1 | #*------------------------------------------------------------------- |
---|
2 | * EMSO Model Library (EML) Copyright (C) 2004 - 2007 ALSOC. |
---|
3 | * |
---|
4 | * This LIBRARY is free software; you can distribute it and/or modify |
---|
5 | * it under the therms of the ALSOC FREE LICENSE as available at |
---|
6 | * http://www.enq.ufrgs.br/alsoc. |
---|
7 | * |
---|
8 | * EMSO Copyright (C) 2004 - 2007 ALSOC, original code |
---|
9 | * from http://www.rps.eng.br Copyright (C) 2002-2004. |
---|
10 | * All rights reserved. |
---|
11 | * |
---|
12 | * EMSO is distributed under the therms of the ALSOC LICENSE as |
---|
13 | * available at http://www.enq.ufrgs.br/alsoc. |
---|
14 | *-------------------------------------------------------------------- |
---|
15 | * Author: Gerson Balbueno Bicca |
---|
16 | * $Id: HeatExchangerDetailed.mso 197 2007-03-08 14:31:57Z bicca $ |
---|
17 | *------------------------------------------------------------------*# |
---|
18 | using "heat_exchangers/HEX_Engine"; |
---|
19 | |
---|
20 | Model ShellandTubesBasic |
---|
21 | |
---|
22 | ATTRIBUTES |
---|
23 | Pallete = false; |
---|
24 | Brief = "Basic Model for Detailed Shell and Tubes Heat Exchangers"; |
---|
25 | Info = |
---|
26 | "to be documented."; |
---|
27 | |
---|
28 | PARAMETERS |
---|
29 | |
---|
30 | HotSide as Switcher (Brief="Hot Side in the Exchanger",Valid=["shell","tubes"],Default="shell"); |
---|
31 | ShellType as Switcher (Brief="TEMA Designation",Valid=["Eshell","Fshell"],Default="Eshell"); |
---|
32 | |
---|
33 | VARIABLES |
---|
34 | |
---|
35 | in InletTube as stream (Brief="Inlet Tube Stream", PosX=0.08, PosY=0, Symbol="_{inTube}"); |
---|
36 | out OutletTube as streamPH (Brief="Outlet Tube Stream", PosX=0.08, PosY=1, Symbol="_{outTube}"); |
---|
37 | in InletShell as stream (Brief="Inlet Shell Stream", PosX=0.2237, PosY=0, Symbol="_{inShell}"); |
---|
38 | out OutletShell as streamPH (Brief="Outlet Shell Stream", PosX=0.8237, PosY=1, Symbol="_{outShell}"); |
---|
39 | |
---|
40 | Details as Details_Main (Brief="Details in Heat Exchanger"); |
---|
41 | Tubes as Tube_Side_Main (Brief="Tube Side"); |
---|
42 | Shell as Shell_Side_Main (Brief="Shell Side"); |
---|
43 | Baffles as Baffles_Main (Brief="Baffles"); |
---|
44 | |
---|
45 | #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++# |
---|
46 | # Auxiliar Variables - Must be hidden |
---|
47 | #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++# |
---|
48 | Nc as Real (Brief = "Number of Tube rows Crossed in one Crossflow Section",Lower=1); |
---|
49 | Ncw as Real (Brief = "Number of Effective Crossflow rows in Each Window",Lower=1); |
---|
50 | a as Real (Brief = "Variable for calculating Ji heat transfer correction Factor",Lower=1e-3); |
---|
51 | b as Real (Brief = "Variable for calculating shell side pressure drop friction Factor",Lower=1e-3); |
---|
52 | Rb as Real (Brief = "ByPass Correction Factor for Pressure Drop",Lower=1e-3); |
---|
53 | Rss as Real (Brief = "Correction Factor for Pressure Drop",Lower=1e-3); |
---|
54 | Rspd as Real (Brief = "Pressure Drop Correction Factor for Unequal Baffle Spacing",Lower=1e-3); |
---|
55 | mw as Real (Brief = "Mass Velocity in Window Zone", Unit='kg/m^2/s'); |
---|
56 | |
---|
57 | PARAMETERS |
---|
58 | outer PP as Plugin (Brief="External Physical Properties",Type = "PP"); |
---|
59 | outer NComp as Integer (Brief="Number of Components"); |
---|
60 | |
---|
61 | Pi as constant (Brief="Pi Number",Default=3.14159265); |
---|
62 | M(NComp) as molweight (Brief="Component Mol Weight"); |
---|
63 | |
---|
64 | TubeFlowRegime as Switcher (Brief="Tube Side Flow Regime ",Valid=["laminar","transition","turbulent"],Default="laminar"); |
---|
65 | ShellFlowRegime as Switcher (Brief="Shell Side Flow Regime ",Valid=["deep laminar","laminar","turbulent"],Default="deep laminar"); |
---|
66 | ShellRange as Switcher (Brief="Shell Side Flow Regime Range for Correction Factor",Valid=["range1","range2","range3", "range4","range5"],Default="range1"); |
---|
67 | Side as Switcher (Brief="Flag for Fluid Alocation ",Valid=["shell","tubes"],Default="shell"); |
---|
68 | LaminarCorrelation as Switcher (Brief="Tube Heat Transfer Correlation in Laminar Flow",Valid=["Hausen","Schlunder"],Default="Hausen"); |
---|
69 | TransitionCorrelation as Switcher (Brief="Tube Heat Transfer Correlation in Transition Flow",Valid=["Gnielinski","ESDU"],Default="Gnielinski"); |
---|
70 | TurbulentCorrelation as Switcher (Brief="Tube Heat Transfer Correlation in Turbulent Flow",Valid=["Petukhov","SiederTate"],Default="Petukhov"); |
---|
71 | |
---|
72 | #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++# |
---|
73 | # Shell Geometrical Parameters |
---|
74 | #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++# |
---|
75 | Tpass as Integer (Brief="Number of Tube Passes",Lower=1); |
---|
76 | Nss as Integer (Brief="Number of Sealing Strips pairs",Lower=1); |
---|
77 | Dishell as length (Brief="Inside Shell Diameter",Lower=10e-6); |
---|
78 | Donozzle_Shell as length (Brief="Shell Outlet Nozzle Diameter",Lower=10e-6); |
---|
79 | Dinozzle_Shell as length (Brief="Shell Inlet Nozzle Diameter",Lower=10e-6); |
---|
80 | Aonozzle_Shell as area (Brief="Shell Outlet Nozzle Area",Lower=10e-6); |
---|
81 | Ainozzle_Shell as area (Brief="Shell Inlet Nozzle Area",Lower=10e-6); |
---|
82 | Aeonozzle_Shell as area (Brief="Shell Outlet Escape Area Under Nozzle",Lower=10e-6); |
---|
83 | Aeinozzle_Shell as area (Brief="Shell Inlet Escape Area Under Nozzle",Lower=10e-6); |
---|
84 | Hinozzle_Shell as length (Brief="Height Under Shell Inlet Nozzle",Lower=10e-6); |
---|
85 | Honozzle_Shell as length (Brief="Height Under Shell Outlet Nozzle",Lower=10e-6); |
---|
86 | Lcf as length (Brief="Bundle-to-Shell Clearance",Lower=10e-8); |
---|
87 | |
---|
88 | #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++# |
---|
89 | # Tubes Geometrical Parameters |
---|
90 | #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++# |
---|
91 | Ntt as Integer (Brief="Total Number of Tubes in Shell",Default=100,Lower=1); |
---|
92 | Pattern as Switcher (Brief="Tube Layout Characteristic Angle",Valid=["Triangle","Rotated Square","Square"],Default="Triangle"); |
---|
93 | Ltube as length (Brief="Effective Tube Length",Lower=0.1); |
---|
94 | pitch as length (Brief="Tube Pitch",Lower=1e-8); |
---|
95 | Kwall as conductivity (Brief="Tube Wall Material Thermal Conductivity"); |
---|
96 | Dotube as length (Brief="Tube Outside Diameter",Lower=10e-6); |
---|
97 | Ditube as length (Brief="Tube Inside Diameter",Lower=10e-6); |
---|
98 | Donozzle_Tube as length (Brief="Tube Outlet Nozzle Diameter",Lower=10e-6); |
---|
99 | Dinozzle_Tube as length (Brief="Tube Inlet Nozzle Diameter",Lower=10e-6); |
---|
100 | Aonozzle_Tube as area (Brief="Tube Outlet Nozzle Area",Lower=10e-6); |
---|
101 | Ainozzle_Tube as area (Brief="Tube Inlet Nozzle Area",Lower=10e-6); |
---|
102 | Kinlet_Tube as positive (Brief="Tube Inlet Nozzle Pressure Loss Coeff",Default=1.1); |
---|
103 | Koutlet_Tube as positive (Brief="Tube Outlet Nozzle Pressure Loss Coeff",Default=0.7); |
---|
104 | |
---|
105 | #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++# |
---|
106 | # Baffles Geometrical Parameters |
---|
