "Hot Stream Prandtl Number" |
---|
668 | HotSide.HeatTransfer.PR= ((HotSide.Properties.Average.Cp/HotSide.Properties.Average.Mw)*HotSide.Properties.Average.Mu)/HotSide.Properties.Average.K; |
---|
669 | |
---|
670 | "Cold Stream Prandtl Number" |
---|
671 | ColdSide.HeatTransfer.PR = ((ColdSide.Properties.Average.Cp/ColdSide.Properties.Average.Mw)*ColdSide.Properties.Average.Mu)/ColdSide.Properties.Average.K; |
---|
672 | |
---|
673 | "Hot Stream Viscosity Correction" |
---|
674 | HotSide.HeatTransfer.Phi= HotSide.Properties.Average.Mu/HotSide.Properties.Wall.Mu; |
---|
675 | |
---|
676 | "Cold Stream Viscosity Correction" |
---|
677 | ColdSide.HeatTransfer.Phi= ColdSide.Properties.Average.Mu/ColdSide.Properties.Wall.Mu; |
---|
678 | |
---|
679 | "Hot Stream Outlet Pressure" |
---|
680 | OutletHot.P = InletHot.P - HotSide.PressureDrop.Pdrop; |
---|
681 | |
---|
682 | "Cold Stream Outlet Pressure" |
---|
683 | OutletCold.P = InletCold.P - ColdSide.PressureDrop.Pdrop; |
---|
684 | |
---|
685 | "Overall Heat Transfer Coefficient Clean" |
---|
686 | Thermal.Uc/HotSide.HeatTransfer.hcoeff +Thermal.Uc*Geometry.pt/Geometry.Kwall+Thermal.Uc/ColdSide.HeatTransfer.hcoeff=1; |
---|
687 | |
---|
688 | "Overall Heat Transfer Coefficient Dirty" |
---|
689 | Thermal.Ud*(1/HotSide.HeatTransfer.hcoeff +Geometry.pt/Geometry.Kwall+1/ColdSide.HeatTransfer.hcoeff + Geometry.Rfc + Geometry.Rfh)=1; |
---|
690 | |
---|
691 | "Duty" |
---|
692 | Thermal.Q = Thermal.Eft*Thermal.Cmin*(InletHot.T-InletCold.T); |
---|
693 | |
---|
694 | "Heat Capacity Ratio" |
---|
695 | Thermal.Cr =Thermal.Cmin/Thermal.Cmax; |
---|
696 | |
---|
697 | "Minimum Heat Capacity" |
---|
698 | Thermal.Cmin = min([HotSide.HeatTransfer.WCp,ColdSide.HeatTransfer.WCp]); |
---|
699 | |
---|
700 | "Maximum Heat Capacity" |
---|
701 | Thermal.Cmax = max([HotSide.HeatTransfer.WCp,ColdSide.HeatTransfer.WCp]); |
---|
702 | |
---|
703 | "Hot Stream Heat Capacity" |
---|
704 | HotSide.HeatTransfer.WCp = InletHot.F*HotSide.Properties.Average.Cp; |
---|
705 | |
---|
706 | "Cold Stream Heat Capacity" |
---|
707 | ColdSide.HeatTransfer.WCp = InletCold.F*ColdSide.Properties.Average.Cp; |
---|
708 | |
---|
709 | "Number of Units Transference for the Whole Heat Exchanger" |
---|
710 | Thermal.NTU = max([HotSide.HeatTransfer.NTU,ColdSide.HeatTransfer.NTU]); |
---|
711 | |
---|
712 | "Number of Units Transference for Hot Side" |
---|
713 | HotSide.HeatTransfer.NTU*HotSide.HeatTransfer.WCp = Thermal.Ud*Geometry.Atotal; |
---|
714 | |
---|
715 | "Number of Units Transference for Cold Side" |
---|
716 | ColdSide.HeatTransfer.NTU*ColdSide.HeatTransfer.WCp = Thermal.Ud*Geometry.Atotal; |
---|
717 | |
---|
718 | if Thermal.Eft >= 1 #To be Fixed: Effectiveness in true counter flow ! |
---|
719 | |
---|
720 | then |
---|
721 | "Effectiveness in Counter Flow" |
---|
722 | Thermal.Eft = 1; |
---|
723 | else |
---|
724 | "Effectiveness in Counter Flow" |
---|
725 | Thermal.NTU*(Thermal.Cr-1.00001) = ln(abs((Thermal.Eft-1.00001))) - ln(abs((Thermal.Cr*Thermal.Eft-1.00001))); |
---|
726 | |
---|
727 | end |
---|
728 | |
---|
729 | end |
---|