1 | #*------------------------------------------------------------------- |
---|
2 | * EMSO Model Library (EML) Copyright (C) 2004 - 2007 ALSOC. |
---|
3 | * |
---|
4 | * This LIBRARY is free software; you can distribute it and/or modify |
---|
5 | * it under the therms of the ALSOC FREE LICENSE as available at |
---|
6 | * http://www.enq.ufrgs.br/alsoc. |
---|
7 | * |
---|
8 | * EMSO Copyright (C) 2004 - 2007 ALSOC, original code |
---|
9 | * from http://www.rps.eng.br Copyright (C) 2002-2004. |
---|
10 | * All rights reserved. |
---|
11 | * |
---|
12 | * EMSO is distributed under the therms of the ALSOC LICENSE as |
---|
13 | * available at http://www.enq.ufrgs.br/alsoc. |
---|
14 | *-------------------------------------------------------------------- |
---|
15 | * Author: Gerson Balbueno Bicca |
---|
16 | * $Id: HairpinIncr.mso $ |
---|
17 | *------------------------------------------------------------------*# |
---|
18 | |
---|
19 | using "streams"; |
---|
20 | |
---|
21 | Model Properties_Average |
---|
22 | |
---|
23 | ATTRIBUTES |
---|
24 | Pallete = false; |
---|
25 | Brief = "Average incremental physical properties of the streams."; |
---|
26 | Info = |
---|
27 | "to be documented."; |
---|
28 | |
---|
29 | PARAMETERS |
---|
30 | |
---|
31 | outer N as Integer (Brief="Number of zones", Default = 2); |
---|
32 | |
---|
33 | VARIABLES |
---|
34 | Mw as molweight (Brief="Average Mol Weight",Default=75, Lower=1, Upper=1e8); |
---|
35 | T(N) as temperature (Brief="Average Incremental Temperature",Lower=50); |
---|
36 | P(N) as pressure (Brief="Average Incremental Pressure",Default=1, Lower=1e-10, Upper=2e4, DisplayUnit='kPa'); |
---|
37 | rho(N) as dens_mass (Brief="Stream Incremental Density" ,Default=1000, Lower=1e-3, Upper=5e5, Symbol = "\rho"); |
---|
38 | Mu(N) as viscosity (Brief="Stream Incremental Viscosity",Lower=0.0001, Symbol = "\mu"); |
---|
39 | Cp(N) as cp_mol (Brief="Stream Incremental Molar Heat Capacity", Upper=1e10); |
---|
40 | K(N) as conductivity (Brief="Stream Incremental Thermal Conductivity", Default=1.0, Lower=1e-5, Upper=500); |
---|
41 | |
---|
42 | end |
---|
43 | |
---|
44 | Model Properties_In_Out |
---|
45 | |
---|
46 | ATTRIBUTES |
---|
47 | Pallete = false; |
---|
48 | Brief = "Inlet and outlet physical properties of the streams."; |
---|
49 | Info = |
---|
50 | "to be documented."; |
---|
51 | |
---|
52 | VARIABLES |
---|
53 | |
---|
54 | Fw as flow_mass (Brief="Stream Mass Flow"); |
---|
55 | rho as dens_mass (Brief="Stream Density" ,Default=1000, Lower=1e-3, Upper=5e5, Symbol = "\rho"); |
---|
56 | |
---|
57 | end |
---|
58 | |
---|
59 | Model Properties_Wall |
---|
60 | |
---|
61 | ATTRIBUTES |
---|
62 | Pallete = false; |
---|
63 | Brief = "Incremental Physical properties of the streams at wall temperature."; |
---|
64 | Info = |
---|
65 | "to be documented."; |
---|
66 | |
---|
67 | PARAMETERS |
---|
68 | |
---|
69 | outer N as Integer (Brief="Number of zones", Default = 2); |
---|
70 | |
---|
71 | VARIABLES |
---|
72 | |
---|
73 | Mu(N) as viscosity (Brief="Stream Incremental Viscosity",Default=1, Lower=1e-5, Upper=1e5, Symbol = "\mu"); |
---|
74 | Twall(N) as temperature (Brief="Incremental Wall Temperature",Lower=50); |
---|
75 | |
---|
76 | end |
---|
77 | |
---|
78 | Model Physical_Properties |
---|
79 | |
---|
80 | ATTRIBUTES |
---|
81 | Pallete = false; |
---|
82 | Brief = "to be documented"; |
---|
83 | Info = |
---|
84 | "to be documented"; |
---|
85 | |
---|
86 | VARIABLES |
---|
87 | Inlet as Properties_In_Out (Brief="Properties at Inlet Stream", Symbol = "^{in}"); |
---|
88 | Average as Properties_Average (Brief="Properties at Average Temperature", Symbol = "^{avg}"); |
---|
89 | Outlet as Properties_In_Out (Brief="Properties at Outlet Stream", Symbol = "^{out}"); |
---|
90 | Wall as Properties_Wall (Brief="Properties at Wall Temperature", Symbol = "^{wall}"); |
---|
91 | |
---|
92 | end |
---|
93 | |
---|
94 | Model Details_Main |
---|
95 | |
---|