107 | #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++# |
---|
108 | Bc as Integer (Brief="Baffle Cut",Default=25,Lower=25); |
---|
109 | Nb as Real (Brief="Number of Baffles",Lower=1); |
---|
110 | Lcd as length (Brief="Baffle-to-Shell Clearance",Lower=10e-8); |
---|
111 | Ltd as length (Brief="Tube-to-Bafflehole Clearance",Lower=10e-8); |
---|
112 | |
---|
113 | #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++# |
---|
114 | # Fouling |
---|
115 | #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++# |
---|
116 | Rfi as positive (Brief="Inside Fouling Resistance",Unit='m^2*K/kW',Default=1e-6,Lower=0); |
---|
117 | Rfo as positive (Brief="Outside Fouling Resistance",Unit='m^2*K/kW',Default=1e-6,Lower=0); |
---|
118 | |
---|
119 | #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++# |
---|
120 | # Auxiliar Parameters - Must be hidden |
---|
121 | #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++# |
---|
122 | Ods as Real (Brief="Baffle Cut Angle in Degrees"); |
---|
123 | Octl as Real (Brief="Baffle Cut Angle relative to the centerline in Degrees"); |
---|
124 | Ftw as Real (Brief="Fraction of Number of Tubes in Baffle Window"); |
---|
125 | Scd as area (Brief="Shell to Baffle Leakage Area"); |
---|
126 | Std as area (Brief="Tube to Baffle Hole Leakage Area"); |
---|
127 | Rs as Real (Brief="Ratio of the shell to baffle leakage area"); |
---|
128 | Dw as length (Brief="Hydraulic diameter of the baffle window"); |
---|
129 | |
---|
130 | SET |
---|
131 | |
---|
132 | M = PP.MolecularWeight(); |
---|
133 | Pi = 3.14159265; |
---|
134 | |
---|
135 | #"comments" |
---|
136 | Ods = (360/Pi)*acos(1-0.02*Bc); |
---|
137 | |
---|
138 | #"comments" |
---|
139 | Octl = (360/Pi)*acos((Dishell/(Dishell - Lcf - Dotube))*(1-0.02*Bc)); |
---|
140 | |
---|
141 | #"comments" |
---|
142 | Ftw = (Octl/360)-sin(Octl*Pi/180)/(2*Pi); |
---|
143 | |
---|
144 | #"comments" |
---|
145 | Scd = Pi*Dishell*Lcd*((360-Ods)/720); |
---|
146 | |
---|
147 | #"comments" |
---|
148 | Std = Pi*0.25*((Ltd + Dotube)^2-Dotube*Dotube)*Ntt*(1-Ftw); |
---|
149 | |
---|
150 | #"comments" |
---|
151 | Rs = Scd/(Scd+Std); |
---|
152 | |
---|
153 | #"comments" |
---|
154 | Dw = (4*abs((Pi*Dishell*Dishell*((Ods/360)-sin(Ods*Pi/180)/(2*Pi))/4)-(Ntt*Pi*Dotube*Dotube*Ftw/4)))/(Pi*Dotube*Ntt*Ftw+ Pi*Dishell*Ods/360); |
---|
155 | |
---|
156 | #"Tube Side Inlet Nozzle Area" |
---|
157 | Ainozzle_Tube = (Pi*Dinozzle_Tube*Dinozzle_Tube)/4; |
---|
158 | |
---|
159 | #"Tube Side Outlet Nozzle Area" |
---|
160 | Aonozzle_Tube = (Pi*Donozzle_Tube*Donozzle_Tube)/4; |
---|
161 | |
---|
162 | #"Tube Inlet Nozzle Pressure Loss Coeff" |
---|
163 | Kinlet_Tube = 1.1; |
---|
164 | |
---|
165 | #"Tube Outlet Nozzle Pressure Loss Coeff" |
---|
166 | Koutlet_Tube = 0.7; |
---|
167 | |
---|
168 | #"Shell Outlet Nozzle Area" |
---|
169 | Aonozzle_Shell = (Pi*Donozzle_Shell*Donozzle_Shell)/4; |
---|
170 | |
---|
171 | #"Shell Inlet Nozzle Area" |
---|
172 | Ainozzle_Shell = (Pi*Dinozzle_Shell*Dinozzle_Shell)/4; |
---|
173 | |
---|
174 | #"Shell Outlet Escape Area Under Nozzle" |
---|
175 | Aeonozzle_Shell = Pi*Donozzle_Shell*Honozzle_Shell + 0.6*Aonozzle_Shell*(1-(Dotube/pitch)); |
---|
176 | |
---|
177 | #"Shell Inlet Escape Area Under Nozzle" |
---|
178 | Aeinozzle_Shell = Pi*Dinozzle_Shell*Hinozzle_Shell + 0.6*Ainozzle_Shell*(1-(Dotube/pitch)); |
---|
179 | |
---|
180 | EQUATIONS |
---|
181 | |
---|
182 | "Shell Stream Average Temperature" |
---|
183 | Shell.Properties.Average.T = 0.5*InletShell.T + 0.5*OutletShell.T; |
---|
184 | |
---|
185 | "Tube Stream Average Temperature" |
---|
186 | Tubes.Properties.Average.T = 0.5*OutletTube.T + 0.5*OutletTube.T; |
---|
187 | |
---|
188 | "Shell Stream Average Pressure" |
---|
189 | Shell.Properties.Average.P = 0.5*InletShell.P+0.5*OutletShell.P; |
---|
190 | |
---|
191 | "Tube Stream Average Pressure" |
---|
192 | Tubes.Properties.Average.P = 0.5*OutletTube.P+0.5*OutletTube.P; |
---|
193 | |
---|
194 | "Shell Stream Average Molecular Weight" |
---|
195 | Shell.Properties.Average.Mw = sum(M*InletShell.z); |
---|
196 | |
---|
197 | "Tube Stream Average Molecular Weight" |
---|
198 | Tubes.Properties.Average.Mw = sum(M*OutletTube.z); |
---|
199 | |
---|
200 | if InletTube.v equal 0 |
---|
201 | |
---|
202 | then |
---|
203 | |
---|
204 | "Tube Stream Average Heat Capacity" |
---|
205 | Tubes.Properties.Average.Cp = PP.LiquidCp(Tubes.Properties.Average.T,Tubes.Properties.Average.P,OutletTube.z); |
---|
206 | |
---|
207 | "Tube Stream Inlet Heat Capacity" |
---|
208 | Tubes.Properties.Inlet.Cp = PP.LiquidCp(OutletTube.T,OutletTube.P,OutletTube.z); |
---|
209 | |
---|
210 | "Tube Stream Outlet Heat Capacity" |
---|
211 | Tubes.Properties.Outlet.Cp = PP.LiquidCp(OutletTube.T,OutletTube.P,OutletTube.z); |
---|
212 | |
---|
213 | "Tube Stream Average Mass Density" |
---|
214 | Tubes.Properties.Average.rho = PP.LiquidDensity(Tubes.Properties.Average.T,Tubes.Properties.Average.P,OutletTube.z); |
---|
215 | |
---|
216 | "Tube Stream Inlet Mass Density" |
---|
217 | Tubes.Properties.Inlet.rho = PP.LiquidDensity(OutletTube.T,OutletTube.P,OutletTube.z); |
---|
218 | |
---|
219 | "Tube Stream Outlet Mass Density" |
---|
220 | Tubes.Properties.Outlet.rho = PP.LiquidDensity(OutletTube.T,OutletTube.P,OutletTube.z); |
---|
221 | |
---|
222 | "TubeStream Average Viscosity" |
---|
223 | Tubes.Properties.Average.Mu = PP.LiquidViscosity(Tubes.Properties.Average.T,Tubes.Properties.Average.P,OutletTube.z); |
---|
224 | |
---|
225 | "Tube Stream inlet Viscosity" |
---|
226 | Tubes.Properties.Inlet.Mu = PP.LiquidViscosity(OutletTube.T,OutletTube.P,OutletTube.z); |
---|
227 | |
---|
228 | "Tube Stream Outlet Viscosity" |
---|
229 | Tubes.Properties.Outlet.Mu = PP.LiquidViscosity(OutletTube.T,OutletTube.P,OutletTube.z); |
---|
230 | |
---|
231 | "Tube Stream Average Conductivity" |
---|
232 | Tubes.Properties.Average.K = PP.LiquidThermalConductivity(Tubes.Properties.Average.T,Tubes.Properties.Average.P,OutletTube.z); |
---|
233 | |
---|
234 | "Tube Stream Inlet Conductivity" |
---|
235 | Tubes.Properties.Inlet.K = PP.LiquidThermalConductivity(OutletTube.T,OutletTube.P,OutletTube.z); |
---|
236 | |
---|
237 | "Tube Stream Outlet Conductivity" |
---|
238 | Tubes.Properties.Outlet.K = PP.LiquidThermalConductivity(OutletTube.T,OutletTube.P,OutletTube.z); |
---|
239 | |
---|
240 | "Tube Stream Viscosity at Wall Temperature" |
---|
241 | Tubes.Properties.Wall.Mu = PP.LiquidViscosity(Tubes.Properties.Wall.Twall,Tubes.Properties.Average.P,OutletTube.z); |
---|
242 | |
---|
243 | else |
---|
244 | |
---|
245 | "Tube Stream Average Heat Capacity" |
---|
246 | Tubes.Properties.Average.Cp = PP.VapourCp(Tubes.Properties.Average.T,Tubes.Properties.Average.P,OutletTube.z); |
---|
247 | |
---|
248 | "Tube Stream Inlet Heat Capacity" |
---|
249 | Tubes.Properties.Inlet.Cp = PP.VapourCp(OutletTube.T,OutletTube.P,OutletTube.z); |
---|
250 | |
---|
251 | "Tube Stream Outlet Heat Capacity" |
---|
252 | Tubes.Properties.Outlet.Cp = PP.VapourCp(OutletTube.T,OutletTube.P,OutletTube.z); |
---|
253 | |
---|
254 | "Tube Stream Average Mass Density" |
---|
255 | Tubes.Properties.Average.rho = PP.VapourDensity(Tubes.Properties.Average.T,Tubes.Properties.Average.P,OutletTube.z); |
