1 | #*------------------------------------------------------------------- |
---|
2 | * EMSO Model Library (EML) Copyright (C) 2004 - 2007 ALSOC. |
---|
3 | * |
---|
4 | * This LIBRARY is free software; you can distribute it and/or modify |
---|
5 | * it under the therms of the ALSOC FREE LICENSE as available at |
---|
6 | * http://www.enq.ufrgs.br/alsoc. |
---|
7 | * |
---|
8 | * EMSO Copyright (C) 2004 - 2007 ALSOC, original code |
---|
9 | * from http://www.rps.eng.br Copyright (C) 2002-2004. |
---|
10 | * All rights reserved. |
---|
11 | * |
---|
12 | * EMSO is distributed under the therms of the ALSOC LICENSE as |
---|
13 | * available at http://www.enq.ufrgs.br/alsoc. |
---|
14 | *-------------------------------------------------------------------- |
---|
15 | * Author: Gerson Balbueno Bicca |
---|
16 | * $Id: PHE.mso 250 2007-04-27 16:32:02Z bicca $ |
---|
17 | *------------------------------------------------------------------*# |
---|
18 | using "HEX_Engine"; |
---|
19 | |
---|
20 | Model PHE |
---|
21 | |
---|
22 | ATTRIBUTES |
---|
23 | Icon = "icon/phe"; |
---|
24 | Pallete = true; |
---|
25 | Brief = "Shortcut model for plate and Frame heat exchanger."; |
---|
26 | Info = |
---|
27 | "Model of a gasketed plate heat exchanger. |
---|
28 | The heat transfer and pressure loss calculations are based on Kumar [1] work. |
---|
29 | The following assumptions are considered in order to derive the mathematical model [2]: |
---|
30 | |
---|
31 | == Assumptions == |
---|
32 | * Steady-State operation; |
---|
33 | * No phase changes; |
---|
34 | * No heat loss to the surroundings. |
---|
35 | * Uniform distribution of flow through the channels of a pass. |
---|
36 | |
---|
37 | == Specify == |
---|
38 | * The Inlet streams: Hot and Cold; |
---|
39 | |
---|
40 | == Setting The PHE Parameters == |
---|
41 | *ChevronAngle |
---|
42 | *Nplates |
---|
43 | *NpassHot |
---|
44 | *NpassCold |
---|
45 | *Dports |
---|
46 | *PhiFactor |
---|
47 | *Lv |
---|
48 | *Lw |
---|
49 | *pitch |
---|
50 | *pt |
---|
51 | *Kwall |
---|
52 | *Rfc |
---|
53 | *Rfh |
---|
54 | |
---|
55 | == Setting The PHE Option Parameters == |
---|
56 | *Method: NTU or LMTD |
---|
57 | *SideOne: cold or hot |
---|
58 | |
---|
59 | == References == |
---|
60 | |
---|
61 | [1] E.A.D. Saunders, Heat Exchangers: Selection, Design and |
---|
62 | Construction, Longman, Harlow, 1988. |
---|
63 | |
---|
64 | [2] J.A.W. Gut, J.M. Pinto, Modeling of plate heat exchangers |
---|
65 | with generalized configurations, Int. J. Heat Mass Transfer |
---|
66 | 46 (14) (2003) 2571\2585. |
---|
67 | "; |
---|
68 | |
---|
69 | PARAMETERS |
---|
70 | |
---|
71 | outer PP as Plugin (Brief="External Physical Properties", Type="PP"); |
---|
72 | outer NComp as Integer (Brief="Number of Chemical Components"); |
---|
73 | Pi as constant (Brief="Pi Number",Default=3.14159265, Symbol = "\pi"); |
---|
74 | Kp1(15) as constant (Brief="First constant in Kumar calculation for Pressure Drop"); |
---|
75 | Kp2(15) as constant (Brief="Second constant in Kumar calculation for Pressure Drop"); |
---|
76 | Kc1(14) as constant (Brief="First constant in Kumar calculation for Heat Transfer"); |
---|
77 | Kc2(14) as constant (Brief="Second constant Kumar calculation for Heat Transfer"); |
---|
78 | M(NComp) as molweight (Brief="Component Mol Weight"); |
---|
79 | |
---|
80 | ChevronAngle as Switcher (Brief="Chevron Corrugation Inclination Angle in Degrees ",Valid=["30","45","50","60","65"],Default="30"); |
---|
81 | Method as Switcher (Brief="Method of Thermal Calculation",Valid=["NTU","LMTD"],Default="NTU"); |
---|
82 | SideOne as Switcher (Brief="Fluid Alocation in the Side I - (The odd channels)",Valid=["hot","cold"],Default="hot"); |
---|
83 | Nchannels as Integer (Brief="Total Number of Channels in The Whole Heat Exchanger"); |
---|
84 | Nplates as Integer (Brief="Total Number of Plates in The Whole Heat Exchanger",Default=25, Symbol ="N_{plates}"); |
---|
85 | NpassHot as Integer (Brief="Number of Passes for Hot Side", Symbol ="Npasshot"); |
---|
86 | NpassCold as Integer (Brief="Number of Passes for Cold Side", Symbol ="Npasscold"); |
---|
87 | Dports as length (Brief="Ports Diameter",Lower=1e-6, Symbol ="D_{ports}"); |
---|
88 | Atotal as area (Brief="Total Effective Area",Lower=1e-6, Symbol ="A_{total}"); |
---|
89 | Aports as area (Brief="Port Opening Area of Plate",Lower=1e-6, Symbol ="A_{ports}"); |
---|
90 | Achannel as area (Brief="Cross-Sectional Area for Channel Flow",Lower=1e-6, Symbol ="A_{channel}"); |
---|
91 | Dh as length (Brief="Equivalent Diameter of Channel",Lower=1e-6); |
---|
92 | Depth as length (Brief="Corrugation Depth",Lower=1e-6); |
---|