96 | ATTRIBUTES |
---|
97 | Pallete = false; |
---|
98 | Brief = "to be documented"; |
---|
99 | Info = |
---|
100 | "to be documented"; |
---|
101 | |
---|
102 | PARAMETERS |
---|
103 | |
---|
104 | outer N as Integer (Brief="Number of zones", Default = 2); |
---|
105 | |
---|
106 | VARIABLES |
---|
107 | A as area (Brief="Total Exchange Surface Area"); |
---|
108 | Q(N) as power (Brief="Incremental Duty", Default=7000, Lower=1e-8, Upper=1e10); |
---|
109 | Qtotal as power (Brief="Total Duty", Default=7000, Lower=1e-8, Upper=1e10); |
---|
110 | Uc as heat_trans_coeff (Brief="Average Overall Heat Transfer Coefficient Clean",Default=1,Lower=1e-6,Upper=1e10); |
---|
111 | Ud(N) as heat_trans_coeff (Brief="Incremental Overall Heat Transfer Coefficient Dirty",Default=1,Lower=1e-6,Upper=1e10); |
---|
112 | |
---|
113 | end |
---|
114 | |
---|
115 | Model Hairpin_HeatTransfer |
---|
116 | |
---|
117 | ATTRIBUTES |
---|
118 | Pallete = false; |
---|
119 | Brief = "to be documented"; |
---|
120 | Info = |
---|
121 | "to be documented"; |
---|
122 | |
---|
123 | PARAMETERS |
---|
124 | |
---|
125 | As as area (Brief="Cross Sectional Area for Flow",Default=0.05,Lower=1e-8); |
---|
126 | Dh as length (Brief="Hydraulic Diameter of Pipe for Heat Transfer",Lower=1e-8); |
---|
127 | outer N as Integer (Brief="Number of zones", Default = 2); |
---|
128 | outer Npoints as Integer (Brief="Number of incremental points", Default = 3); |
---|
129 | |
---|
130 | VARIABLES |
---|
131 | |
---|
132 | Tlocal(Npoints) as temperature (Brief="Incremental Local Temperature",Lower=50); |
---|
133 | Re(N) as positive (Brief="Incremental Reynolds Number",Default=100,Lower=1); |
---|
134 | hcoeff(N) as heat_trans_coeff (Brief="Incremental Film Coefficient",Default=1,Lower=1e-12, Upper=1e6, DisplayUnit = 'W/m^2/K'); |
---|
135 | fi(N) as fricfactor (Brief="Incremental Friction Factor", Default=0.05, Lower=1e-10, Upper=2000); |
---|
136 | Nu(N) as positive (Brief="Incremental Nusselt Number",Default=0.5,Lower=1e-8); |
---|
137 | PR(N) as positive (Brief="Incremental Prandtl Number",Default=0.5,Lower=1e-8); |
---|
138 | Phi(N) as positive (Brief="Incremental Phi Correction",Default=1,Lower=1e-3); |
---|
139 | Vmean(N) as velocity (Brief="Incremental Tube Velocity",Lower=1e-8); |
---|
140 | Enth(Npoints) as enth_mol (Brief="Incremental Stream Enthalpy"); |
---|
141 | |
---|
142 | end |
---|
143 | |
---|
144 | Model Hairpin_PressureDrop |
---|
145 | |
---|
146 | ATTRIBUTES |
---|
147 | Pallete = false; |
---|
148 | Brief = "to be documented"; |
---|
149 | Info = |
---|
150 | "to be documented"; |
---|
151 | |
---|
152 | PARAMETERS |
---|
153 | |
---|
154 | Dh as length (Brief="Hydraulic Diameter of Pipe for Pressure Drop",Lower=1e-6); |
---|
155 | outer N as Integer (Brief="Number of zones", Default = 2); |
---|
156 | outer Npoints as Integer (Brief="Number of incremental points", Default = 3); |
---|
157 | |
---|
158 | VARIABLES |
---|
159 | |
---|
160 | Plocal(Npoints) as pressure (Brief="Incremental Local Pressure",Default=1, Lower=1e-10, Upper=2e4, DisplayUnit='kPa'); |
---|
161 | Pd_fric(Npoints) as press_delta (Brief="Incremental Pressure Drop for friction",Default=1e-3, Lower=0,DisplayUnit='kPa', Symbol ="\Delta P_{fric}"); |
---|
162 | fi(N) as fricfactor (Brief="Incremental Friction Factor", Default=0.05, Lower=1e-10, Upper=2000); |
---|
163 | Re(N) as positive (Brief="Incremental Reynolds Number",Default=100,Lower=1); |
---|
164 | |
---|
165 | end |
---|
166 | |
---|
167 | Model Main_Hairpin |
---|
168 | |
---|
169 | ATTRIBUTES |
---|
170 | Pallete = false; |
---|
171 | Brief = "to be documented"; |
---|
172 | Info = |
---|
173 | "to be documented"; |
---|
174 | |
---|
175 | VARIABLES |
---|
176 | |
---|
177 | HeatTransfer as Hairpin_HeatTransfer (Brief="Double Pipe Heat Transfer"); |
---|
178 | PressureDrop as Hairpin_PressureDrop (Brief="Double Pipe Pressure Drop"); |
---|
179 | Properties as Physical_Properties (Brief="Double Pipe Properties"); |