---|
256 | |
---|
257 | "Tube Stream Inlet Mass Density" |
---|
258 | Tubes.Properties.Inlet.rho = PP.VapourDensity(OutletTube.T,OutletTube.P,OutletTube.z); |
---|
259 | |
---|
260 | "Tube Stream Outlet Mass Density" |
---|
261 | Tubes.Properties.Outlet.rho = PP.VapourDensity(OutletTube.T,OutletTube.P,OutletTube.z); |
---|
262 | |
---|
263 | "Tube Stream Average Viscosity " |
---|
264 | Tubes.Properties.Average.Mu = PP.VapourViscosity(Tubes.Properties.Average.T,Tubes.Properties.Average.P,OutletTube.z); |
---|
265 | |
---|
266 | "Tube Stream Inlet Viscosity " |
---|
267 | Tubes.Properties.Inlet.Mu = PP.VapourViscosity(OutletTube.T,OutletTube.P,OutletTube.z); |
---|
268 | |
---|
269 | "Tube Stream Outlet Viscosity " |
---|
270 | Tubes.Properties.Outlet.Mu = PP.VapourViscosity(OutletTube.T,OutletTube.P,OutletTube.z); |
---|
271 | |
---|
272 | "Tube Stream Average Conductivity " |
---|
273 | Tubes.Properties.Average.K = PP.VapourThermalConductivity(Tubes.Properties.Average.T,Tubes.Properties.Average.P,OutletTube.z); |
---|
274 | |
---|
275 | "Tube Stream Inlet Conductivity " |
---|
276 | Tubes.Properties.Inlet.K = PP.VapourThermalConductivity(OutletTube.T,OutletTube.P,OutletTube.z); |
---|
277 | |
---|
278 | "Tube Stream Outlet Conductivity " |
---|
279 | Tubes.Properties.Outlet.K = PP.VapourThermalConductivity(OutletTube.T,OutletTube.P,OutletTube.z); |
---|
280 | |
---|
281 | "Tube Stream Viscosity at Wall Temperature" |
---|
282 | Tubes.Properties.Wall.Mu = PP.VapourViscosity(Tubes.Properties.Wall.Twall,Tubes.Properties.Average.P,OutletTube.z); |
---|
283 | |
---|
284 | end |
---|
285 | |
---|
286 | if InletShell.v equal 0 |
---|
287 | |
---|
288 | then |
---|
289 | |
---|
290 | "Shell Stream Average Heat Capacity" |
---|
291 | Shell.Properties.Average.Cp = PP.LiquidCp(Shell.Properties.Average.T,Shell.Properties.Average.P,InletShell.z); |
---|
292 | |
---|
293 | "Shell Stream Inlet Heat Capacity" |
---|
294 | Shell.Properties.Inlet.Cp = PP.LiquidCp(InletShell.T,InletShell.P,InletShell.z); |
---|
295 | |
---|
296 | "Shell Stream Outlet Heat Capacity" |
---|
297 | Shell.Properties.Outlet.Cp = PP.LiquidCp(OutletShell.T,OutletShell.P,OutletShell.z); |
---|
298 | |
---|
299 | "Shell Stream Average Mass Density" |
---|
300 | Shell.Properties.Average.rho = PP.LiquidDensity(Shell.Properties.Average.T,Shell.Properties.Average.P,InletShell.z); |
---|
301 | |
---|
302 | "ShellStream Inlet Mass Density" |
---|
303 | Shell.Properties.Inlet.rho = PP.LiquidDensity(InletShell.T,InletShell.P,InletShell.z); |
---|
304 | |
---|
305 | "Shell Stream Outlet Mass Density" |
---|
306 | Shell.Properties.Outlet.rho = PP.LiquidDensity(OutletShell.T,OutletShell.P,OutletShell.z); |
---|
307 | |
---|
308 | "Shell Stream Average Viscosity" |
---|
309 | Shell.Properties.Average.Mu = PP.LiquidViscosity(Shell.Properties.Average.T,Shell.Properties.Average.P,InletShell.z); |
---|
310 | |
---|
311 | "Shell Stream Inlet Viscosity" |
---|
312 | Shell.Properties.Inlet.Mu = PP.LiquidViscosity(InletShell.T,InletShell.P,InletShell.z); |
---|
313 | |
---|
314 | "Shell Stream Outlet Viscosity" |
---|
315 | Shell.Properties.Outlet.Mu = PP.LiquidViscosity(OutletShell.T,OutletShell.P,OutletShell.z); |
---|
316 | |
---|
317 | "Shell Stream Average Conductivity" |
---|
318 | Shell.Properties.Average.K = PP.LiquidThermalConductivity(Shell.Properties.Average.T,Shell.Properties.Average.P,InletShell.z); |
---|
319 | |
---|
320 | "Shell Stream Inlet Conductivity" |
---|
321 | Shell.Properties.Inlet.K = PP.LiquidThermalConductivity(InletShell.T,InletShell.P,InletShell.z); |
---|
322 | |
---|
323 | "Shell Stream Outlet Conductivity" |
---|
324 | Shell.Properties.Outlet.K = PP.LiquidThermalConductivity(OutletShell.T,OutletShell.P,OutletShell.z); |
---|
325 | |
---|
326 | "ShellStream Viscosity at Wall Temperature" |
---|
327 | Shell.Properties.Wall.Mu = PP.LiquidViscosity(Shell.Properties.Wall.Twall,Shell.Properties.Average.P,InletShell.z); |
---|
328 | |
---|
329 | |
---|
330 | else |
---|
331 | |
---|
332 | "Shell Stream Average Heat Capacity" |
---|
333 | Shell.Properties.Average.Cp = PP.VapourCp(Shell.Properties.Average.T,Shell.Properties.Average.P,InletShell.z); |
---|
334 | |
---|
335 | "Shell Stream Inlet Heat Capacity" |
---|
336 | Shell.Properties.Inlet.Cp = PP.VapourCp(InletShell.T,InletShell.P,InletShell.z); |
---|
337 | |
---|
338 | "Shell Stream Outlet Heat Capacity" |
---|
339 | Shell.Properties.Outlet.Cp = PP.VapourCp(OutletShell.T,OutletShell.P,OutletShell.z); |
---|
340 | |
---|
341 | "Shell Stream Average Mass Density" |
---|
342 | Shell.Properties.Average.rho = PP.VapourDensity(Shell.Properties.Average.T,Shell.Properties.Average.P,InletShell.z); |
---|
343 | |
---|
344 | "Shell Stream Inlet Mass Density" |
---|
345 | Shell.Properties.Inlet.rho = PP.VapourDensity(InletShell.T,InletShell.P,InletShell.z); |
---|
346 | |
---|
347 | "Shell Stream Outlet Mass Density" |
---|
348 | Shell.Properties.Outlet.rho = PP.VapourDensity(OutletShell.T,OutletShell.P,OutletShell.z); |
---|
349 | |
---|
350 | "Shell Stream Average Viscosity" |
---|
351 | Shell.Properties.Average.Mu = PP.VapourViscosity(Shell.Properties.Average.T,Shell.Properties.Average.P,InletShell.z); |
---|
352 | |
---|
353 | "Shell Stream Inlet Viscosity" |
---|
354 | Shell.Properties.Inlet.Mu = PP.VapourViscosity(InletShell.T,InletShell.P,InletShell.z); |
---|
355 | |
---|
356 | "Shell Stream Outlet Viscosity" |
---|
357 | Shell.Properties.Outlet.Mu = PP.VapourViscosity(OutletShell.T,OutletShell.P,OutletShell.z); |
---|
358 | |
---|
359 | "Shell Stream Average Conductivity" |
---|
360 | Shell.Properties.Average.K = PP.VapourThermalConductivity(Shell.Properties.Average.T,Shell.Properties.Average.P,InletShell.z); |
---|
361 | |
---|
362 | "Shell Stream Inlet Conductivity" |
---|
363 | Shell.Properties.Inlet.K = PP.VapourThermalConductivity(InletShell.T,InletShell.P,InletShell.z); |
---|
364 | |
---|
365 | "Shell Stream Outlet Conductivity" |
---|
366 | Shell.Properties.Outlet.K = PP.VapourThermalConductivity(OutletShell.T,OutletShell.P,OutletShell.z); |
---|
367 | |
---|
368 | "Shell Stream Viscosity at Wall Temperature" |
---|
369 | Shell.Properties.Wall.Mu = PP.VapourViscosity(Shell.Properties.Wall.Twall,Shell.Properties.Average.P,InletShell.z); |
---|
370 | |
---|
371 | end |
---|
372 | |
---|
373 | switch Side |
---|
374 | |
---|
375 | case "shell": |
---|
376 | |
---|
377 | "Energy Balance Hot Stream" |
---|
378 | Details.Q = InletShell.F*(InletShell.h-OutletShell.h); |
---|
379 | |
---|
380 | "Energy Balance Cold Stream" |
---|
381 | Details.Q =-InletTube.F*(InletTube.h-OutletTube.h); |
---|
382 | |
---|
383 | when InletTube.T > InletShell.T switchto "tubes"; |
---|
384 | |
---|
385 | case "tubes": |
---|
386 | |
---|
387 | "Energy Balance Hot Stream" |
---|
388 | Details.Q = InletTube.F*(InletTube.h-OutletTube.h); |
---|
389 | |
---|
390 | "Energy Balance Cold Stream" |
---|
391 | Details.Q =-InletShell.F*(InletShell.h-OutletShell.h); |
---|
392 | |
---|
393 | when InletTube.T < InletShell.T switchto "shell"; |
---|
394 | |
---|
395 | end |
---|
396 | |
---|
397 | "Flow Mass Inlet Tube Stream" |
---|
398 | Tubes.Properties.Inlet.Fw = sum(M*InletTube.z)*InletTube.F; |
---|
399 | |
---|