93 | PhiFactor as Real (Brief="Enlargement Factor",Lower=1e-6, Symbol ="\phi"); |
---|
94 | Lp as length (Brief="Plate Vertical Distance between Port Centers",Lower=0.1); |
---|
95 | Lpack as length (Brief="Compact Plate Pack Length",Lower=0.1); |
---|
96 | Lv as length (Brief="Vertical Ports Distance",Lower=0.1); |
---|
97 | Lh as length (Brief="Plate Horizontal Distance between Port Centers",Lower=0.1); |
---|
98 | Lw as length (Brief="Plate Width",Lower=0.1); |
---|
99 | pitch as length (Brief="Plate Pitch",Lower=0.1); |
---|
100 | pt as length (Brief="Plate Thickness",Lower=0.1); |
---|
101 | Kwall as conductivity (Brief="Plate Thermal Conductivity",Default=1.0, Symbol ="K_{wall}"); |
---|
102 | Rfh as positive (Brief="Hot Side Fouling Resistance",Unit='m^2*K/kW',Default=1e-6,Lower=0); |
---|
103 | Rfc as positive (Brief="Cold Side Fouling Resistance",Unit='m^2*K/kW',Default=1e-6,Lower=0); |
---|
104 | |
---|
105 | VARIABLES |
---|
106 | |
---|
107 | in InletHot as stream (Brief="Inlet Hot Stream", PosX=0, PosY=0.7156, Symbol="^{inHot}"); |
---|
108 | in InletCold as stream (Brief="Inlet Cold Stream", PosX=1, PosY=0.7156, Symbol="^{inCold}"); |
---|
109 | out OutletHot as streamPH (Brief="Outlet Hot Stream", PosX=0, PosY=0.2793, Symbol="^{outHot}"); |
---|
110 | out OutletCold as streamPH (Brief="Outlet Cold Stream", PosX=1, PosY=0.2793, Symbol="^{outCold}"); |
---|
111 | |
---|
112 | HotSide as Main_PHE (Brief="Plate Heat Exchanger Hot Side", Symbol="_{hot}"); |
---|
113 | ColdSide as Main_PHE (Brief="Plate Heat Exchanger Cold Side", Symbol="_{cold}"); |
---|
114 | Thermal as Thermal_PHE (Brief="Thermal Results", Symbol = " "); |
---|
115 | |
---|
116 | SET |
---|
117 | |
---|
118 | #"First constant for Kumar's calculating Pressure Drop" |
---|
119 | Kp1 = [50,19.40,2.990,47,18.290,1.441,34,11.250,0.772,24,3.240,0.760,24,2.80,0.639]; |
---|
120 | |
---|
121 | #"Second constant for Kumar's calculating Pressure Drop" |
---|
122 | Kp2 = [1,0.589,0.183,1,0.652,0.206,1,0.631,0.161,1,0.457,0.215,1,0.451,0.213]; |
---|
123 | |
---|
124 | #"First constant for Kumar's calculating Heat Transfer" |
---|
125 | Kc1 = [0.718,0.348,0.718,0.400,0.300,0.630,0.291,0.130,0.562,0.306,0.108,0.562,0.331,0.087]; |
---|
126 | |
---|
127 | #"Second constant for Kumar's calculating Heat Transfer" |
---|
128 | Kc2 = [0.349,0.663,0.349,0.598,0.663,0.333,0.591,0.732,0.326,0.529,0.703,0.326,0.503,0.718]; |
---|
129 | |
---|
130 | #"Component Molecular Weight" |
---|
131 | M = PP.MolecularWeight(); |
---|
132 | |
---|
133 | #"Pi Number" |
---|
134 | Pi = 3.14159265; |
---|
135 | |
---|
136 | #"Plate Vertical Distance between Port Centers" |
---|
137 | Lp = Lv - Dports; |
---|
138 | |
---|
139 | #"Corrugation Depth" |
---|
140 | Depth=pitch-pt; |
---|
141 | |
---|
142 | #"Plate Horizontal Distance between Port Centers" |
---|
143 | Lh=Lw-Dports; |
---|
144 | |
---|
145 | #"Hydraulic Diameter" |
---|
146 | Dh=2*Depth/PhiFactor; |
---|
147 | |
---|
148 | #"Ports Area" |
---|
149 | Aports=Pi*Dports*Dports/4; |
---|
150 | |
---|
151 | #"Channel Area" |
---|
152 | Achannel=Depth*Lw; |
---|
153 | |
---|
154 | #"Pack Length" |
---|
155 | Lpack=Depth*(Nplates-1)+Nplates*pt; |
---|
156 | |
---|
157 | #"Total Number of Channels" |
---|
158 | Nchannels = Nplates -1; |
---|
159 | |
---|
160 | #"Exchange Surface Area" |
---|
161 | Atotal =(Nplates-2)*Lw*Lp*PhiFactor; |
---|
162 | |
---|
163 | EQUATIONS |
---|
164 | |
---|
165 | "Hot Stream Average Temperature" |
---|
166 | HotSide.Properties.Average.T = 0.5*InletHot.T + 0.5*OutletHot.T; |
---|
167 | |
---|
168 | "Cold Stream Average Temperature" |
---|
169 | ColdSide.Properties.Average.T = 0.5*InletCold.T + 0.5*OutletCold.T; |
---|
170 | |
---|
171 | "Hot Stream Average Pressure" |
---|
172 | HotSide.Properties.Average.P = 0.5*InletHot.P+0.5*OutletHot.P; |
---|
173 | |
---|
174 | "Cold Stream Average Pressure" |
---|
175 | ColdSide.Properties.Average.P = 0.5*InletCold.P+0.5*OutletCold.P; |
---|
176 | |
---|
177 | "Cold Stream Wall Temperature" |
---|
178 | ColdSide.Properties.Wall.Twall = 0.5*HotSide.Properties.Average.T + 0.5*ColdSide.Properties.Average.T; |
---|
179 | |
---|
180 | "Hot Stream Wall Temperature" |
---|
181 | HotSide.Properties.Wall.Twall = 0.5*HotSide.Properties.Average.T + 0.5*ColdSide.Properties.Average.T; |
---|
182 | |
---|
183 | "Hot Stream Average Molecular Weight" |
---|
184 | HotSide.Properties.Average.Mw = sum(M*InletHot.z); |
---|
185 | |
---|
186 | "Cold Stream Average Molecular Weight" |
---|
187 | ColdSide.Properties.Average.Mw = sum(M*InletCold.z); |
---|
188 | |
---|
189 | if InletCold.v equal 0 |
---|
190 | |
---|
191 | then |
---|
192 | |
---|