---|
180 | |
---|
181 | end |
---|
182 | |
---|
183 | Model Results_Hairpin |
---|
184 | |
---|
185 | ATTRIBUTES |
---|
186 | Pallete = false; |
---|
187 | Brief = "to be documented"; |
---|
188 | Info = |
---|
189 | "to be documented"; |
---|
190 | |
---|
191 | VARIABLES |
---|
192 | Pdnozzle_in as press_delta (Brief="Inlet Nozzle Pressure Drop",Default=0.01, Lower=1e-10,DisplayUnit='kPa'); |
---|
193 | Pdnozzle_out as press_delta (Brief="Outlet Nozzle Pressure Drop",Default=0.01, Lower=1e-10,DisplayUnit='kPa'); |
---|
194 | Pdrop as press_delta (Brief="Total Pressure Drop",Default=0.01, Lower=0,DisplayUnit='kPa', Symbol ="\Delta P"); |
---|
195 | Vnozzle_in as velocity (Brief="Inlet Nozzle Velocity",Default=1, Upper=1e5); |
---|
196 | Vnozzle_out as velocity (Brief="Outlet Nozzle Velocity",Default=1, Upper=1e5); |
---|
197 | RVsquare_in as positive (Brief ="Inlet Nozzle rho-V^2", Default=1, Upper=1e6, Unit = 'kg/s^2/m'); |
---|
198 | RVsquare_out as positive (Brief ="Outlet Nozzle rho-V^2", Default=1, Upper=1e6, Unit = 'kg/s^2/m'); |
---|
199 | hcoeff as heat_trans_coeff (Brief="Average Film Coefficient",Default=1,Lower=1e-12, Upper=1e6, DisplayUnit = 'W/m^2/K'); |
---|
200 | |
---|
201 | end |
---|
202 | |
---|
203 | Model Summary_Hairpin |
---|
204 | |
---|
205 | ATTRIBUTES |
---|
206 | Pallete = false; |
---|
207 | Brief = "to be documented"; |
---|
208 | Info = |
---|
209 | "to be documented"; |
---|
210 | |
---|
211 | VARIABLES |
---|
212 | A as area (Brief="Total Exchange Surface Area"); |
---|
213 | Qtotal as power (Brief="Total Duty", Default=7000, Lower=1e-8, Upper=1e10); |
---|
214 | Inner as Results_Hairpin (Brief="Inner Side Summary"); |
---|
215 | Outer as Results_Hairpin (Brief="Outer Side Summary"); |
---|
216 | |
---|
217 | end |
---|
218 | |
---|
219 | Model HairpinIncr_basic |
---|
220 | |
---|
221 | ATTRIBUTES |
---|
222 | Pallete = false; |
---|
223 | Brief = "Incremental Hairpin Heat Exchanger. "; |
---|
224 | Info = |
---|
225 | "Incremental approach for Hairpin heat exchanger. "; |
---|
226 | |
---|
227 | PARAMETERS |
---|
228 | |
---|
229 | outer PP as Plugin (Brief="External Physical Properties", Type="PP"); |
---|
230 | outer NComp as Integer (Brief="Number of Components"); |
---|
231 | outer N as Integer (Brief="Number of zones", Default = 2); |
---|
232 | outer Npoints as Integer (Brief="Number of incremental points", Default = 3); |
---|
233 | |
---|
234 | M(NComp) as molweight (Brief="Component Mol Weight"); |
---|
235 | |
---|
236 | HotSide as Switcher (Brief="Flag for Fluid Alocation ",Valid=["outer","inner"],Default="outer"); |
---|
237 | innerFlowRegime as Switcher (Brief="Inner Flow Regime ",Valid=["laminar","transition","turbulent"],Default="laminar"); |
---|
238 | outerFlowRegime as Switcher (Brief="Outer Flow Regime ",Valid=["laminar","transition","turbulent"],Default="laminar"); |
---|
239 | |
---|
240 | InnerLaminarCorrelation as Switcher (Brief="Heat Transfer Correlation in Laminar Flow for the Inner Side",Valid=["Hausen","Schlunder"],Default="Hausen"); |
---|
241 | InnerTransitionCorrelation as Switcher (Brief="Heat Transfer Correlation in Transition Flow for the Inner Side",Valid=["Gnielinski","Hausen"],Default="Gnielinski"); |
---|
242 | InnerTurbulentCorrelation as Switcher (Brief="Heat Transfer Correlation in Turbulent Flow for the Inner Side",Valid=["Petukhov","SiederTate"],Default="Petukhov"); |
---|
243 | |
---|
244 | OuterLaminarCorrelation as Switcher (Brief="Heat Transfer Correlation in Laminar Flow for the Outer Side",Valid=["Hausen","Schlunder"],Default="Hausen"); |
---|
245 | OuterTransitionCorrelation as Switcher (Brief="Heat Transfer Correlation in Transition Flow for the OuterSide",Valid=["Gnielinski","Hausen"],Default="Gnielinski"); |
---|
246 | OuterTurbulentCorrelation as Switcher (Brief="Heat Transfer Correlation in Turbulent Flow for the Outer Side",Valid=["Petukhov","SiederTate"],Default="Petukhov"); |
---|
247 | |