400 | "Flow Mass Outlet Tube Stream" |
---|
401 | Tubes.Properties.Outlet.Fw = sum(M*OutletTube.z)*OutletTube.F; |
---|
402 | |
---|
403 | "Flow Mass Inlet Shell Stream" |
---|
404 | Shell.Properties.Inlet.Fw = sum(M*InletShell.z)*InletShell.F; |
---|
405 | |
---|
406 | "Flow Mass Outlet Shell Stream" |
---|
407 | Shell.Properties.Outlet.Fw = sum(M*OutletShell.z)*OutletShell.F; |
---|
408 | |
---|
409 | "Molar Balance Shell Stream" |
---|
410 | OutletShell.F = InletShell.F; |
---|
411 | |
---|
412 | "Molar Balance Tube Stream" |
---|
413 | OutletTube.F = InletTube.F; |
---|
414 | |
---|
415 | "Shell Stream Molar Fraction Constraint" |
---|
416 | OutletShell.z=InletShell.z; |
---|
417 | |
---|
418 | "Tube Stream Molar Fraction Constraint" |
---|
419 | OutletTube.z=InletTube.z; |
---|
420 | |
---|
421 | "Jc Factor" |
---|
422 | Shell.HeatTransfer.Jc = 0.55+0.72*(1-2*Ftw); |
---|
423 | |
---|
424 | "Jl Factor" |
---|
425 | Shell.HeatTransfer.Jl = 0.44*(1-Rs)+(1-0.44*(1-Rs))*exp(-2.2*(Scd + Std)/Shell.HeatTransfer.Sm); |
---|
426 | |
---|
427 | "Total J Factor" |
---|
428 | Shell.HeatTransfer.Jtotal = Shell.HeatTransfer.Jc*Shell.HeatTransfer.Jl*Shell.HeatTransfer.Jb*Shell.HeatTransfer.Jr*Shell.HeatTransfer.Js; |
---|
429 | |
---|
430 | "Mass Velocity in Window Zone" |
---|
431 | mw = Shell.Properties.Inlet.Fw/sqrt(abs(Shell.HeatTransfer.Sm*abs((Pi*Dishell*Dishell*((Ods/360)-sin(Ods*Pi/180)/(2*Pi))/4)-(Ntt*Pi*Dotube*Dotube*Ftw/4)))); |
---|
432 | |
---|
433 | switch TubeFlowRegime |
---|
434 | |
---|
435 | case "laminar": |
---|
436 | |
---|
437 | "Friction Factor for heat Transfer: Not Necessary in Laminar Correlation - Use any one equation that you want" |
---|
438 | Tubes.HeatTransfer.fi = 16/Tubes.HeatTransfer.Re; |
---|
439 | |
---|
440 | "Friction Factor for Pressure Drop in Laminar Flow" |
---|
441 | Tubes.PressureDrop.fi = 16/Tubes.HeatTransfer.Re; |
---|
442 | |
---|
443 | switch LaminarCorrelation |
---|
444 | |
---|
445 | case "Hausen": |
---|
446 | |
---|
447 | "Nusselt Number in Laminar Flow - Hausen Equation" |
---|
448 | Tubes.HeatTransfer.Nu = 3.665 + ((0.19*((Ditube/Ltube)*Tubes.HeatTransfer.Re*Tubes.HeatTransfer.PR)^0.8)/(1+0.117*((Ditube/Ltube)*Tubes.HeatTransfer.Re*Tubes.HeatTransfer.PR)^0.467)); |
---|
449 | |
---|
450 | case "Schlunder": |
---|
451 | |
---|
452 | "Nusselt Number in Laminar Flow - Schlunder Equation" |
---|
453 | Tubes.HeatTransfer.Nu = (49.027896+4.173281*Tubes.HeatTransfer.Re*Tubes.HeatTransfer.PR*(Ditube/Ltube))^(1/3); |
---|
454 | |
---|
455 | end |
---|
456 | |
---|
457 | when Tubes.HeatTransfer.Re > 2300 switchto "transition"; |
---|
458 | |
---|
459 | case "transition": |
---|
460 | |
---|
461 | "Friction Factor for heat Transfer : for use in Gnielinski Equation" |
---|
462 | Tubes.HeatTransfer.fi = 1/(0.79*ln(Tubes.HeatTransfer.Re)-1.64)^2; |
---|
463 | |
---|
464 | "Friction Factor for Pressure Drop in Transition Flow" |
---|
465 | Tubes.PressureDrop.fi = 0.0122; |
---|
466 | |
---|
467 | switch TransitionCorrelation |
---|
468 | |
---|
469 | case "Gnielinski": |
---|
470 | |
---|
471 | "Nusselt Number in Transition Flow - Gnielinski Equation" |
---|
472 | Tubes.HeatTransfer.Nu*(1+(12.7*sqrt(0.125*Tubes.HeatTransfer.fi)*((Tubes.HeatTransfer.PR)^(2/3) -1))) = 0.125*Tubes.HeatTransfer.fi*(Tubes.HeatTransfer.Re-1000)*Tubes.HeatTransfer.PR; |
---|
473 | |
---|
474 | case "ESDU": |
---|
475 | |
---|
476 | "Nusselt Number in Transition Flow - ESDU Equation" |
---|
477 | Tubes.HeatTransfer.Nu =1;#to be implemented |
---|
478 | |
---|
479 | end |
---|
480 | |
---|
481 | when Tubes.HeatTransfer.Re < 2300 switchto "laminar"; |
---|
482 | when Tubes.HeatTransfer.Re > 10000 switchto "turbulent"; |
---|
483 | |
---|
484 | case "turbulent": |
---|
485 | |
---|
486 | "Friction Factor for heat Transfer : for use in Petukhov Equation" |
---|
487 | Tubes.HeatTransfer.fi = 1/(1.82*log(Tubes.HeatTransfer.Re)-1.64)^2; |
---|
488 | |
---|
489 | "Friction Factor for Pressure Drop in Turbulent Flow" |
---|
490 | Tubes.PressureDrop.fi = 0.0035 + 0.264*Tubes.HeatTransfer.Re^(-0.42); |
---|
491 | |
---|
492 | switch TurbulentCorrelation |
---|
493 | |
---|
494 | case "Petukhov": |
---|
495 | |
---|
496 | "Nusselt Number in Turbulent Flow - Petukhov Equation" |
---|
497 | Tubes.HeatTransfer.Nu*(1.07+(12.7*sqrt(0.125*Tubes.HeatTransfer.fi)*((Tubes.HeatTransfer.PR)^(2/3) -1))) = 0.125*Tubes.HeatTransfer.fi*Tubes.HeatTransfer.Re*Tubes.HeatTransfer.PR; |
---|
498 | |
---|
499 | case "SiederTate": |
---|
500 | |
---|
501 | "Nusselt Number in Transition Flow - Sieder Tate Equation" |
---|
502 | Tubes.HeatTransfer.Nu = 0.027*(Tubes.HeatTransfer.PR)^(1/3)*(Tubes.HeatTransfer.Re)^(4/5); |
---|
503 | |
---|
504 | end |
---|
505 | |
---|
506 | when Tubes.HeatTransfer.Re < 10000 switchto "transition"; |
---|
507 | |
---|
508 | end |
---|
509 | |
---|
510 | switch Pattern |
---|
511 | |
---|
512 | case "Triangle": |
---|
513 | |
---|
514 | "Shell Side Cross Flow Area" |
---|
515 | Shell.HeatTransfer.Sm= Baffles.Ls*(Lcf+((Dishell-Lcf-Dotube)/pitch)*(pitch-Dotube)); |
---|
516 | |
---|
517 | "Number of Tube rows Crossed in one Crossflow Section" |
---|
518 | Nc = Dishell*(1-0.02*Bc)/(0.866*pitch); |
---|
519 | |
---|
520 | "Number of Effective Crossflow rows in Each Window" |
---|
521 | Ncw = 0.8*(Dishell*0.01*Bc-(Lcf + Dotube)*0.5)/(0.866*pitch); |
---|
522 | |
---|
523 | "Variable for calculating Ji heat transfer correction Factor" |
---|
524 | a = 1.45/(1+0.14*Shell.HeatTransfer.Re^0.519); |
---|
525 | |
---|
526 | "Variable for calculating Shell Side Pressure Drop Friction Factor" |
---|
527 | b=7/(1+0.14*Shell.HeatTransfer.Re^0.5); |
---|
528 | |
---|
529 | "Correction Factor for Pressure Drop" |
---|
530 | Rss = Nss/(Dishell*(1-0.02*Bc)/(0.866*pitch)) ; |
---|
531 | |
---|
532 | "Ideal Shell Side Pressure Drop" |
---|
533 | Shell.PressureDrop.Pideal= 2*Shell.PressureDrop.fi*(Dishell*(1-0.02*Bc)/(0.866*pitch))*(Shell.Properties.Inlet.Fw/Shell.HeatTransfer.Sm)^2/(Shell.Properties.Average.rho*Shell.HeatTransfer.Phi); |
---|
534 | |
---|
535 | "Shell Pressure End Zones" |
---|
536 | Shell.PressureDrop.PdEndZones = Shell.PressureDrop.Pideal*(1+ (Ncw/(Dishell*(1-0.02*Bc)/(0.866*pitch))))*Rb*Rspd; |
---|
537 | |
---|
538 | switch ShellRange |
---|
539 | |
---|
540 | case "range1": |
---|
541 | |
---|
542 | "Ji Factor" |
---|
543 | Shell.HeatTransfer.Ji =1.40*((1.33*Dotube/pitch)^a)*Shell.HeatTransfer.Re^0.667; |
---|
544 | |
---|
545 | "Shell Side Pressure Drop Friction Factor" |
---|
546 | Shell.PressureDrop.fi=48*((1.33*Dotube/pitch)^b)*Shell.HeatTransfer.Re^-1; |
---|
547 | |
---|
548 | when Shell.HeatTransfer.Re > 10 switchto "range2"; |
---|
549 | |
---|
550 | case "range2": |
---|
551 | |
---|
552 | "Ji Factor" |
---|
553 | Shell.HeatTransfer.Ji =1.36*((1.33*Dotube/pitch)^a)*Shell.HeatTransfer.Re^-0.657; |
---|
554 | |
---|
555 | "Shell Side Pressure Drop Friction Factor" |
---|
556 | Shell.PressureDrop.fi=45.10*((1.33*Dotube/pitch)^b)*Shell.HeatTransfer.Re^-0.973; |
---|
557 | |
---|
558 | when Shell.HeatTransfer.Re > 100 switchto "range3"; |
---|
559 | |
---|
560 | case "range3": |
---|
561 | |
---|
562 | "Ji Factor" |
---|
563 | Shell.HeatTransfer.Ji =0.593*((1.33*Dotube/pitch)^a)*Shell.HeatTransfer.Re^-0.477; |
---|
564 | |