193 | "Average Heat Capacity Cold Stream" |
---|
194 | ColdSide.Properties.Average.Cp = PP.LiquidCp(ColdSide.Properties.Average.T,ColdSide.Properties.Average.P,InletCold.z); |
---|
195 | |
---|
196 | "Inlet Heat Capacity Cold Stream" |
---|
197 | ColdSide.Properties.Inlet.Cp = PP.LiquidCp(InletCold.T,InletCold.P,InletCold.z); |
---|
198 | |
---|
199 | "Outlet Heat Capacity Cold Stream" |
---|
200 | ColdSide.Properties.Outlet.Cp = PP.LiquidCp(OutletCold.T,OutletCold.P,OutletCold.z); |
---|
201 | |
---|
202 | "Average Mass Density Cold Stream" |
---|
203 | ColdSide.Properties.Average.rho = PP.LiquidDensity(ColdSide.Properties.Average.T,ColdSide.Properties.Average.P,InletCold.z); |
---|
204 | |
---|
205 | "Inlet Mass Density Cold Stream" |
---|
206 | ColdSide.Properties.Inlet.rho = PP.LiquidDensity(InletCold.T,InletCold.P,InletCold.z); |
---|
207 | |
---|
208 | "Outlet Mass Density Cold Stream" |
---|
209 | ColdSide.Properties.Outlet.rho = PP.LiquidDensity(OutletCold.T,OutletCold.P,OutletCold.z); |
---|
210 | |
---|
211 | "Average Viscosity Cold Stream" |
---|
212 | ColdSide.Properties.Average.Mu = PP.LiquidViscosity(ColdSide.Properties.Average.T,ColdSide.Properties.Average.P,InletCold.z); |
---|
213 | |
---|
214 | "Inlet Viscosity Cold Stream" |
---|
215 | ColdSide.Properties.Inlet.Mu = PP.LiquidViscosity(InletCold.T,InletCold.P,InletCold.z); |
---|
216 | |
---|
217 | "Outlet Viscosity Cold Stream" |
---|
218 | ColdSide.Properties.Outlet.Mu = PP.LiquidViscosity(OutletCold.T,OutletCold.P,OutletCold.z); |
---|
219 | |
---|
220 | "Average Conductivity Cold Stream" |
---|
221 | ColdSide.Properties.Average.K = PP.LiquidThermalConductivity(ColdSide.Properties.Average.T,ColdSide.Properties.Average.P,InletCold.z); |
---|
222 | |
---|
223 | "Inlet Conductivity Cold Stream" |
---|
224 | ColdSide.Properties.Inlet.K = PP.LiquidThermalConductivity(InletCold.T,InletCold.P,InletCold.z); |
---|
225 | |
---|
226 | "Outlet Conductivity Cold Stream" |
---|
227 | ColdSide.Properties.Outlet.K = PP.LiquidThermalConductivity(OutletCold.T,OutletCold.P,OutletCold.z); |
---|
228 | |
---|
229 | "Viscosity Cold Stream at wall temperature" |
---|
230 | ColdSide.Properties.Wall.Mu = PP.LiquidViscosity(ColdSide.Properties.Wall.Twall,ColdSide.Properties.Average.P,InletCold.z); |
---|
231 | |
---|
232 | else |
---|
233 | |
---|
234 | "Average Heat Capacity ColdStream" |
---|
235 | ColdSide.Properties.Average.Cp = PP.VapourCp(ColdSide.Properties.Average.T,ColdSide.Properties.Average.P,InletCold.z); |
---|
236 | |
---|
237 | "Inlet Heat Capacity Cold Stream" |
---|
238 | ColdSide.Properties.Inlet.Cp = PP.VapourCp(InletCold.T,InletCold.P,InletCold.z); |
---|
239 | |
---|
240 | "Outlet Heat Capacity Cold Stream" |
---|
241 | ColdSide.Properties.Outlet.Cp = PP.VapourCp(OutletCold.T,OutletCold.P,OutletCold.z); |
---|
242 | |
---|
243 | "Average Mass Density Cold Stream" |
---|
244 | ColdSide.Properties.Average.rho = PP.VapourDensity(ColdSide.Properties.Average.T,ColdSide.Properties.Average.P,InletCold.z); |
---|
245 | |
---|
246 | "Inlet Mass Density Cold Stream" |
---|
247 | ColdSide.Properties.Inlet.rho = PP.VapourDensity(InletCold.T,InletCold.P,InletCold.z); |
---|
248 | |
---|
249 | "Outlet Mass Density Cold Stream" |
---|
250 | ColdSide.Properties.Outlet.rho = PP.VapourDensity(OutletCold.T,OutletCold.P,OutletCold.z); |
---|
251 | |
---|
252 | "Average Viscosity Cold Stream" |
---|
253 | ColdSide.Properties.Average.Mu = PP.VapourViscosity(ColdSide.Properties.Average.T,ColdSide.Properties.Average.P,InletCold.z); |
---|
254 | |
---|
255 | "Inlet Viscosity Cold Stream" |
---|
256 | ColdSide.Properties.Inlet.Mu = PP.VapourViscosity(InletCold.T,InletCold.P,InletCold.z); |
---|
257 | |
---|
258 | "Outlet Viscosity Cold Stream" |
---|
259 | ColdSide.Properties.Outlet.Mu = PP.VapourViscosity(OutletCold.T,OutletCold.P,OutletCold.z); |
---|
260 | |
---|
261 | "Average Conductivity Cold Stream" |
---|
262 | ColdSide.Properties.Average.K = PP.VapourThermalConductivity(ColdSide.Properties.Average.T,ColdSide.Properties.Average.P,InletCold.z); |
---|
263 | |
---|
264 | "Inlet Conductivity Cold Stream" |
---|
265 | ColdSide.Properties.Inlet.K = PP.VapourThermalConductivity(InletCold.T,InletCold.P,InletCold.z); |
---|
266 | |
---|
267 | "Outlet Conductivity Cold Stream" |
---|
268 | ColdSide.Properties.Outlet.K = PP.VapourThermalConductivity(OutletCold.T,OutletCold.P,OutletCold.z); |
---|
269 | |
---|
270 | "Viscosity Cold Stream at wall temperature" |
---|
271 | ColdSide.Properties.Wall.Mu = PP.VapourViscosity(ColdSide.Properties.Wall.Twall,ColdSide.Properties.Average.P,InletCold.z); |
---|
272 | |
---|
273 | end |
---|
274 | |
---|