---|
248 | outer Pi as constant (Brief="Pi Number",Default=3.14159265, Symbol = "\pi"); |
---|
249 | outer DoInner as length (Brief="Outside Diameter of Inner Pipe",Lower=1e-6); |
---|
250 | outer DiInner as length (Brief="Inside Diameter of Inner Pipe",Lower=1e-10); |
---|
251 | outer DiOuter as length (Brief="Inside Diameter of Outer pipe",Lower=1e-10); |
---|
252 | outer Lpipe as length (Brief="Effective Tube Length of one segment of Pipe",Lower=0.1, Symbol = "L_{pipe}"); |
---|
253 | outer Kwall as conductivity (Brief="Tube Wall Material Thermal Conductivity",Default=1.0, Symbol = "K_{wall}"); |
---|
254 | outer Rfi as positive (Brief="Inside Fouling Resistance",Unit='m^2*K/kW',Default=1e-6,Lower=0); |
---|
255 | outer Rfo as positive (Brief="Outside Fouling Resistance",Unit='m^2*K/kW',Default=1e-6,Lower=0); |
---|
256 | |
---|
257 | VARIABLES |
---|
258 | |
---|
259 | in InletInner as stream (Brief="Inlet Inner Stream", PosX=0, PosY=0.5225, Symbol="_{inInner}"); |
---|
260 | in InletOuter as stream (Brief="Inlet Outer Stream", PosX=0.2805, PosY=0, Symbol="_{inOuter}"); |
---|
261 | |
---|
262 | out OutletInner as streamPH (Brief="Outlet Inner Stream", PosX=1, PosY=0.5225, Symbol="_{outInner}"); |
---|
263 | out OutletOuter as streamPH (Brief="Outlet Outer Stream", PosX=0.7264, PosY=1, Symbol="_{outOuter}"); |
---|
264 | |
---|
265 | Details as Details_Main (Brief="Some Details in the Heat Exchanger", Symbol=" "); |
---|
266 | Inner as Main_Hairpin (Brief="Inner Side of the Heat Exchanger", Symbol="_{Inner}"); |
---|
267 | Outer as Main_Hairpin (Brief="Outer Side of the Heat Exchanger", Symbol="_{Outer}"); |
---|
268 | |
---|
269 | Lincr(Npoints) as length (Brief = "Incremental Tube Length", Symbol = "L_{incr}"); |
---|
270 | |
---|
271 | SET |
---|
272 | |
---|
273 | #"Component Molecular Weight" |
---|
274 | M = PP.MolecularWeight(); |
---|
275 | |
---|
276 | #"Inner Pipe Cross Sectional Area for Flow" |
---|
277 | Inner.HeatTransfer.As=0.25*Pi*DiInner*DiInner; |
---|
278 | |
---|
279 | #"Outer Pipe Cross Sectional Area for Flow" |
---|
280 | Outer.HeatTransfer.As=0.25*Pi*(DiOuter*DiOuter - DoInner*DoInner); |
---|
281 | |
---|
282 | #"Inner Pipe Hydraulic Diameter for Heat Transfer" |
---|
283 | Inner.HeatTransfer.Dh=DiInner; |
---|
284 | |
---|
285 | #"Outer Pipe Hydraulic Diameter for Heat Transfer" |
---|
286 | Outer.HeatTransfer.Dh=(DiOuter*DiOuter-DoInner*DoInner)/DoInner; |
---|
287 | |
---|
288 | #"Inner Pipe Hydraulic Diameter for Pressure Drop" |
---|
289 | Inner.PressureDrop.Dh=DiInner; |
---|
290 | |
---|
291 | #"Outer Pipe Hydraulic Diameter for Pressure Drop" |
---|
292 | Outer.PressureDrop.Dh=DiOuter-DoInner; |
---|
293 | |
---|
294 | EQUATIONS |
---|
295 | |
---|
296 | "Outer Stream Average Temperature" |
---|
297 | Outer.Properties.Average.T(1:N) = 0.5*Outer.HeatTransfer.Tlocal(1:N) + 0.5*Outer.HeatTransfer.Tlocal(2:Npoints); |
---|
298 | |
---|
299 | "Inner Stream Average Temperature" |
---|
300 | Inner.Properties.Average.T(1:N) = 0.5*Inner.HeatTransfer.Tlocal(1:N) + 0.5*Inner.HeatTransfer.Tlocal(2:Npoints); |
---|
301 | |
---|
302 | "Outer Stream Average Pressure" |
---|
303 | Outer.Properties.Average.P(1:N) = 0.5*Outer.PressureDrop.Plocal(1:N) + 0.5*Outer.PressureDrop.Plocal(2:Npoints); |
---|
304 | |
---|
305 | "Inner Stream Average Pressure" |
---|
306 | Inner.Properties.Average.P(1:N) = 0.5*Inner.PressureDrop.Plocal(1:N) + 0.5*Inner.PressureDrop.Plocal(2:Npoints); |
---|
307 | |
---|
308 | "Inner Stream Wall Temperature" |
---|
309 | Inner.Properties.Wall.Twall = 0.5*Outer.Properties.Average.T + 0.5*Inner.Properties.Average.T; |
---|
310 | |
---|
311 | "Outer Stream Wall Temperature" |
---|
312 | Outer.Properties.Wall.Twall = 0.5*Outer.Properties.Average.T + 0.5*Inner.Properties.Average.T; |
---|
313 | |
---|
314 | "Outer Stream Average Molecular Weight" |
---|
315 | Outer.Properties.Average.Mw = sum(M*InletOuter.z); |
---|
316 | |
---|
317 | "Inner Stream Average Molecular Weight" |