---|
565 | "Shell Side Pressure Drop Friction Factor" |
---|
566 | Shell.PressureDrop.fi=4.570*((1.33*Dotube/pitch)^b)*Shell.HeatTransfer.Re^-0.476; |
---|
567 | |
---|
568 | when Shell.HeatTransfer.Re > 1000 switchto "range4"; |
---|
569 | |
---|
570 | case "range4": |
---|
571 | |
---|
572 | "Ji Factor" |
---|
573 | Shell.HeatTransfer.Ji =0.321*((1.33*Dotube/pitch)^a)*Shell.HeatTransfer.Re^-0.388; |
---|
574 | |
---|
575 | "Shell Side Pressure Drop Friction Factor" |
---|
576 | Shell.PressureDrop.fi=0.486*((1.33*Dotube/pitch)^b)*Shell.HeatTransfer.Re^-0.152; |
---|
577 | |
---|
578 | when Shell.HeatTransfer.Re > 10000 switchto "range5"; |
---|
579 | |
---|
580 | case "range5": |
---|
581 | |
---|
582 | "Ji Factor" |
---|
583 | Shell.HeatTransfer.Ji =0.321*((1.33*Dotube/pitch)^a)*Shell.HeatTransfer.Re^-0.388; |
---|
584 | |
---|
585 | "Shell Side Pressure Drop Friction Factor" |
---|
586 | Shell.PressureDrop.fi=0.372*((1.33*Dotube/pitch)^b)*Shell.HeatTransfer.Re^-0.123; |
---|
587 | |
---|
588 | when Shell.HeatTransfer.Re < 10000 switchto "range4"; |
---|
589 | |
---|
590 | end |
---|
591 | |
---|
592 | case "Rotated Square": |
---|
593 | |
---|
594 | "Shell Side Cross Flow Area" |
---|
595 | Shell.HeatTransfer.Sm= Baffles.Ls*(Lcf+((Dishell-Lcf-Dotube)/(0.707*pitch))*(pitch-Dotube)); |
---|
596 | |
---|
597 | "Number of Tube rows Crossed in one Crossflow Section" |
---|
598 | Nc = Dishell*(1-0.02*Bc)/(0.707*pitch); |
---|
599 | |
---|
600 | "Number of Effective Crossflow rows in Each Window" |
---|
601 | Ncw = 0.8*(Dishell*0.01*Bc-(Lcf + Dotube)*0.5)/(0.707*pitch); |
---|
602 | |
---|
603 | "Variable for calculating Ji heat transfer correction Factor" |
---|
604 | a = 1.930/(1+0.14*Shell.HeatTransfer.Re^0.500); |
---|
605 | |
---|
606 | "Variable for calculating Shell Side Pressure Drop Friction Factor" |
---|
607 | b=6.59/(1+0.14*Shell.HeatTransfer.Re^0.52); |
---|
608 | |
---|
609 | "Correction Factor for Pressure Drop" |
---|
610 | Rss = Nss/(Dishell*(1-0.02*Bc)/(0.707*pitch)) ; |
---|
611 | |
---|
612 | "Ideal Shell Side Pressure Drop" |
---|
613 | Shell.PressureDrop.Pideal= 2*Shell.PressureDrop.fi*(Dishell*(1-0.02*Bc)/(0.707*pitch))*(Shell.Properties.Inlet.Fw/Shell.HeatTransfer.Sm)^2/(Shell.Properties.Average.rho*Shell.HeatTransfer.Phi); |
---|
614 | |
---|
615 | "Shell Pressure End Zones" |
---|
616 | Shell.PressureDrop.PdEndZones = Shell.PressureDrop.Pideal*(1+ (Ncw/(Dishell*(1-0.02*Bc)/(0.707*pitch))))*Rb*Rspd; |
---|
617 | |
---|
618 | switch ShellRange |
---|
619 | |
---|
620 | case "range1": |
---|
621 | |
---|
622 | "Ji Factor" |
---|
623 | Shell.HeatTransfer.Ji =1.550*((1.33*Dotube/pitch)^a)*Shell.HeatTransfer.Re^0.667; |
---|
624 | |
---|
625 | "Shell Side Pressure Drop Friction Factor" |
---|
626 | Shell.PressureDrop.fi=32*((1.33*Dotube/pitch)^b)*Shell.HeatTransfer.Re^-1; |
---|
627 | |
---|
628 | when Shell.HeatTransfer.Re > 10 switchto "range2"; |
---|
629 | |
---|
630 | case "range2": |
---|
631 | |
---|
632 | "Ji Factor" |
---|
633 | Shell.HeatTransfer.Ji =0.498*((1.33*Dotube/pitch)^a)*Shell.HeatTransfer.Re^0.656; |
---|
634 | |
---|
635 | "Shell Side Pressure Drop Friction Factor" |
---|
636 | Shell.PressureDrop.fi=26.20*((1.33*Dotube/pitch)^b)*Shell.HeatTransfer.Re^-0.913; |
---|
637 | |
---|
638 | when Shell.HeatTransfer.Re > 100 switchto "range3"; |
---|
639 | |
---|
640 | case "range3": |
---|
641 | |
---|
642 | "Ji Factor" |
---|
643 | Shell.HeatTransfer.Ji =0.730*((1.33*Dotube/pitch)^a)*Shell.HeatTransfer.Re^0.500; |
---|
644 | |
---|
645 | "Shell Side Pressure Drop Friction Factor" |
---|
646 | Shell.PressureDrop.fi=3.50*((1.33*Dotube/pitch)^b)*Shell.HeatTransfer.Re^-0.476; |
---|
647 | |
---|
648 | when Shell.HeatTransfer.Re > 1000 switchto "range4"; |
---|
649 | |
---|
650 | case "range4": |
---|
651 | |
---|
652 | "Ji Factor" |
---|
653 | Shell.HeatTransfer.Ji =0.370*((1.33*Dotube/pitch)^a)*Shell.HeatTransfer.Re^-0.396; |
---|
654 | |
---|
655 | "Shell Side Pressure Drop Friction Factor" |
---|
656 | Shell.PressureDrop.fi=0.333*((1.33*Dotube/pitch)^b)*Shell.HeatTransfer.Re^-0.136; |
---|
657 | |
---|
658 | when Shell.HeatTransfer.Re > 10000 switchto "range5"; |
---|
659 | |
---|
660 | case "range5": |
---|
661 | |
---|
662 | "Ji Factor" |
---|
663 | Shell.HeatTransfer.Ji =0.370*((1.33*Dotube/pitch)^a)*Shell.HeatTransfer.Re^-0.396; |
---|
664 | |
---|
665 | "Shell Side Pressure Drop Friction Factor" |
---|
666 | Shell.PressureDrop.fi=0.303*((1.33*Dotube/pitch)^b)*Shell.HeatTransfer.Re^-0.126; |
---|
667 | |
---|
668 | when Shell.HeatTransfer.Re < 10000 switchto "range4"; |
---|
669 | |
---|
670 | end |
---|
671 | |
---|
672 | case "Square": |
---|
673 | |
---|
674 | "Shell Side Cross Flow Area" |
---|
675 | Shell.HeatTransfer.Sm= Baffles.Ls*(Lcf+((Dishell-Lcf-Dotube)/pitch)*(pitch-Dotube)); |
---|
676 | |
---|
677 | "Number of Tube rows Crossed in one Crossflow Section" |
---|
678 | Nc = Dishell*(1-0.02*Bc)/pitch; |
---|
679 | |
---|
680 | "Number of Effective Crossflow rows in Each Window" |
---|
681 | Ncw = 0.8*(Dishell*0.01*Bc-(Lcf + Dotube)*0.5)/pitch; |
---|
682 | |
---|
683 | "Variable for calculating Ji heat transfer correction Factor" |
---|
684 | a = 1.187/(1+0.14*Shell.HeatTransfer.Re^0.370); |
---|
685 | |
---|
686 | "Variable for calculating Shell Side Pressure Drop Friction Factor" |
---|
687 | b=6.30/(1+0.14*Shell.HeatTransfer.Re^0.38); |
---|
688 | |
---|
689 | "Correction Factor for Pressure Drop" |
---|
690 | Rss = Nss/(Dishell*(1-0.02*Bc)/pitch) ; |
---|
691 | |
---|
692 | "Ideal Shell Side Pressure Drop" |
---|
693 | Shell.PressureDrop.Pideal= 2*Shell.PressureDrop.fi*(Dishell*(1-0.02*Bc)/pitch)*(Shell.Properties.Inlet.Fw/Shell.HeatTransfer.Sm)^2/(Shell.Properties.Average.rho*Shell.HeatTransfer.Phi); |
---|
694 | |
---|
695 | "Shell Pressure End Zones" |
---|
696 | Shell.PressureDrop.PdEndZones = Shell.PressureDrop.Pideal*(1+ (Ncw/(Dishell*(1-0.02*Bc)/pitch)))*Rb*Rspd; |
---|
697 | |
---|
698 | switch ShellRange |
---|
699 | |
---|
700 | case "range1": |
---|
701 | |
---|
702 | "Ji Factor" |
---|
703 | Shell.HeatTransfer.Ji =0.970*((1.33*Dotube/pitch)^a)*Shell.HeatTransfer.Re^-0.667; |
---|
704 | |
---|
705 | "Shell Side Pressure Drop Friction Factor" |
---|
706 | Shell.PressureDrop.fi=35*((1.33*Dotube/pitch)^b)*Shell.HeatTransfer.Re^-1; |
---|
707 | |
---|
708 | when Shell.HeatTransfer.Re > 10 switchto "range2"; |
---|
709 | |
---|
710 | case "range2": |
---|
711 | |
---|
712 | "Ji Factor" |
---|
713 | Shell.HeatTransfer.Ji =0.900*((1.33*Dotube/pitch)^a)*Shell.HeatTransfer.Re^-0.631; |
---|
714 | |
---|
715 | "Shell Side Pressure Drop Friction Factor" |
---|
716 | Shell.PressureDrop.fi=32.10*((1.33*Dotube/pitch)^b)*Shell.HeatTransfer.Re^-0.963; |
---|
717 | |
---|
718 | when Shell.HeatTransfer.Re > 100 switchto "range3"; |
---|
719 | |
---|
720 | case "range3": |
---|
721 | |
---|
722 | "Ji Factor" |
---|
723 | Shell.HeatTransfer.Ji =0.408*((1.33*Dotube/pitch)^a)*Shell.HeatTransfer.Re^-0.460; |
---|
724 | |
---|
725 | "Shell Side Pressure Drop Friction Factor" |
---|
726 | Shell.PressureDrop.fi=6.090*((1.33*Dotube/pitch)^b)*Shell.HeatTransfer.Re^-0.602; |
---|
727 | |
---|
728 | when Shell.HeatTransfer.Re > 1000 switchto "range4"; |
---|
729 | |
---|
730 | case "range4": |