275 | if InletHot.v equal 0 |
---|
276 | |
---|
277 | then |
---|
278 | |
---|
279 | "Average Heat Capacity Hot Stream" |
---|
280 | HotSide.Properties.Average.Cp = PP.LiquidCp(HotSide.Properties.Average.T,HotSide.Properties.Average.P,InletHot.z); |
---|
281 | |
---|
282 | "Inlet Heat Capacity Hot Stream" |
---|
283 | HotSide.Properties.Inlet.Cp = PP.LiquidCp(InletHot.T,InletHot.P,InletHot.z); |
---|
284 | |
---|
285 | "Outlet Heat Capacity Hot Stream" |
---|
286 | HotSide.Properties.Outlet.Cp = PP.LiquidCp(OutletHot.T,OutletHot.P,OutletHot.z); |
---|
287 | |
---|
288 | "Average Mass Density Hot Stream" |
---|
289 | HotSide.Properties.Average.rho = PP.LiquidDensity(HotSide.Properties.Average.T,HotSide.Properties.Average.P,InletHot.z); |
---|
290 | |
---|
291 | "Inlet Mass Density Hot Stream" |
---|
292 | HotSide.Properties.Inlet.rho = PP.LiquidDensity(InletHot.T,InletHot.P,InletHot.z); |
---|
293 | |
---|
294 | "Outlet Mass Density Hot Stream" |
---|
295 | HotSide.Properties.Outlet.rho = PP.LiquidDensity(OutletHot.T,OutletHot.P,OutletHot.z); |
---|
296 | |
---|
297 | "Average Viscosity Hot Stream" |
---|
298 | HotSide.Properties.Average.Mu = PP.LiquidViscosity(HotSide.Properties.Average.T,HotSide.Properties.Average.P,InletHot.z); |
---|
299 | |
---|
300 | "Inlet Viscosity Hot Stream" |
---|
301 | HotSide.Properties.Inlet.Mu = PP.LiquidViscosity(InletHot.T,InletHot.P,InletHot.z); |
---|
302 | |
---|
303 | "Outlet Viscosity Hot Stream" |
---|
304 | HotSide.Properties.Outlet.Mu = PP.LiquidViscosity(OutletHot.T,OutletHot.P,OutletHot.z); |
---|
305 | |
---|
306 | "Average Conductivity Hot Stream" |
---|
307 | HotSide.Properties.Average.K = PP.LiquidThermalConductivity(HotSide.Properties.Average.T,HotSide.Properties.Average.P,InletHot.z); |
---|
308 | |
---|
309 | "Inlet Conductivity Hot Stream" |
---|
310 | HotSide.Properties.Inlet.K = PP.LiquidThermalConductivity(InletHot.T,InletHot.P,InletHot.z); |
---|
311 | |
---|
312 | "Outlet Conductivity Hot Stream" |
---|
313 | HotSide.Properties.Outlet.K = PP.LiquidThermalConductivity(OutletHot.T,OutletHot.P,OutletHot.z); |
---|
314 | |
---|
315 | "Viscosity Hot Stream at wall temperature" |
---|
316 | HotSide.Properties.Wall.Mu = PP.LiquidViscosity(HotSide.Properties.Wall.Twall,HotSide.Properties.Average.P,InletHot.z); |
---|
317 | |
---|
318 | |
---|
319 | else |
---|
320 | |
---|
321 | "Average Heat Capacity Hot Stream" |
---|
322 | HotSide.Properties.Average.Cp = PP.VapourCp(HotSide.Properties.Average.T,HotSide.Properties.Average.P,InletHot.z); |
---|
323 | |
---|
324 | "Inlet Heat Capacity Hot Stream" |
---|
325 | HotSide.Properties.Inlet.Cp = PP.VapourCp(InletHot.T,InletHot.P,InletHot.z); |
---|
326 | |
---|
327 | "Outlet Heat Capacity Hot Stream" |
---|
328 | HotSide.Properties.Outlet.Cp = PP.VapourCp(OutletHot.T,OutletHot.P,OutletHot.z); |
---|
329 | |
---|
330 | "Average Mass Density Hot Stream" |
---|
331 | HotSide.Properties.Average.rho = PP.VapourDensity(HotSide.Properties.Average.T,HotSide.Properties.Average.P,InletHot.z); |
---|
332 | |
---|
333 | "Inlet Mass Density Hot Stream" |
---|
334 | HotSide.Properties.Inlet.rho = PP.VapourDensity(InletHot.T,InletHot.P,InletHot.z); |
---|
335 | |
---|
336 | "Outlet Mass Density Hot Stream" |
---|
337 | HotSide.Properties.Outlet.rho = PP.VapourDensity(OutletHot.T,OutletHot.P,OutletHot.z); |
---|
338 | |
---|
339 | "Average Viscosity Hot Stream" |
---|
340 | HotSide.Properties.Average.Mu = PP.VapourViscosity(HotSide.Properties.Average.T,HotSide.Properties.Average.P,InletHot.z); |
---|
341 | |
---|
342 | "Inlet Viscosity Hot Stream" |
---|
343 | HotSide.Properties.Inlet.Mu = PP.VapourViscosity(InletHot.T,InletHot.P,InletHot.z); |
---|
344 | |
---|
345 | "Outlet Viscosity Hot Stream" |
---|
346 | HotSide.Properties.Outlet.Mu = PP.VapourViscosity(OutletHot.T,OutletHot.P,OutletHot.z); |
---|
347 | |
---|
348 | "Average Conductivity Hot Stream" |
---|
349 | HotSide.Properties.Average.K = PP.VapourThermalConductivity(HotSide.Properties.Average.T,HotSide.Properties.Average.P,InletHot.z); |
---|
350 | |
---|
351 | "Inlet Conductivity Hot Stream" |
---|
352 | HotSide.Properties.Inlet.K = PP.VapourThermalConductivity(InletHot.T,InletHot.P,InletHot.z); |
---|
353 | |
---|
354 | "Outlet Conductivity Hot Stream" |
---|
355 | HotSide.Properties.Outlet.K = PP.VapourThermalConductivity(OutletHot.T,OutletHot.P,OutletHot.z); |
---|
356 | |
---|
357 | "Viscosity Hot Stream at wall temperature" |
---|
358 | HotSide.Properties.Wall.Mu = PP.VapourViscosity(HotSide.Properties.Wall.Twall,HotSide.Properties.Average.P,InletHot.z); |
---|
359 | |
---|
360 | end |
---|
361 | |
---|
362 | "Energy Balance Hot Stream" |
---|