---|
318 | Inner.Properties.Average.Mw = sum(M*InletInner.z); |
---|
319 | |
---|
320 | if InletInner.v equal 0 |
---|
321 | |
---|
322 | then |
---|
323 | "Inlet Mass Density Inner Stream" |
---|
324 | Inner.Properties.Inlet.rho = PP.LiquidDensity(InletInner.T,InletInner.P,InletInner.z); |
---|
325 | |
---|
326 | "Outlet Mass Density Inner Stream" |
---|
327 | Inner.Properties.Outlet.rho = PP.LiquidDensity(OutletInner.T,OutletInner.P,OutletInner.z); |
---|
328 | |
---|
329 | else |
---|
330 | "Inlet Mass Density Inner Stream" |
---|
331 | Inner.Properties.Inlet.rho = PP.VapourDensity(InletInner.T,InletInner.P,InletInner.z); |
---|
332 | |
---|
333 | "Outlet Mass Density Inner Stream" |
---|
334 | Inner.Properties.Outlet.rho = PP.VapourDensity(OutletInner.T,OutletInner.P,OutletInner.z); |
---|
335 | |
---|
336 | end |
---|
337 | |
---|
338 | if InletOuter.v equal 0 |
---|
339 | |
---|
340 | then |
---|
341 | "Inlet Mass Density Outer Stream" |
---|
342 | Outer.Properties.Inlet.rho = PP.LiquidDensity(InletOuter.T,InletOuter.P,InletOuter.z); |
---|
343 | |
---|
344 | "Outlet Mass Density Outer Stream" |
---|
345 | Outer.Properties.Outlet.rho = PP.LiquidDensity(OutletOuter.T,OutletOuter.P,OutletOuter.z); |
---|
346 | |
---|
347 | else |
---|
348 | "Inlet Mass Density Outer Stream" |
---|
349 | Outer.Properties.Inlet.rho = PP.VapourDensity(InletOuter.T,InletOuter.P,InletOuter.z); |
---|
350 | |
---|
351 | "Outlet Mass Density Outer Stream" |
---|
352 | Outer.Properties.Outlet.rho = PP.VapourDensity(OutletOuter.T,OutletOuter.P,OutletOuter.z); |
---|
353 | |
---|
354 | end |
---|
355 | |
---|
356 | for i in [1:N] |
---|
357 | |
---|
358 | if InletInner.v equal 0 |
---|
359 | |
---|
360 | then |
---|
361 | |
---|
362 | "Average Heat Capacity Inner Stream" |
---|
363 | Inner.Properties.Average.Cp(i) = PP.LiquidCp(Inner.Properties.Average.T(i),Inner.Properties.Average.P(i),InletInner.z); |
---|
364 | |
---|
365 | "Average Mass Density Inner Stream" |
---|
366 | Inner.Properties.Average.rho(i) = PP.LiquidDensity(Inner.Properties.Average.T(i),Inner.Properties.Average.P(i),InletInner.z); |
---|
367 | |
---|
368 | "Average Viscosity Inner Stream" |
---|
369 | Inner.Properties.Average.Mu(i) = PP.LiquidViscosity(Inner.Properties.Average.T(i),Inner.Properties.Average.P(i),InletInner.z); |
---|
370 | |
---|
371 | "Average Conductivity Inner Stream" |
---|
372 | Inner.Properties.Average.K(i) = PP.LiquidThermalConductivity(Inner.Properties.Average.T(i),Inner.Properties.Average.P(i),InletInner.z); |
---|
373 | |
---|
374 | "Viscosity Inner Stream at wall temperature" |
---|
375 | Inner.Properties.Wall.Mu(i) = PP.LiquidViscosity(Inner.Properties.Wall.Twall(i),Inner.Properties.Average.P(i),InletInner.z); |
---|
376 | |
---|
377 | else |
---|
378 | |
---|
379 | "Average Heat Capacity InnerStream" |
---|
380 | Inner.Properties.Average.Cp(i) = PP.VapourCp(Inner.Properties.Average.T(i),Inner.Properties.Average.P(i),InletInner.z); |
---|
381 | |
---|
382 | "Average Mass Density Inner Stream" |
---|
383 | Inner.Properties.Average.rho(i) = PP.VapourDensity(Inner.Properties.Average.T(i),Inner.Properties.Average.P(i),InletInner.z); |
---|
384 | |
---|
385 | "Average Viscosity Inner Stream" |
---|
386 | Inner.Properties.Average.Mu(i) = PP.VapourViscosity(Inner.Properties.Average.T(i),Inner.Properties.Average.P(i),InletInner.z); |
---|
387 | |
---|
388 | "Average Conductivity Inner Stream" |
---|
389 | Inner.Properties.Average.K(i) = PP.VapourThermalConductivity(Inner.Properties.Average.T(i),Inner.Properties.Average.P(i),InletInner.z); |
---|
390 | |
---|
391 | "Viscosity Inner Stream at wall temperature" |
---|
392 | Inner.Properties.Wall.Mu(i) = PP.VapourViscosity(Inner.Properties.Wall.Twall(i),Inner.Properties.Average.P(i),InletInner.z); |
---|
393 | |
---|
394 | end |
---|
395 | |
---|
396 | if InletOuter.v equal 0 |
---|
397 | |
---|
398 | then |
---|
399 | |
---|
400 | "Average Heat Capacity Outer Stream" |
---|