---|
731 | |
---|
732 | "Ji Factor" |
---|
733 | Shell.HeatTransfer.Ji =0.107*((1.33*Dotube/pitch)^a)*Shell.HeatTransfer.Re^-0.266; |
---|
734 | |
---|
735 | "Shell Side Pressure Drop Friction Factor" |
---|
736 | Shell.PressureDrop.fi=0.0815*((1.33*Dotube/pitch)^b)*Shell.HeatTransfer.Re^0.022; |
---|
737 | |
---|
738 | when Shell.HeatTransfer.Re > 10000 switchto "range5"; |
---|
739 | |
---|
740 | case "range5": |
---|
741 | |
---|
742 | "Ji Factor" |
---|
743 | Shell.HeatTransfer.Ji =0.370*((1.33*Dotube/pitch)^a)*Shell.HeatTransfer.Re^-0.395; |
---|
744 | |
---|
745 | "Shell Side Pressure Drop Friction Factor" |
---|
746 | Shell.PressureDrop.fi=0.391*((1.33*Dotube/pitch)^b)*Shell.HeatTransfer.Re^-0.148; |
---|
747 | |
---|
748 | when Shell.HeatTransfer.Re < 10000 switchto "range4"; |
---|
749 | |
---|
750 | end |
---|
751 | |
---|
752 | end |
---|
753 | |
---|
754 | switch ShellFlowRegime |
---|
755 | |
---|
756 | case "deep laminar": |
---|
757 | |
---|
758 | "Jr Factor" |
---|
759 | Shell.HeatTransfer.Jr = (10/((Nc +Ncw)*(Nb+1)))^0.18; |
---|
760 | |
---|
761 | "Js Factor" |
---|
762 | Shell.HeatTransfer.Js = (Nb-1+(Baffles.Lsi/Baffles.Ls)^0.7 + (Baffles.Lso/Baffles.Ls)^0.7)/(Nb-1+(Baffles.Lsi/Baffles.Ls) + (Baffles.Lso/Baffles.Ls)); |
---|
763 | |
---|
764 | "Jb Factor" |
---|
765 | Shell.HeatTransfer.Jb = exp(-1.35*( Lcf+ Dotube)*Baffles.Ls/Shell.HeatTransfer.Sm*(1-(2*(Nss/Nc)^(1/3)))); |
---|
766 | |
---|
767 | "ByPass Correction Factor for Pressure Drop" |
---|
768 | Rb = exp(-4.7*((Lcf + Dotube)*Baffles.Ls/Shell.HeatTransfer.Sm)*(1-(2*Rss)^(1/3))); |
---|
769 | |
---|
770 | "Pressure Drop Correction Factor for Unequal Baffle Spacing" |
---|
771 | Rspd = (Baffles.Ls/Baffles.Lso) + (Baffles.Ls/Baffles.Lsi); |
---|
772 | |
---|
773 | "Shell Pressure Drop Baffle Window" |
---|
774 | Shell.PressureDrop.Pdwindow = Nb*((26/Shell.Properties.Average.rho)*mw*Shell.Properties.Average.Mu*(Ncw/(pitch-Dotube)+ Baffles.Ls/(Dw*Dw))+ 0.5*mw*mw/Shell.Properties.Average.rho)*exp(-1.33*(1+Rs)*((Scd + Std)/Shell.HeatTransfer.Sm)^(-0.15*(1+Rs) + 0.8)); |
---|
775 | |
---|
776 | when Shell.HeatTransfer.Re > 20 switchto "laminar"; |
---|
777 | |
---|
778 | case "laminar": |
---|
779 | |
---|
780 | "Jr Factor" |
---|
781 | Shell.HeatTransfer.Jr = (10/((Nc +Ncw)*(Nb+1)))^0.18 + (0.25-0.0125*Shell.HeatTransfer.Re)*((10/((Nc +Ncw)*(Nb+1)))^0.18 - 1); |
---|
782 | |
---|
783 | "Js Factor" |
---|
784 | Shell.HeatTransfer.Js = (Nb-1+(Baffles.Lsi/Baffles.Ls)^0.7 + (Baffles.Lso/Baffles.Ls)^0.7)/(Nb-1+(Baffles.Lsi/Baffles.Ls) + (Baffles.Lso/Baffles.Ls)); |
---|
785 | |
---|
786 | "Jb Factor" |
---|
787 | Shell.HeatTransfer.Jb = exp(-1.35*( Lcf+ Dotube)*Baffles.Ls/Shell.HeatTransfer.Sm*(1-(2*(Nss/Nc)^(1/3)))); |
---|
788 | |
---|
789 | "ByPass Correction Factor for Pressure Drop" |
---|
790 | Rb = exp(-4.7*((Lcf + Dotube)*Baffles.Ls/Shell.HeatTransfer.Sm)*(1-(2*Rss)^(1/3))); |
---|
791 | |
---|
792 | "Pressure Drop Correction Factor for Unequal Baffle Spacing" |
---|
793 | Rspd = (Baffles.Ls/Baffles.Lso) + (Baffles.Ls/Baffles.Lsi); |
---|
794 | |
---|
795 | "Shell Pressure Drop Baffle Window" |
---|
796 | Shell.PressureDrop.Pdwindow = Nb*((26/Shell.Properties.Average.rho)*mw*Shell.Properties.Average.Mu*(Ncw/(pitch-Dotube)+ Baffles.Ls/(Dw*Dw))+ 0.5*mw*mw/Shell.Properties.Average.rho)*exp(-1.33*(1+Rs)*((Scd + Std)/Shell.HeatTransfer.Sm)^(-0.15*(1+Rs) + 0.8)); |
---|
797 | |
---|
798 | when Shell.HeatTransfer.Re < 20 switchto "deep laminar"; |
---|
799 | when Shell.HeatTransfer.Re > 100 switchto "turbulent"; |
---|
800 | |
---|
801 | case "turbulent": |
---|
802 | |
---|
803 | "Jr Factor" |
---|
804 | Shell.HeatTransfer.Jr = 1; |
---|
805 | |
---|
806 | "Js Factor" |
---|
807 | Shell.HeatTransfer.Js = (Nb-1+(Baffles.Lsi/Baffles.Ls)^0.4 + (Baffles.Lso/Baffles.Ls)^0.4)/(Nb-1+(Baffles.Lsi/Baffles.Ls) + (Baffles.Lso/Baffles.Ls)); |
---|
808 | |
---|
809 | "Jb Factor" |
---|
810 | Shell.HeatTransfer.Jb = exp(-1.25*( Lcf+ Dotube)*Baffles.Ls/Shell.HeatTransfer.Sm*(1-(2*(Nss/Nc)^(1/3)))); |
---|
811 | |
---|
812 | "ByPass Correction Factor for Pressure Drop" |
---|
813 | Rb = exp(-3.7*((Lcf + Dotube)*Baffles.Ls/Shell.HeatTransfer.Sm)*(1-(2*Rss)^(1/3))); |
---|
814 | |
---|
815 | "Pressure Drop Correction Factor for Unequal Baffle Spacing" |
---|
816 | Rspd = (Baffles.Ls/Baffles.Lso)^1.8 + (Baffles.Ls/Baffles.Lsi)^1.8; |
---|
817 | |
---|
818 | "Shell Pressure Drop Baffle Window" |
---|
819 | Shell.PressureDrop.Pdwindow = Nb*((2+0.6*Ncw)*0.5*mw*mw/Shell.Properties.Average.rho)*exp(-1.33*(1+Rs)*((Scd + Std)/Shell.HeatTransfer.Sm)^(-0.15*(1+Rs) + 0.8)); |
---|
820 | |
---|
821 | when Shell.HeatTransfer.Re < 100 switchto "laminar"; |
---|
822 | |
---|
823 | end |
---|
824 | |
---|
825 | "Shell Pressure Drop Cross Flow" |
---|
826 | Shell.PressureDrop.PdCross = Shell.PressureDrop.Pideal*Rb*(Nb-1)*exp(-1.33*(1+Rs)*((Scd + Std)/Shell.HeatTransfer.Sm)^(-0.15*(1+Rs) + 0.8)); |
---|
827 | |
---|
828 | "Shell Side Phi correction" |
---|
829 | Shell.HeatTransfer.Phi = (Shell.Properties.Average.Mu/Shell.Properties.Wall.Mu)^0.14; |
---|
830 | |
---|
831 | "Tube Side Phi correction" |
---|
832 | Tubes.HeatTransfer.Phi = (Tubes.Properties.Average.Mu/Tubes.Properties.Wall.Mu)^0.14; |
---|
833 | |
---|
834 | "Shell Side inlet Nozzle rho-V^2" |
---|
835 | Shell.PressureDrop.RVsquare_in = Shell.Properties.Inlet.rho*(Shell.PressureDrop.Vnozzle_in)^2; |
---|
836 | |
---|
837 | "Shell Side Outlet Nozzle rho-V^2" |
---|
838 | Shell.PressureDrop.RVsquare_out = Shell.Properties.Outlet.rho*(Shell.PressureDrop.Vnozzle_out)^2; |
---|
839 | |
---|
840 | "Tube Side Pressure Drop" |
---|
841 | Tubes.PressureDrop.PdTube = 2*Tubes.PressureDrop.fi*Ltube*Tubes.Properties.Average.rho*(Tubes.HeatTransfer.Vtube^2)*Tpass/(Ditube*Tubes.HeatTransfer.Phi); |
---|
842 | |
---|
843 | "Pressure Drop Tube Side Inlet Nozzle" |
---|
844 | Tubes.PressureDrop.Pdnozzle_in = 0.5*Kinlet_Tube*Tubes.Properties.Inlet.rho*Tubes.PressureDrop.Vnozzle_in^2; |
---|
845 | |
---|
846 | "Velocity Tube Side Inlet Nozzle" |
---|
847 | Tubes.PressureDrop.Vnozzle_in = Tubes.Properties.Inlet.Fw/(Tubes.Properties.Inlet.rho*Ainozzle_Tube); |
---|
848 | |
---|
849 | "Pressure Drop Tube Side Outlet Nozzle" |
---|
850 | Tubes.PressureDrop.Pdnozzle_out = 0.5*Koutlet_Tube*Tubes.Properties.Outlet.rho*Tubes.PressureDrop.Vnozzle_out^2; |
---|
851 | |
---|
852 | "Velocity Tube Side Outlet Nozzle" |
---|
853 | Tubes.PressureDrop.Vnozzle_out = Tubes.Properties.Inlet.Fw/(Tubes.Properties.Outlet.rho*Aonozzle_Tube); |
---|
854 | |
---|
855 | "Shell Pressure Drop Inlet Nozzle" |
---|
856 | Shell.PressureDrop.Pdnozzle_in = (0.5*Shell.Properties.Inlet.Fw^2/Shell.Properties.Inlet.rho)*((1/Ainozzle_Shell^2)+(1/Aeinozzle_Shell^2)); |
---|
857 | |
---|
858 | "Velocity Shell Side Inlet Nozzle" |
---|
859 | Shell.PressureDrop.Vnozzle_in = Shell.Properties.Inlet.Fw/(Shell.Properties.Inlet.rho*Ainozzle_Shell); |
---|
860 | |
---|
861 | "Shell Pressure Drop Outlet Nozzle" |
---|
862 | Shell.PressureDrop.Pdnozzle_out = (0.5*Shell.Properties.Outlet.Fw^2/Shell.Properties.Outlet.rho)*((1/Ainozzle_Shell^2)+(1/Aeinozzle_Shell^2)); |
---|
863 | |
---|
864 | "Velocity Shell Side Outlet Nozzle" |
---|
865 | Shell.PressureDrop.Vnozzle_out = Shell.Properties.Outlet.Fw/(Shell.Properties.Outlet.rho*Aonozzle_Shell); |