363 | Thermal.Q = InletHot.F*(InletHot.h-OutletHot.h); |
---|
364 | |
---|
365 | "Energy Balance Cold Stream" |
---|
366 | Thermal.Q = InletCold.F*(OutletCold.h - InletCold.h); |
---|
367 | |
---|
368 | "Flow Mass Inlet Cold Stream" |
---|
369 | ColdSide.Properties.Inlet.Fw = sum(M*InletCold.z)*InletCold.F; |
---|
370 | |
---|
371 | "Flow Mass Outlet Cold Stream" |
---|
372 | ColdSide.Properties.Outlet.Fw = sum(M*OutletCold.z)*OutletCold.F; |
---|
373 | |
---|
374 | "Flow Mass Inlet Hot Stream" |
---|
375 | HotSide.Properties.Inlet.Fw = sum(M*InletHot.z)*InletHot.F; |
---|
376 | |
---|
377 | "Flow Mass Outlet Hot Stream" |
---|
378 | HotSide.Properties.Outlet.Fw = sum(M*OutletHot.z)*OutletHot.F; |
---|
379 | |
---|
380 | "Molar Balance Hot Stream" |
---|
381 | OutletHot.F = InletHot.F; |
---|
382 | |
---|
383 | "Molar Balance Cold Stream" |
---|
384 | OutletCold.F = InletCold.F; |
---|
385 | |
---|
386 | "Hot Stream Molar Fraction Constraint" |
---|
387 | OutletHot.z=InletHot.z; |
---|
388 | |
---|
389 | "Cold Stream Molar Fraction Constraint" |
---|
390 | OutletCold.z=InletCold.z; |
---|
391 | |
---|
392 | switch SideOne |
---|
393 | |
---|
394 | case "cold": |
---|
395 | |
---|
396 | "Total Number of Passages Cold Side" |
---|
397 | ColdSide.PressureDrop.Npassage = (2*Nchannels+1+(-1)^(Nchannels+1))/(4*NpassCold); |
---|
398 | |
---|
399 | "Total Number of Passages Hot Side" |
---|
400 | HotSide.PressureDrop.Npassage = (2*Nchannels-1+(-1)^(Nchannels))/(4*NpassHot); |
---|
401 | |
---|
402 | case "hot": |
---|
403 | |
---|
404 | "Total Number of Passages Cold Side" |
---|
405 | HotSide.PressureDrop.Npassage = (2*Nchannels+1+(-1)^(Nchannels+1))/(4*NpassHot); |
---|
406 | |
---|
407 | "Total Number of Passages Hot Side" |
---|
408 | ColdSide.PressureDrop.Npassage = (2*Nchannels-1+(-1)^(Nchannels))/(4*NpassCold); |
---|
409 | |
---|
410 | end |
---|
411 | |
---|
412 | "Hot Stream Mass Flux in the Channel" |
---|
413 | HotSide.HeatTransfer.Gchannel=HotSide.Properties.Inlet.Fw/(HotSide.PressureDrop.Npassage*Achannel); |
---|
414 | |
---|
415 | "Hot Stream Mass Flux in the Ports" |
---|
416 | HotSide.HeatTransfer.Gports=HotSide.Properties.Inlet.Fw/Aports; |
---|
417 | |
---|
418 | "Cold Stream Mass Flux in the Ports" |
---|
419 | ColdSide.HeatTransfer.Gports=ColdSide.Properties.Inlet.Fw/Aports; |
---|
420 | |
---|
421 | "Cold Stream Mass Flux in the Channel" |
---|
422 | ColdSide.HeatTransfer.Gchannel=ColdSide.Properties.Inlet.Fw/(ColdSide.PressureDrop.Npassage*Achannel); |
---|
423 | |
---|
424 | "Hot Stream Pressure Drop in Ports" |
---|
425 | HotSide.PressureDrop.DPports =1.5*NpassHot*HotSide.HeatTransfer.Gports^2/(2*HotSide.Properties.Average.rho); |
---|
426 | |
---|
427 | "Cold Stream Pressure Drop in Ports" |
---|
428 | ColdSide.PressureDrop.DPports =1.5*NpassCold*ColdSide.HeatTransfer.Gports^2/(2*ColdSide.Properties.Average.rho); |
---|
429 | |
---|
430 | "Hot Stream Pressure Drop in Channels" |
---|
431 | HotSide.PressureDrop.DPchannel =2*HotSide.PressureDrop.fi*NpassHot*Lv*HotSide.HeatTransfer.Gchannel^2/(HotSide.Properties.Average.rho*Dh*HotSide.HeatTransfer.Phi^0.17); |
---|
432 | |
---|
433 | "Cold Stream Pressure Drop in Channels" |
---|
434 | ColdSide.PressureDrop.DPchannel =2*ColdSide.PressureDrop.fi*NpassCold*Lv*ColdSide.HeatTransfer.Gchannel^2/(ColdSide.Properties.Average.rho*Dh*ColdSide.HeatTransfer.Phi^0.17); |
---|
435 | |
---|
436 | "Hot Stream Total Pressure Drop" |
---|
437 | HotSide.PressureDrop.Pdrop =HotSide.PressureDrop.DPchannel+HotSide.PressureDrop.DPports; |
---|
438 | |
---|
439 | "Cold Stream Total Pressure Drop" |
---|
440 | ColdSide.PressureDrop.Pdrop =ColdSide.PressureDrop.DPchannel+ColdSide.PressureDrop.DPports; |
---|
441 | |
---|
442 | switch ChevronAngle #Pressure Drop Friction Factor According to kumar's (1984) |
---|
443 | |
---|
444 | case "30": # ChevronAngle <= 30 |
---|
445 | |
---|
446 | if HotSide.HeatTransfer.Re < 10 |
---|
447 | then |
---|
448 | HotSide.PressureDrop.fi = Kp1(1)/HotSide.HeatTransfer.Re^Kp2(1); |
---|
449 | ColdSide.PressureDrop.fi = Kp1(1)/ColdSide.HeatTransfer.Re^Kp2(1); |
---|
450 | else |
---|
451 | if HotSide.HeatTransfer.Re < 100 |
---|
452 | then |
---|
453 | HotSide.PressureDrop.fi = Kp1(2)/HotSide.HeatTransfer.Re^Kp2(2); |
---|
454 | ColdSide.PressureDrop.fi = Kp1(2)/ColdSide.HeatTransfer.Re^Kp2(2); |
---|
455 | else |
---|
456 | HotSide.PressureDrop.fi = Kp1(3)/HotSide.HeatTransfer.Re^Kp2(3); |
---|
457 | ColdSide.PressureDrop.fi = Kp1(3)/ColdSide.HeatTransfer.Re^Kp2(3); |
---|
458 | end |
---|
459 | |
---|
460 | end |
---|
461 | |
---|
462 | case "45": |
---|
463 | |
---|
464 | if HotSide.HeatTransfer.Re < 15 |
---|
465 | then |
---|