401 | Outer.Properties.Average.Cp(i) = PP.LiquidCp(Outer.Properties.Average.T(i),Outer.Properties.Average.P(i),InletOuter.z); |
---|
402 | |
---|
403 | "Average Mass Density Outer Stream" |
---|
404 | Outer.Properties.Average.rho(i) = PP.LiquidDensity(Outer.Properties.Average.T(i),Outer.Properties.Average.P(i),InletOuter.z); |
---|
405 | |
---|
406 | "Average Viscosity Outer Stream" |
---|
407 | Outer.Properties.Average.Mu(i) = PP.LiquidViscosity(Outer.Properties.Average.T(i),Outer.Properties.Average.P(i),InletOuter.z); |
---|
408 | |
---|
409 | "Average Conductivity Outer Stream" |
---|
410 | Outer.Properties.Average.K(i) = PP.LiquidThermalConductivity(Outer.Properties.Average.T(i),Outer.Properties.Average.P(i),InletOuter.z); |
---|
411 | |
---|
412 | "Viscosity Outer Stream at wall temperature" |
---|
413 | Outer.Properties.Wall.Mu(i) = PP.LiquidViscosity(Outer.Properties.Wall.Twall(i),Outer.Properties.Average.P(i),InletOuter.z); |
---|
414 | |
---|
415 | |
---|
416 | else |
---|
417 | |
---|
418 | "Average Heat Capacity Outer Stream" |
---|
419 | Outer.Properties.Average.Cp(i) = PP.VapourCp(Outer.Properties.Average.T(i),Outer.Properties.Average.P(i),InletOuter.z); |
---|
420 | |
---|
421 | "Average Mass Density Outer Stream" |
---|
422 | Outer.Properties.Average.rho(i) = PP.VapourDensity(Outer.Properties.Average.T(i),Outer.Properties.Average.P(i),InletOuter.z); |
---|
423 | |
---|
424 | "Average Viscosity Outer Stream" |
---|
425 | Outer.Properties.Average.Mu(i) = PP.VapourViscosity(Outer.Properties.Average.T(i),Outer.Properties.Average.P(i),InletOuter.z); |
---|
426 | |
---|
427 | "Average Conductivity Outer Stream" |
---|
428 | Outer.Properties.Average.K(i) = PP.VapourThermalConductivity(Outer.Properties.Average.T(i),Outer.Properties.Average.P(i),InletOuter.z); |
---|
429 | |
---|
430 | "Viscosity Outer Stream at wall temperature" |
---|
431 | Outer.Properties.Wall.Mu(i) = PP.VapourViscosity(Outer.Properties.Wall.Twall(i),Outer.Properties.Average.P(i),InletOuter.z); |
---|
432 | |
---|
433 | end |
---|
434 | |
---|
435 | end |
---|
436 | |
---|
437 | "Flow Mass Inlet Inner Stream" |
---|
438 | Inner.Properties.Inlet.Fw = sum(M*InletInner.z)*InletInner.F; |
---|
439 | |
---|
440 | "Flow Mass Outlet Inner Stream" |
---|
441 | Inner.Properties.Outlet.Fw = sum(M*OutletInner.z)*OutletInner.F; |
---|
442 | |
---|
443 | "Flow Mass Inlet Outer Stream" |
---|
444 | Outer.Properties.Inlet.Fw = sum(M*InletOuter.z)*InletOuter.F; |
---|
445 | |
---|
446 | "Flow Mass Outlet Outer Stream" |
---|
447 | Outer.Properties.Outlet.Fw = sum(M*OutletOuter.z)*OutletOuter.F; |
---|
448 | |
---|
449 | "Molar Balance Outer Stream" |
---|
450 | OutletOuter.F = InletOuter.F; |
---|
451 | |
---|
452 | "Molar Balance Inner Stream" |
---|
453 | OutletInner.F = InletInner.F; |
---|
454 | |
---|
455 | "Outer Stream Molar Fraction Constraint" |
---|
456 | OutletOuter.z=InletOuter.z; |
---|
457 | |
---|
458 | "InnerStream Molar Fraction Constraint" |
---|
459 | OutletInner.z=InletInner.z; |
---|
460 | |
---|
461 | "Total Exchange Surface Area for one segment of pipe" |
---|
462 | Details.A=Pi*DoInner*Lpipe; |
---|
463 | |
---|
464 | "Pipe Initial Length from Left to Right" |
---|
465 | Lincr(1) = 0*'m'; |
---|
466 | |
---|
467 | for i in [1:N] |
---|
468 | |
---|
469 | "Incremental Length" |
---|
470 | Lincr(i+1) = i*abs(Lpipe)/N; |
---|
471 | |
---|
472 | end |
---|
473 | |
---|
474 | for i in [1:N] |
---|
475 | |
---|
476 | switch innerFlowRegime |
---|
477 | |
---|
478 | case "laminar": |
---|
479 | |
---|
480 | "Inner Side Friction Factor for Pressure Drop - laminar Flow" |
---|
481 | Inner.PressureDrop.fi(i)*Inner.PressureDrop.Re(i) = 16; |
---|
482 | |
---|
483 | when Inner.PressureDrop.Re(i) > 2300 switchto "transition"; |
---|
484 | |
---|
485 | case "transition": |
---|
486 | |
---|
487 | "using Turbulent Flow - to be implemented" |
---|
488 | (Inner.PressureDrop.fi(i)-0.0035)*(Inner.PressureDrop.Re(i)^0.42) = 0.264; |
---|
489 | |