---|
866 | |
---|
867 | "Pressure Drop Shell Stream" |
---|
868 | OutletShell.P = InletShell.P - Shell.PressureDrop.Pdtotal; |
---|
869 | |
---|
870 | "Pressure Drop Tube Stream" |
---|
871 | OutletTube.P = InletTube.P - Tubes.PressureDrop.Pdtotal; |
---|
872 | |
---|
873 | "Shell Wall Temperature" |
---|
874 | Shell.Properties.Wall.Twall = (Shell.Properties.Average.T+Tubes.Properties.Average.T)/2; |
---|
875 | |
---|
876 | "Tube Wall Temperature" |
---|
877 | Tubes.Properties.Wall.Twall = (Shell.Properties.Average.T+Tubes.Properties.Average.T)/2; |
---|
878 | |
---|
879 | "Tube Side Velocity" |
---|
880 | Tubes.HeatTransfer.Vtube = Tubes.Properties.Inlet.Fw*Tpass/((Pi*Ditube*Ditube/4)*Tubes.Properties.Average.rho*Ntt); |
---|
881 | |
---|
882 | "Tube Side Reynolds Number" |
---|
883 | Tubes.HeatTransfer.Re = (Tubes.Properties.Average.rho*Tubes.HeatTransfer.Vtube*Ditube)/Tubes.Properties.Average.Mu; |
---|
884 | |
---|
885 | "Tube Side Prandtl Number" |
---|
886 | Tubes.HeatTransfer.PR = ((Tubes.Properties.Average.Cp/Tubes.Properties.Average.Mw)*Tubes.Properties.Average.Mu)/Tubes.Properties.Average.K; |
---|
887 | |
---|
888 | "Tube Side Film Coefficient" |
---|
889 | Tubes.HeatTransfer.htube= (Tubes.HeatTransfer.Nu*Tubes.Properties.Average.K/Ditube)*Tubes.HeatTransfer.Phi; |
---|
890 | |
---|
891 | "Shell Side Prandtl Number" |
---|
892 | Shell.HeatTransfer.PR = ((Shell.Properties.Average.Cp/Shell.Properties.Average.Mw)*Shell.Properties.Average.Mu)/Shell.Properties.Average.K; |
---|
893 | |
---|
894 | "Overall Heat Transfer Coefficient Dirty" |
---|
895 | Details.Ud=1/(Dotube/(Tubes.HeatTransfer.htube*Ditube)+Rfo+Rfi*(Dotube/Ditube)+(Dotube*ln(Dotube/Ditube)/(2*Kwall))+(1/(Shell.HeatTransfer.hshell))); |
---|
896 | |
---|
897 | "Overall Heat Transfer Coefficient Clean" |
---|
898 | Details.Uc=1/(Dotube/(Tubes.HeatTransfer.htube*Ditube)+(Dotube*ln(Dotube/Ditube)/(2*Kwall))+(1/(Shell.HeatTransfer.hshell))); |
---|
899 | |
---|
900 | "Exchange Surface Area" |
---|
901 | Details.A=Pi*Dotube*Ntt*Ltube; |
---|
902 | |
---|
903 | "Baffles Spacing" |
---|
904 | Ltube = Baffles.Lsi+Baffles.Lso+Baffles.Ls*(Nb-1); |
---|
905 | |
---|
906 | "Shell Side Reynolds Number" |
---|
907 | Shell.HeatTransfer.Re = (Dotube*Shell.Properties.Inlet.Fw/Shell.HeatTransfer.Sm)/Shell.Properties.Average.Mu; |
---|
908 | |
---|
909 | "Shell Heat Transfer Coefficient" |
---|
910 | Shell.HeatTransfer.hshell = Shell.HeatTransfer.Ji*(Shell.Properties.Average.Cp/Shell.Properties.Average.Mw)*(Shell.Properties.Inlet.Fw/Shell.HeatTransfer.Sm)*(Shell.HeatTransfer.PR^(-2/3))*Shell.HeatTransfer.Jtotal*Shell.HeatTransfer.Phi; |
---|
911 | |
---|
912 | end |
---|
913 | |
---|
914 | Model ShellandTubes_NTU as ShellandTubesBasic |
---|
915 | |
---|
916 | ATTRIBUTES |
---|
917 | Pallete = true; |
---|
918 | Icon = "icon/ShellandTubes_NTU"; |
---|
919 | Brief = "Shell and Tubes Heat Exchangers"; |
---|
920 | Info = |
---|
921 | "to be documented"; |
---|
922 | |
---|
923 | VARIABLES |
---|
924 | |
---|
925 | Method as NTU_Basic (Brief="NTU Method"); |
---|
926 | |
---|
927 | EQUATIONS |
---|
928 | |
---|
929 | "Number of Units Transference" |
---|
930 | Method.NTU*Method.Cmin = Details.Ud*Pi*Dotube*Ntt*Ltube; |
---|
931 | |
---|
932 | "Minimum Heat Capacity" |
---|
933 | Method.Cmin = min([Method.Ch,Method.Cc]); |
---|
934 | |
---|
935 | "Maximum Heat Capacity" |
---|
936 | Method.Cmax = max([Method.Ch,Method.Cc]); |
---|
937 | |
---|
938 | "Thermal Capacity Ratio" |
---|
939 | Method.Cr = Method.Cmin/Method.Cmax; |
---|
940 | |
---|
941 | switch HotSide |
---|
942 | |
---|
943 | case "shell": |
---|
944 | |
---|
945 | "Duty" |
---|
946 | Details.Q = Method.Eft*Method.Cmin*(InletShell.T-InletTube.T); |
---|
947 | |
---|
948 | "Hot Stream Heat Capacity" |
---|
949 | Method.Ch = InletShell.F*Shell.Properties.Average.Cp; |
---|
950 | |
---|
951 | "Cold Stream Heat Capacity" |
---|
952 | Method.Cc = InletTube.F*Tubes.Properties.Average.Cp; |
---|
953 | |
---|
954 | when InletTube.T > InletShell.T switchto "tubes"; |
---|
955 | |
---|
956 | case "tubes": |
---|
957 | |
---|
958 | "Duty" |
---|
959 | Details.Q = Method.Eft*Method.Cmin*(InletTube.T-InletShell.T); |
---|
960 | |
---|
961 | "Hot Stream Heat Capacity" |
---|
962 | Method.Cc = InletShell.F*Shell.Properties.Average.Cp; |
---|
963 | |
---|
964 | "Cold Stream Heat Capacity" |
---|
965 | Method.Ch = InletTube.F*Tubes.Properties.Average.Cp; |
---|
966 | |
---|
967 | when InletTube.T < InletShell.T switchto "shell"; |
---|
968 | |
---|
969 | end |
---|
970 | |
---|
971 | switch ShellType |
---|
972 | |
---|
973 | case "Fshell": |
---|
974 | |
---|
975 | "Effectiveness Correction for 2 pass shell side" |
---|
976 | Method.Eft1 = 2*(1+Method.Cr+sqrt(1+Method.Cr^2)*((1+exp(-Method.NTU*sqrt(1+Method.Cr^2)))/(1-exp(-Method.NTU*sqrt(1+Method.Cr^2)))) )^-1; |
---|
977 | |
---|
978 | "TEMA F Shell Effectiveness" |
---|
979 | Method.Eft = ( ((1-Method.Eft1*Method.Cr)/(1-Method.Eft1))^2 -1 )*( ((1-Method.Eft1*Method.Cr)/(1-Method.Eft1))^2 - Method.Cr )^-1; |
---|
980 | |
---|
981 | case "Eshell": |
---|
982 | |
---|
983 | "TEMA E Shell Effectiveness" |
---|
984 | Method.Eft = 2*(1+Method.Cr+sqrt(1+Method.Cr^2)*((1+exp(-Method.NTU*sqrt(1+Method.Cr^2)))/(1-exp(-Method.NTU*sqrt(1+Method.Cr^2)))) )^-1; |
---|
985 | # Method.Eft = 1; |
---|
986 | |
---|
987 | "Variable not in use when 1 Pass Shell Side" |
---|
988 | Method.Eft1 = 1; |
---|
989 | |
---|
990 | end |
---|
991 | |
---|
992 | end |
---|
993 | |
---|
994 | Model ShellandTubes_LMTD as ShellandTubesBasic |
---|
995 | |
---|
996 | ATTRIBUTES |
---|
997 | Pallete = true; |
---|
998 | Icon = "icon/ShellandTubes_LMTD"; |
---|
999 | Brief = "Shell and Tubes Heat Exchangers"; |
---|
1000 | Info = |
---|
1001 | "to be documented."; |
---|
1002 | |
---|
1003 | PARAMETERS |
---|
1004 | |
---|
1005 | LMTDcorrection as Switcher (Brief="LMTD Correction Factor Model",Valid=["Bowmann","Fakeri"],Default="Bowmann"); |
---|
1006 | |
---|
1007 | VARIABLES |
---|
1008 | |
---|
1009 | Method as LMTD_Basic; |
---|
1010 | R as positive (Brief=" Capacity Ratio for LMTD Correction Fator",Lower=1e-6); |
---|
1011 | P as positive (Brief="Non - Dimensional Variable for LMTD Correction Fator ",Lower=1e-6); |
---|
1012 | Pc as positive (Brief="Non - Dimensional Variable for LMTD Correction Fator when 2 Pass Shell Side",Lower=1e-6); |
---|
1013 | Rho as positive (Brief="Non - Dimensional Variable for LMTD Correction Fator in Fakeri Equation",Lower=1e-6); |
---|
1014 | Phi as positive (Brief="Non - Dimensional Variable for LMTD Correction Fator in Fakeri Equation",Lower=1e-6); |
---|
1015 | lambdaN as positive (Brief="Non - Dimensional Variable for LMTD Correction Fator in Fakeri Equation when 2 Pass Shell Side",Lower=1e-6); |
---|
1016 | lambda1 as positive (Brief="Non - Dimensional Variable for LMTD Correction Fator in Fakeri Equationwhen 2 Pass Shell Side",Lower=1e-6); |
---|
1017 | |
---|
1018 | EQUATIONS |
---|
1019 | |
---|
1020 | "Exchange Surface Area" |
---|
1021 | Details.Q = Details.Ud*Pi*Dotube*Ntt*Ltube*Method.LMTD*Method.Fc; |
---|
1022 | |
---|
1023 | switch HotSide |
---|
1024 | |
---|
1025 | case "shell": |
---|
1026 | |
---|