466 | HotSide.PressureDrop.fi = Kp1(4)/HotSide.HeatTransfer.Re^Kp2(4); |
---|
467 | ColdSide.PressureDrop.fi = Kp1(4)/ColdSide.HeatTransfer.Re^Kp2(4); |
---|
468 | else |
---|
469 | if HotSide.HeatTransfer.Re < 300 |
---|
470 | then |
---|
471 | HotSide.PressureDrop.fi = Kp1(5)/HotSide.HeatTransfer.Re^Kp2(5); |
---|
472 | ColdSide.PressureDrop.fi = Kp1(5)/ColdSide.HeatTransfer.Re^Kp2(5); |
---|
473 | else |
---|
474 | HotSide.PressureDrop.fi = Kp1(6)/HotSide.HeatTransfer.Re^Kp2(6); |
---|
475 | ColdSide.PressureDrop.fi = Kp1(6)/ColdSide.HeatTransfer.Re^Kp2(6); |
---|
476 | end |
---|
477 | |
---|
478 | end |
---|
479 | |
---|
480 | case "50": |
---|
481 | |
---|
482 | if HotSide.HeatTransfer.Re < 20 |
---|
483 | then |
---|
484 | HotSide.PressureDrop.fi = Kp1(7)/HotSide.HeatTransfer.Re^Kp2(7); |
---|
485 | ColdSide.PressureDrop.fi = Kp1(7)/ColdSide.HeatTransfer.Re^Kp2(7); |
---|
486 | else |
---|
487 | if HotSide.HeatTransfer.Re < 300 |
---|
488 | then |
---|
489 | HotSide.PressureDrop.fi = Kp1(8)/HotSide.HeatTransfer.Re^Kp2(8); |
---|
490 | ColdSide.PressureDrop.fi = Kp1(8)/ColdSide.HeatTransfer.Re^Kp2(8); |
---|
491 | else |
---|
492 | HotSide.PressureDrop.fi = Kp1(9)/HotSide.HeatTransfer.Re^Kp2(9); |
---|
493 | ColdSide.PressureDrop.fi = Kp1(9)/ColdSide.HeatTransfer.Re^Kp2(9); |
---|
494 | end |
---|
495 | |
---|
496 | end |
---|
497 | |
---|
498 | case "60": |
---|
499 | |
---|
500 | if HotSide.HeatTransfer.Re < 40 |
---|
501 | then |
---|
502 | HotSide.PressureDrop.fi = Kp1(10)/HotSide.HeatTransfer.Re^Kp2(10); |
---|
503 | ColdSide.PressureDrop.fi = Kp1(10)/ColdSide.HeatTransfer.Re^Kp2(10); |
---|
504 | else |
---|
505 | if HotSide.HeatTransfer.Re < 400 |
---|
506 | then |
---|
507 | HotSide.PressureDrop.fi = Kp1(11)/HotSide.HeatTransfer.Re^Kp2(11); |
---|
508 | ColdSide.PressureDrop.fi = Kp1(11)/ColdSide.HeatTransfer.Re^Kp2(11); |
---|
509 | else |
---|
510 | HotSide.PressureDrop.fi = Kp1(12)/HotSide.HeatTransfer.Re^Kp2(12); |
---|
511 | ColdSide.PressureDrop.fi = Kp1(12)/ColdSide.HeatTransfer.Re^Kp2(12); |
---|
512 | end |
---|
513 | |
---|
514 | end |
---|
515 | |
---|
516 | case "65": # ChevronAngle >= 65 |
---|
517 | |
---|
518 | if HotSide.HeatTransfer.Re < 50 |
---|
519 | then |
---|
520 | HotSide.PressureDrop.fi = Kp1(13)/HotSide.HeatTransfer.Re^Kp2(13); |
---|
521 | ColdSide.PressureDrop.fi = Kp1(13)/ColdSide.HeatTransfer.Re^Kp2(13); |
---|
522 | else |
---|
523 | if HotSide.HeatTransfer.Re < 500 |
---|
524 | then |
---|
525 | HotSide.PressureDrop.fi = Kp1(14)/HotSide.HeatTransfer.Re^Kp2(14); |
---|
526 | ColdSide.PressureDrop.fi = Kp1(14)/ColdSide.HeatTransfer.Re^Kp2(14); |
---|
527 | else |
---|
528 | HotSide.PressureDrop.fi = Kp1(15)/HotSide.HeatTransfer.Re^Kp2(15); |
---|
529 | ColdSide.PressureDrop.fi = Kp1(15)/ColdSide.HeatTransfer.Re^Kp2(15); |
---|
530 | end |
---|
531 | |
---|
532 | end |
---|
533 | |
---|
534 | end |
---|
535 | |
---|
536 | switch ChevronAngle # Heat Transfer Coefficient According to kumar's (1984) |
---|
537 | |
---|
538 | case "30": # ChevronAngle <= 30 |
---|
539 | |
---|
540 | if HotSide.HeatTransfer.Re < 10 |
---|
541 | then |
---|
542 | HotSide.HeatTransfer.hcoeff=(HotSide.Properties.Average.K*HotSide.HeatTransfer.PR^(1/3)*HotSide.HeatTransfer.Phi^0.17*Kc1(1)*HotSide.HeatTransfer.Re^Kc2(1))/Dh; |
---|
543 | ColdSide.HeatTransfer.hcoeff =(ColdSide.Properties.Average.K*ColdSide.HeatTransfer.PR^(1/3)*ColdSide.HeatTransfer.Phi^0.17*Kc1(1)*ColdSide.HeatTransfer.Re^Kc2(1))/Dh; |
---|
544 | else |
---|
545 | HotSide.HeatTransfer.hcoeff=(HotSide.Properties.Average.K*HotSide.HeatTransfer.PR^(1/3)*HotSide.HeatTransfer.Phi^0.17*Kc1(2)*HotSide.HeatTransfer.Re^Kc2(2))/Dh; |
---|
546 | ColdSide.HeatTransfer.hcoeff =(ColdSide.Properties.Average.K*ColdSide.HeatTransfer.PR^(1/3)*ColdSide.HeatTransfer.Phi^0.17*Kc1(2)*ColdSide.HeatTransfer.Re^Kc2(2))/Dh; |
---|
547 | end |
---|
548 | |
---|
549 | case "45": |
---|
550 | |
---|
551 | if HotSide.HeatTransfer.Re < 10 |
---|
552 | then |
---|
553 | HotSide.HeatTransfer.hcoeff=(HotSide.Properties.Average.K*HotSide.HeatTransfer.PR^(1/3)*HotSide.HeatTransfer.Phi^0.17*Kc1(3)*HotSide.HeatTransfer.Re^Kc2(3))/Dh; |
---|
554 | ColdSide.HeatTransfer.hcoeff =(ColdSide.Properties.Average.K*ColdSide.HeatTransfer.PR^(1/3)*ColdSide.HeatTransfer.Phi^0.17*Kc1(3)*ColdSide.HeatTransfer.Re^Kc2(3))/Dh; |
---|
555 | else |
---|
556 | if HotSide.HeatTransfer.Re < 100 |
---|
557 | then |
---|
558 | HotSide.HeatTransfer.hcoeff=(HotSide.Properties.Average.K*HotSide.HeatTransfer.PR^(1/3)*HotSide.HeatTransfer.Phi^0.17*Kc1(4)*HotSide.HeatTransfer.Re^Kc2(4))/Dh; |
---|