---|
490 | when Inner.PressureDrop.Re(i) < 2300 switchto "laminar"; |
---|
491 | when Inner.PressureDrop.Re(i) > 10000 switchto "turbulent"; |
---|
492 | |
---|
493 | case "turbulent": |
---|
494 | |
---|
495 | "Inner Side Friction Factor - Turbulent Flow" |
---|
496 | (Inner.PressureDrop.fi(i)-0.0035)*(Inner.PressureDrop.Re(i)^0.42) = 0.264; |
---|
497 | |
---|
498 | when Inner.PressureDrop.Re(i) < 10000 switchto "transition"; |
---|
499 | |
---|
500 | end |
---|
501 | |
---|
502 | end |
---|
503 | |
---|
504 | for i in [1:N] |
---|
505 | |
---|
506 | switch outerFlowRegime |
---|
507 | |
---|
508 | case "laminar": |
---|
509 | |
---|
510 | "Outer Side Friction Factor - laminar Flow" |
---|
511 | Outer.PressureDrop.fi(i)*Outer.PressureDrop.Re(i) = 16; |
---|
512 | |
---|
513 | when Outer.PressureDrop.Re(i) > 2300 switchto "transition"; |
---|
514 | |
---|
515 | case "transition": |
---|
516 | |
---|
517 | "using Turbulent Flow - Transition Flow must be implemented" |
---|
518 | (Outer.PressureDrop.fi(i)-0.0035)*(Outer.PressureDrop.Re(i)^0.42) = 0.264; |
---|
519 | |
---|
520 | when Outer.PressureDrop.Re(i) < 2300 switchto "laminar"; |
---|
521 | when Outer.PressureDrop.Re(i) > 10000 switchto "turbulent"; |
---|
522 | |
---|
523 | case "turbulent": |
---|
524 | |
---|
525 | "Outer Side Friction Factor - Turbulent Flow" |
---|
526 | (Outer.PressureDrop.fi(i)-0.0035)*(Outer.PressureDrop.Re(i)^0.42) = 0.264; |
---|
527 | |
---|
528 | when Outer.PressureDrop.Re(i) < 10000 switchto "transition"; |
---|
529 | |
---|
530 | end |
---|
531 | |
---|
532 | end |
---|
533 | |
---|
534 | for i in [1:N] |
---|
535 | |
---|
536 | switch innerFlowRegime |
---|
537 | |
---|
538 | case "laminar": |
---|
539 | |
---|
540 | "Inner Side Friction Factor for Heat Transfer - laminar Flow" |
---|
541 | Inner.HeatTransfer.fi(i) = 1/(0.79*ln(Inner.HeatTransfer.Re(i))-1.64)^2; |
---|
542 | |
---|
543 | switch InnerLaminarCorrelation |
---|
544 | |
---|
545 | case "Hausen": |
---|
546 | |
---|
547 | "Nusselt Number" |
---|
548 | Inner.HeatTransfer.Nu(i) = 3.665 + ((0.19*((DiInner/Lpipe)*Inner.HeatTransfer.Re(i)*Inner.HeatTransfer.PR(i))^0.8)/(1+0.117*((DiInner/Lpipe)*Inner.HeatTransfer.Re(i)*Inner.HeatTransfer.PR(i))^0.467)); |
---|
549 | |
---|
550 | case "Schlunder": |
---|
551 | |
---|
552 | "Nusselt Number" |
---|
553 | Inner.HeatTransfer.Nu(i) = (49.027896+4.173281*Inner.HeatTransfer.Re(i)*Inner.HeatTransfer.PR(i)*(DiInner/Lpipe))^(1/3); |
---|
554 | |
---|
555 | end |
---|
556 | |
---|
557 | when Inner.HeatTransfer.Re(i) > 2300 switchto "transition"; |
---|
558 | |
---|
559 | case "transition": |
---|
560 | |
---|
561 | "Inner Side Friction Factor for Heat Transfer - transition Flow" |
---|
562 | Inner.HeatTransfer.fi(i) = 1/(0.79*ln(Inner.HeatTransfer.Re(i))-1.64)^2; |
---|
563 | |
---|
564 | switch InnerTransitionCorrelation |
---|
565 | |
---|
566 | case "Gnielinski": |
---|
567 | |
---|
568 | "Nusselt Number" |
---|
569 | Inner.HeatTransfer.Nu(i)*(1+(12.7*sqrt(0.125*Inner.HeatTransfer.fi(i))*((Inner.HeatTransfer.PR(i))^(2/3) -1))) = 0.125*Inner.HeatTransfer.fi(i)*(Inner.HeatTransfer.Re(i)-1000)*Inner.HeatTransfer.PR(i); |
---|
570 | |
---|
571 | case "Hausen": |
---|
572 | |
---|
573 | "Nusselt Number" |
---|
574 | Inner.HeatTransfer.Nu(i) =0.116*(Inner.HeatTransfer.Re(i)^(0.667)-125)*Inner.HeatTransfer.PR(i)^(0.333)*(1+(DiInner/Lpipe)^0.667); |
---|
575 | |
---|
576 | end |
---|
577 | |
---|
578 | when Inner.HeatTransfer.Re(i) < 2300 switchto "laminar"; |
---|
579 | when Inner.HeatTransfer.Re(i) > 10000 switchto "turbulent"; |
---|
580 | |
---|
581 | case "turbulent": |
---|
582 | |
---|
583 | switch InnerTurbulentCorrelation |
---|
584 | |
---|
585 | case "Petukhov": |
---|
586 | |
---|
587 | "Inner Side Friction Factor for Heat Transfer - turbulent Flow" |
---|
588 | Inner.HeatTransfer.fi(i) = 1/(1.82*log(Inner.HeatTransfer.Re(i))-1.64)^2; |
---|
589 | |
---|
590 | "Nusselt Number" |
---|