1027 | "Non Dimensional Variable for LMTD Correction Fator in Fakeri Equation " |
---|
1028 | Phi*(2*((InletShell.T+ OutletShell.T)-(InletTube.T+ OutletTube.T))) = (sqrt(((InletShell.T- OutletShell.T)*(InletShell.T- OutletShell.T))+((OutletTube.T - InletTube.T)*(OutletTube.T - InletTube.T)))); |
---|
1029 | |
---|
1030 | "R: Capacity Ratio for LMTD Correction Fator" |
---|
1031 | R*(OutletTube.T - InletTube.T ) = (InletShell.T-OutletShell.T); |
---|
1032 | |
---|
1033 | "P: Non - Dimensional Variable for LMTD Correction Fator" |
---|
1034 | P*(InletShell.T- InletTube.T)= (OutletTube.T-InletTube.T); |
---|
1035 | |
---|
1036 | "Temperature Difference at Inlet" |
---|
1037 | Method.DT0 = InletShell.T - OutletTube.T; |
---|
1038 | |
---|
1039 | "Temperature Difference at Outlet" |
---|
1040 | Method.DTL = OutletShell.T - InletTube.T; |
---|
1041 | |
---|
1042 | when InletTube.T > InletShell.T switchto "tubes"; |
---|
1043 | |
---|
1044 | case "tubes": |
---|
1045 | |
---|
1046 | "Non Dimensional Variable for LMTD Correction Fator in Fakeri Equation " |
---|
1047 | Phi*(2*((InletShell.T+ OutletShell.T)-(InletTube.T+ OutletTube.T))) = (sqrt(((InletShell.T- OutletShell.T)*(InletShell.T- OutletShell.T))+((OutletTube.T - InletTube.T)*(OutletTube.T - InletTube.T)))); |
---|
1048 | |
---|
1049 | "R: Capacity Ratio for LMTD Correction Fator" |
---|
1050 | R*(OutletShell.T - InletShell.T ) = (InletTube.T-OutletTube.T); |
---|
1051 | |
---|
1052 | "P: Non - Dimensional Variable for LMTD Correction Fator" |
---|
1053 | P*(InletTube.T- InletShell.T)= (OutletShell.T-InletShell.T); |
---|
1054 | |
---|
1055 | "Temperature Difference at Inlet" |
---|
1056 | Method.DT0 = InletTube.T - OutletShell.T; |
---|
1057 | |
---|
1058 | "Temperature Difference at Outlet" |
---|
1059 | Method.DTL = OutletTube.T - InletShell.T; |
---|
1060 | |
---|
1061 | |
---|
1062 | when InletTube.T < InletShell.T switchto "shell"; |
---|
1063 | |
---|
1064 | end |
---|
1065 | |
---|
1066 | switch ShellType |
---|
1067 | |
---|
1068 | case "Fshell": |
---|
1069 | |
---|
1070 | switch LMTDcorrection |
---|
1071 | |
---|
1072 | case "Bowmann": |
---|
1073 | |
---|
1074 | " Variable not in use with Bowmann equation" |
---|
1075 | lambdaN =1; |
---|
1076 | |
---|
1077 | " Variable not in use with Bowmann equation" |
---|
1078 | lambda1 =1; |
---|
1079 | |
---|
1080 | #" Variable not in use with Bowmann equation" |
---|
1081 | # Phi = 1; |
---|
1082 | |
---|
1083 | " Variable not in use with Bowmann equation" |
---|
1084 | Rho =1; |
---|
1085 | |
---|
1086 | if R equal 1 |
---|
1087 | |
---|
1088 | then |
---|
1089 | |
---|
1090 | "Non Dimensional Variable for LMTD Correction Fator when 2 Pass Shell Side" |
---|
1091 | Pc*(2-P)= P; |
---|
1092 | |
---|
1093 | "LMTD Correction Fator when 2 Pass Shell Side" |
---|
1094 | Method.Fc= (sqrt(2)*Pc)/((1-Pc)*ln( abs( ( 2-Pc*0.585786)/( 2-Pc*3.414214)))); |
---|
1095 | |
---|
1096 | else |
---|
1097 | |
---|
1098 | "Non Dimensional Variable for LMTD Correction Fator when 2 Pass Shell Side" |
---|
1099 | Pc = (sqrt(abs(( 1-P*R)/(1-P)))-1)/(sqrt(abs(( 1-P*R)/(1-P)))-R); |
---|
1100 | |
---|
1101 | "LMTD Correction Fator when 2 Pass Shell Side" |
---|
1102 | Method.Fc = sqrt(R*R+1)*ln(abs((1-Pc*R)/(1-Pc)))/((1-R)*ln( abs( ( 2-Pc*(R+1-sqrt(R*R+1)))/ ( 2-Pc*(R + 1 + sqrt(R*R+1)))))); |
---|
1103 | |
---|
1104 | end |
---|
1105 | |
---|
1106 | case "Fakeri": |
---|
1107 | |
---|
1108 | " Variable not in use with Fakeri equation" |
---|
1109 | Pc = P; |
---|
1110 | |
---|
1111 | "Non Dimensional Variable for LMTD Correction Fator in Fakeri Equation" |
---|
1112 | Rho*(1-P*R) = (1-P); |
---|
1113 | |
---|
1114 | #"Non Dimensional Variable for LMTD Correction Fator in Fakeri Equation " |
---|
1115 | # Phi = (sqrt(((Inlet.Hot.T - Outlet.Hot.T)*(Inlet.Hot.T- Outlet.Hot.T))+((Outlet.Cold.T - Inlet.Cold.T)*(Outlet.Cold.T - Inlet.Cold.T))))/(2*((Inlet.Hot.T + Outlet.Hot.T)-( Inlet.Cold.T + Outlet.Cold.T))); |
---|
1116 | |
---|
1117 | if Rho equal 1 |
---|
1118 | |
---|
1119 | then |
---|
1120 | |
---|
1121 | " Variable not in use when Rho = 1" |
---|
1122 | lambdaN = 1; |
---|
1123 | |
---|
1124 | " Variable not in use when Rho = 1" |
---|
1125 | lambda1 = 1; |
---|
1126 | |
---|
1127 | "LMTD Correction Fator when 2 Pass Shell Side" |
---|
1128 | Method.Fc = (2*Phi )/(ln(abs((1+Phi )/(1-Phi )))); |
---|
1129 | |
---|
1130 | else |
---|
1131 | |
---|
1132 | "Non Dimensional Variable for LMTD Correction Fator in Fakeri Equation" |
---|
1133 | lambdaN = (1/ln(sqrt(abs(Rho))))*((2*sqrt(abs(Rho))-2)/(sqrt(abs(Rho))+1)); |
---|
1134 | |
---|
1135 | "Non Dimensional Variable for LMTD Correction Fator in Fakeri Equation" |
---|
1136 | lambda1 = (1/ln(abs(Rho)))*((2*Rho-2)/(Rho+1)); |
---|
1137 | |
---|
1138 | "LMTD Correction Fator when 2 Pass Shell Side" |
---|
1139 | Method.Fc = ((2*Phi *(lambdaN/lambda1))/(ln(abs((1+Phi *(lambdaN/lambda1))/(1-Phi *(lambdaN/lambda1))))))*(1/lambdaN); |
---|
1140 | |
---|
1141 | end |
---|
1142 | |
---|
1143 | |
---|
1144 | end |
---|
1145 | |
---|
1146 | case "Eshell": |
---|
1147 | |
---|
1148 | " Variable not in use when 1 Pass Shell Side" |
---|
1149 | lambdaN =1; |
---|
1150 | |
---|
1151 | " Variable not in use when 1 Pass Shell Side" |
---|
1152 | lambda1 =1; |
---|
1153 | |
---|
1154 | " Variable not in use when 1 Pass Shell Side" |
---|
1155 | Pc = P; |
---|
1156 | |
---|
1157 | switch LMTDcorrection |
---|
1158 | |
---|
1159 | case "Bowmann": |
---|
1160 | |
---|
1161 | #" Variable not in use with Bowmann equation" |
---|
1162 | # Phi = 1; |
---|
1163 | |
---|
1164 | " Variable not in use with Bowmann equation" |
---|
1165 | Rho = 1; |
---|
1166 | |
---|
1167 | |
---|
1168 | if R equal 1 |
---|
1169 | |
---|
1170 | then |
---|
1171 | |
---|
1172 | "LMTD Correction Fator when 1 Pass Shell Side" |
---|
1173 | Method.Fc = (sqrt(2)*P)/((1-P)*ln( abs( ( 2-P*0.585786)/( 2-P*3.414214)))); |
---|
1174 | |
---|
1175 | else |
---|
1176 | |
---|
1177 | "LMTD Correction Fator when 1 Pass Shell Side" |
---|
1178 | Method.Fc = sqrt(R*R+1)*ln(abs((1-P*R)/(1-P)))/((1-R)*ln( abs( ( 2-P*(R+1-sqrt(R*R+1)))/ ( 2-P*(R + 1 + sqrt(R*R+1)))))); |
---|
1179 | |
---|
1180 | end |
---|
1181 | |
---|
1182 | case "Fakeri": |
---|
1183 | |
---|
1184 | #"Non Dimensional Variable for LMTD Correction Fator in Fakeri Equation " |
---|
1185 | # Phi = (sqrt(((Inlet.Hot.T- Outlet.Hot.T)*(Inlet.Hot.T- Outlet.Hot.T))+((Outlet.Cold.T - Inlet.Cold.T)*(Outlet.Cold.T - Inlet.Cold.T))))/(2*((Inlet.Hot.T+ Outlet.Hot.T)-(Inlet.Cold.T+ Outlet.Cold.T))); |
---|
1186 | |
---|
1187 | "Non Dimensional Variable for LMTD Correction Fator in Fakeri Equation" |
---|
1188 | Rho*(1-P*R) = (1-P); |
---|
1189 | |
---|
1190 | if Rho equal 1 |
---|
1191 | |
---|
1192 | then |
---|
1193 | |
---|
1194 | "LMTD Correction Fator when 1 Pass Shell Side" |
---|
1195 | Method.Fc = (4*Phi)/(ln(abs((1+2*Phi)/(1-2*Phi)))); |
---|
1196 | |
---|
1197 | else |
---|
1198 | |
---|
1199 | "LMTD Correction Fator when 1 Pass Shell Side" |
---|
1200 | Method.Fc = (2*Phi*(Rho+1)*ln(abs(Rho)))/( ln(abs((1+2*Phi)/(1-2*Phi)))*(Rho-1)); |
---|
1201 | |
---|
1202 | end |
---|
1203 | |
---|
1204 | end |
---|
1205 | |
---|
1206 | |
---|
1207 | end |
---|
1208 | |
---|
1209 | end |
---|
1210 | |
---|