559 | ColdSide.HeatTransfer.hcoeff =(ColdSide.Properties.Average.K*ColdSide.HeatTransfer.PR^(1/3)*ColdSide.HeatTransfer.Phi^0.17*Kc1(4)*ColdSide.HeatTransfer.Re^Kc2(4))/Dh; |
---|
560 | else |
---|
561 | HotSide.HeatTransfer.hcoeff=(HotSide.Properties.Average.K*HotSide.HeatTransfer.PR^(1/3)*HotSide.HeatTransfer.Phi^0.17*Kc1(5)*HotSide.HeatTransfer.Re^Kc2(5))/Dh; |
---|
562 | ColdSide.HeatTransfer.hcoeff =(ColdSide.Properties.Average.K*ColdSide.HeatTransfer.PR^(1/3)*ColdSide.HeatTransfer.Phi^0.17*Kc1(5)*ColdSide.HeatTransfer.Re^Kc2(5))/Dh; |
---|
563 | end |
---|
564 | end |
---|
565 | |
---|
566 | case "50": |
---|
567 | |
---|
568 | if HotSide.HeatTransfer.Re < 20 |
---|
569 | then |
---|
570 | HotSide.HeatTransfer.hcoeff=(HotSide.Properties.Average.K*HotSide.HeatTransfer.PR^(1/3)*HotSide.HeatTransfer.Phi^0.17*Kc1(6)*HotSide.HeatTransfer.Re^Kc2(6))/Dh; |
---|
571 | ColdSide.HeatTransfer.hcoeff =(ColdSide.Properties.Average.K*ColdSide.HeatTransfer.PR^(1/3)*ColdSide.HeatTransfer.Phi^0.17*Kc1(6)*ColdSide.HeatTransfer.Re^Kc2(6))/Dh; |
---|
572 | else |
---|
573 | if HotSide.HeatTransfer.Re < 300 |
---|
574 | then |
---|
575 | HotSide.HeatTransfer.hcoeff=(HotSide.Properties.Average.K*HotSide.HeatTransfer.PR^(1/3)*HotSide.HeatTransfer.Phi^0.17*Kc1(7)*HotSide.HeatTransfer.Re^Kc2(7))/Dh; |
---|
576 | ColdSide.HeatTransfer.hcoeff =(ColdSide.Properties.Average.K*ColdSide.HeatTransfer.PR^(1/3)*ColdSide.HeatTransfer.Phi^0.17*Kc1(7)*ColdSide.HeatTransfer.Re^Kc2(7))/Dh; |
---|
577 | else |
---|
578 | HotSide.HeatTransfer.hcoeff=(HotSide.Properties.Average.K*HotSide.HeatTransfer.PR^(1/3)*HotSide.HeatTransfer.Phi^0.17*Kc1(8)*HotSide.HeatTransfer.Re^Kc2(8))/Dh; |
---|
579 | ColdSide.HeatTransfer.hcoeff =(ColdSide.Properties.Average.K*ColdSide.HeatTransfer.PR^(1/3)*ColdSide.HeatTransfer.Phi^0.17*Kc1(8)*ColdSide.HeatTransfer.Re^Kc2(8))/Dh; |
---|
580 | end |
---|
581 | end |
---|
582 | |
---|
583 | case "60": |
---|
584 | |
---|
585 | if HotSide.HeatTransfer.Re < 20 |
---|
586 | then |
---|
587 | HotSide.HeatTransfer.hcoeff=(HotSide.Properties.Average.K*HotSide.HeatTransfer.PR^(1/3)*HotSide.HeatTransfer.Phi^0.17*Kc1(9)*HotSide.HeatTransfer.Re^Kc2(9))/Dh; |
---|
588 | ColdSide.HeatTransfer.hcoeff =(ColdSide.Properties.Average.K*ColdSide.HeatTransfer.PR^(1/3)*ColdSide.HeatTransfer.Phi^0.17*Kc1(9)*ColdSide.HeatTransfer.Re^Kc2(9))/Dh; |
---|
589 | else |
---|
590 | if HotSide.HeatTransfer.Re < 400 |
---|
591 | then |
---|
592 | HotSide.HeatTransfer.hcoeff=(HotSide.Properties.Average.K*HotSide.HeatTransfer.PR^(1/3)*HotSide.HeatTransfer.Phi^0.17*Kc1(10)*HotSide.HeatTransfer.Re^Kc2(10))/Dh; |
---|
593 | ColdSide.HeatTransfer.hcoeff =(ColdSide.Properties.Average.K*ColdSide.HeatTransfer.PR^(1/3)*ColdSide.HeatTransfer.Phi^0.17*Kc1(10)*ColdSide.HeatTransfer.Re^Kc2(10))/Dh; |
---|
594 | else |
---|
595 | HotSide.HeatTransfer.hcoeff=(HotSide.Properties.Average.K*HotSide.HeatTransfer.PR^(1/3)*HotSide.HeatTransfer.Phi^0.17*Kc1(11)*HotSide.HeatTransfer.Re^Kc2(11))/Dh; |
---|
596 | ColdSide.HeatTransfer.hcoeff =(ColdSide.Properties.Average.K*ColdSide.HeatTransfer.PR^(1/3)*ColdSide.HeatTransfer.Phi^0.17*Kc1(11)*ColdSide.HeatTransfer.Re^Kc2(11))/Dh; |
---|
597 | end |
---|
598 | end |
---|
599 | |
---|
600 | case "65": # ChevronAngle >= 65 |
---|
601 | |
---|
602 | if HotSide.HeatTransfer.Re < 20 |
---|
603 | then |
---|
604 | HotSide.HeatTransfer.hcoeff=(HotSide.Properties.Average.K*HotSide.HeatTransfer.PR^(1/3)*HotSide.HeatTransfer.Phi^0.17*Kc1(12)*HotSide.HeatTransfer.Re^Kc2(12))/Dh; |
---|
605 | ColdSide.HeatTransfer.hcoeff =(ColdSide.Properties.Average.K*ColdSide.HeatTransfer.PR^(1/3)*ColdSide.HeatTransfer.Phi^0.17*Kc1(12)*ColdSide.HeatTransfer.Re^Kc2(12))/Dh; |
---|
606 | else |
---|
607 | if HotSide.HeatTransfer.Re < 500 |
---|
608 | then |
---|
609 | HotSide.HeatTransfer.hcoeff=(HotSide.Properties.Average.K*HotSide.HeatTransfer.PR^(1/3)*HotSide.HeatTransfer.Phi^0.17*Kc1(13)*HotSide.HeatTransfer.Re^Kc2(13))/Dh; |
---|
610 | ColdSide.HeatTransfer.hcoeff =(ColdSide.Properties.Average.K*ColdSide.HeatTransfer.PR^(1/3)*ColdSide.HeatTransfer.Phi^0.17*Kc1(13)*ColdSide.HeatTransfer.Re^Kc2(13))/Dh; |
---|
611 | else |
---|
612 | HotSide.HeatTransfer.hcoeff=(HotSide.Properties.Average.K*HotSide.HeatTransfer.PR^(1/3)*HotSide.HeatTransfer.Phi^0.17*Kc1(14)*HotSide.HeatTransfer.Re^Kc2(14))/Dh; |
---|
613 | ColdSide.HeatTransfer.hcoeff =(ColdSide.Properties.Average.K*ColdSide.HeatTransfer.PR^(1/3)*ColdSide.HeatTransfer.Phi^0.17*Kc1(14)*ColdSide.HeatTransfer.Re^Kc2(14))/Dh; |
---|
614 | end |
---|
615 | end |
---|
616 | |
---|
617 | end |
---|
618 | |
---|
619 | "Hot Stream Velocity in Channels" |
---|
620 | HotSide.PressureDrop.Vchannel =HotSide.HeatTransfer.Gchannel/HotSide.Properties.Average.rho; |
---|
621 | |
---|
622 | "Cold Stream Velocity in Channels" |
---|
623 | ColdSide.PressureDrop.Vchannel =ColdSide.HeatTransfer.Gchannel/ColdSide.Properties.Average.rho; |
---|
624 | |
---|
625 | "Hot Stream Velocity in Ports" |
---|
626 | HotSide.PressureDrop.Vports =HotSide.Properties.Inlet.Fw/(Aports*HotSide.Properties.Inlet.rho); |
---|
627 | |
---|
628 | "Cold Stream Velocity in Ports" |
---|
629 | ColdSide.PressureDrop.Vports =ColdSide.Properties.Inlet.Fw/(Aports*ColdSide.Properties.Inlet.rho); |
---|
630 | |
---|
631 | "Hot Stream Reynolds Number" |
---|
632 | HotSide.HeatTransfer.Re =Dh*HotSide.HeatTransfer.Gchannel/HotSide.Properties.Average.Mu; |
---|
633 | |
---|
634 | "Cold Stream Reynolds Number" |
---|
635 | ColdSide.HeatTransfer.Re =Dh*ColdSide.HeatTransfer.Gchannel/ColdSide.Properties.Average.Mu; |
---|
636 | |
---|
637 | "Hot Stream Prandtl Number" |
---|
638 | HotSide.HeatTransfer.PR= ((HotSide.Properties.Average.Cp/HotSide.Properties.Average.Mw)*HotSide.Properties.Average.Mu)/HotSide.Properties.Average.K; |
---|
639 | |
---|
640 | "Cold Stream Prandtl Number" |
---|
641 | ColdSide.HeatTransfer.PR = ((ColdSide.Properties.Average.Cp/ColdSide.Properties.Average.Mw)*ColdSide.Properties.Average.Mu)/ColdSide.Properties.Average.K; |
---|
642 | |
---|
643 | "Hot Stream Viscosity Correction" |
---|
644 | HotSide.HeatTransfer.Phi= HotSide.Properties.Average.Mu/HotSide.Properties.Wall.Mu; |
---|
645 | |
---|
646 | "Cold Stream Viscosity Correction" |
---|
647 | ColdSide.HeatTransfer.Phi= ColdSide.Properties.Average.Mu/ColdSide.Properties.Wall.Mu; |
---|
648 | |
---|
649 | "Hot Stream Outlet Pressure" |
---|
650 | OutletHot.P = InletHot.P - HotSide.PressureDrop.Pdrop; |
---|
651 | |
---|
652 | "Cold Stream Outlet Pressure" |
---|
653 | OutletCold.P = InletCold.P - ColdSide.PressureDrop.Pdrop; |
---|
654 | |
---|
655 | "Overall Heat Transfer Coefficient Clean" |
---|
656 | Thermal.Uc/HotSide.HeatTransfer.hcoeff +Thermal.Uc*pt/Kwall+Thermal.Uc/ColdSide.HeatTransfer.hcoeff=1; |
---|
657 | |
---|
658 | "Overall Heat Transfer Coefficient Dirty" |
---|
659 | Thermal.Ud*(1/HotSide.HeatTransfer.hcoeff +pt/Kwall+1/ColdSide.HeatTransfer.hcoeff + Rfc + Rfh)=1; |
---|
660 | |
---|
661 | switch Method |
---|
662 | |
---|
663 | case "LMTD": |
---|
664 | |
---|
665 | "Duty" |
---|
666 | Thermal.Q = Thermal.Ud*Atotal*Thermal.LMTD*Thermal.Fc; |
---|
667 | |
---|
668 | case "NTU": |
---|
669 | |
---|
670 | "Duty" |
---|
671 | Thermal.Q = Thermal.Eft*Thermal.Cmin*(InletHot.T-InletCold.T); |
---|
672 | |
---|
673 | end |
---|
674 | |
---|
675 | "Temperature Difference at Inlet - Counter Flow" |
---|
676 | Thermal.DT0 = InletHot.T - OutletCold.T; |
---|
677 | |
---|
678 | "Temperature Difference at Outlet - Counter Flow" |
---|
679 | Thermal.DTL = OutletHot.T - InletCold.T; |
---|
680 | |
---|
681 | "Heat Capacity Ratio" |
---|
682 | Thermal.Cr =Thermal.Cmin/Thermal.Cmax; |
---|
683 | |
---|
684 | "Minimum Heat Capacity" |
---|
685 | Thermal.Cmin = min([HotSide.HeatTransfer.WCp,ColdSide.HeatTransfer.WCp]); |
---|
686 | |
---|
687 | "Maximum Heat Capacity" |
---|
688 | Thermal.Cmax = max([HotSide.HeatTransfer.WCp,ColdSide.HeatTransfer.WCp]); |
---|
689 | |
---|
690 | "Hot Stream Heat Capacity" |
---|
691 | HotSide.HeatTransfer.WCp = InletHot.F*HotSide.Properties.Average.Cp; |
---|
692 | |
---|
693 | "Cold Stream Heat Capacity" |
---|
694 | ColdSide.HeatTransfer.WCp = InletCold.F*ColdSide.Properties.Average.Cp; |
---|
695 | |
---|
696 | "Number of Units Transference for the Whole Heat Exchanger" |
---|
697 | Thermal.NTU = max([HotSide.HeatTransfer.NTU,ColdSide.HeatTransfer.NTU]); |
---|
698 | |
---|
699 | "Number of Units Transference for Hot Side" |
---|
700 | HotSide.HeatTransfer.NTU*HotSide.HeatTransfer.WCp = Thermal.Ud*Atotal; |
---|
701 | |
---|
702 | "Number of Units Transference for Cold Side" |
---|
703 | ColdSide.HeatTransfer.NTU*ColdSide.HeatTransfer.WCp = Thermal.Ud*Atotal; |
---|
704 | |
---|
705 | if Thermal.Cr equal 1 # To be Fixed: Effectiveness in true counter flow ! |
---|
706 | |
---|
707 | then |
---|
708 | "Effectiveness in Counter Flow" |
---|
709 | Thermal.Eft = Thermal.NTU/(1+Thermal.NTU); |
---|
710 | |
---|
711 | "LMTD Correction Factor" |
---|
712 | Thermal.Fc =Thermal.Eft/(1-Thermal.Eft)/Thermal.NTU; |
---|
713 | |
---|
714 | else |
---|
715 | "Effectiveness in Counter Flow" |
---|
716 | Thermal.Eft = (1-exp(-Thermal.NTU*(1-Thermal.Cr)))/(1-Thermal.Cr*exp(-Thermal.NTU*(1-Thermal.Cr))); |
---|
717 | |
---|
718 | "LMTD Correction Factor" |
---|
719 | Thermal.Fc =(ln(abs(1-Thermal.Eft*Thermal.Cr))-ln(abs(1-Thermal.Eft)))/(Thermal.NTU*(1-Thermal.Cr)); |
---|
720 | |
---|
721 | end |
---|
722 | end |
---|