591 | Inner.HeatTransfer.Nu(i)*(1.07+(12.7*sqrt(0.125*Inner.HeatTransfer.fi(i))*((Inner.HeatTransfer.PR(i))^(2/3) -1))) = 0.125*Inner.HeatTransfer.fi(i)*Inner.HeatTransfer.Re(i)*Inner.HeatTransfer.PR(i); |
---|
592 | |
---|
593 | case "SiederTate": |
---|
594 | |
---|
595 | "Nusselt Number" |
---|
596 | Inner.HeatTransfer.Nu(i) = 0.027*(Inner.HeatTransfer.PR(i))^(1/3)*(Inner.HeatTransfer.Re(i))^(4/5); |
---|
597 | |
---|
598 | "Inner Side Friction Factor for Heat Transfer - turbulent Flow" |
---|
599 | Inner.HeatTransfer.fi(i) = 1/(1.82*log(Inner.HeatTransfer.Re(i))-1.64)^2; |
---|
600 | |
---|
601 | end |
---|
602 | |
---|
603 | when Inner.HeatTransfer.Re(i) < 10000 switchto "transition"; |
---|
604 | |
---|
605 | end |
---|
606 | |
---|
607 | end |
---|
608 | |
---|
609 | for i in [1:N] |
---|
610 | |
---|
611 | switch outerFlowRegime |
---|
612 | |
---|
613 | case "laminar": |
---|
614 | |
---|
615 | "Outer Side Friction Factor for Heat Transfer - laminar Flow" |
---|
616 | Outer.HeatTransfer.fi(i) = 1/(0.79*ln(Outer.HeatTransfer.Re(i))-1.64)^2; |
---|
617 | |
---|
618 | switch OuterLaminarCorrelation |
---|
619 | |
---|
620 | case "Hausen": |
---|
621 | |
---|
622 | "Nusselt Number" |
---|
623 | Outer.HeatTransfer.Nu(i) = 3.665 + ((0.19*((Outer.HeatTransfer.Dh/Lpipe)*Outer.HeatTransfer.Re(i)*Outer.HeatTransfer.PR(i))^0.8)/(1+0.117*((Outer.HeatTransfer.Dh/Lpipe)*Outer.HeatTransfer.Re(i)*Outer.HeatTransfer.PR(i))^0.467)); |
---|
624 | |
---|
625 | case "Schlunder": |
---|
626 | |
---|
627 | "Nusselt Number" |
---|
628 | Outer.HeatTransfer.Nu(i) = (49.027896+4.173281*Outer.HeatTransfer.Re(i)*Outer.HeatTransfer.PR(i)*(Outer.HeatTransfer.Dh/Lpipe))^(1/3); |
---|
629 | |
---|
630 | end |
---|
631 | |
---|
632 | when Outer.HeatTransfer.Re(i) > 2300 switchto "transition"; |
---|
633 | |
---|
634 | case "transition": |
---|
635 | |
---|
636 | switch OuterTransitionCorrelation |
---|
637 | |
---|
638 | case "Gnielinski": |
---|
639 | |
---|
640 | "Outer Side Friction Factor for Heat Transfer - transition Flow" |
---|
641 | Outer.HeatTransfer.fi(i) = 1/(0.79*ln(Outer.HeatTransfer.Re(i))-1.64)^2; |
---|
642 | |
---|
643 | "Nusselt Number" |
---|
644 | Outer.HeatTransfer.Nu(i)*(1+(12.7*sqrt(0.125*Outer.HeatTransfer.fi(i))*((Outer.HeatTransfer.PR(i))^(2/3) -1))) = 0.125*Outer.HeatTransfer.fi(i)*(Outer.HeatTransfer.Re(i)-1000)*Outer.HeatTransfer.PR(i); |
---|
645 | |
---|
646 | case "Hausen": |
---|
647 | |
---|
648 | "Nusselt Number" |
---|
649 | Outer.HeatTransfer.Nu(i) = 0.116*(Outer.HeatTransfer.Re(i)^(0.667)-125)*Outer.HeatTransfer.PR(i)^(0.333)*(1+(Outer.HeatTransfer.Dh/Lpipe)^0.667); |
---|
650 | |
---|
651 | "Outer Side Friction Factor for Heat Transfer - transition Flow" |
---|
652 | Outer.HeatTransfer.fi(i) = 1/(0.79*ln(Outer.HeatTransfer.Re(i))-1.64)^2; |
---|
653 | |
---|
654 | end |
---|
655 | |
---|
656 | when Outer.HeatTransfer.Re(i) < 2300 switchto "laminar"; |
---|
657 | when Outer.HeatTransfer.Re(i) > 10000 switchto "turbulent"; |
---|
658 | |
---|
659 | case "turbulent": |
---|
660 | |
---|
661 | switch OuterTurbulentCorrelation |
---|
662 | |
---|
663 | case "Petukhov": |
---|
664 | |
---|
665 | "Outer Side Friction Factor for Heat Transfer - turbulent Flow" |
---|
666 | Outer.HeatTransfer.fi(i) = 1/(1.82*log(Outer.HeatTransfer.Re(i))-1.64)^2; |
---|
667 | |
---|
668 | "Nusselt Number" |
---|
669 | Outer.HeatTransfer.Nu(i)*(1.07+(12.7*sqrt(0.125*Outer.HeatTransfer.fi(i))*((Outer.HeatTransfer.PR(i))^(2/3) -1))) = 0.125*Outer.HeatTransfer.fi(i)*Outer.HeatTransfer.Re(i)*Outer.HeatTransfer.PR(i); |
---|
670 | |
---|
671 | case "SiederTate": |
---|
672 | |
---|
673 | "Nusselt Number" |
---|
674 | Outer.HeatTransfer.Nu(i) = 0.027*(Outer.HeatTransfer.PR(i))^(1/3)*(Outer.HeatTransfer.Re(i))^(4/5); |
---|
675 | |
---|
676 | "Outer Side Friction Factor for Heat Transfer - turbulent Flow" |
---|
677 | Outer.HeatTransfer.fi(i) = 1/(1.82*log(Outer.HeatTransfer.Re(i))-1.64)^2; |
---|
678 | |
---|
679 | end |
---|
680 | |
---|
681 | when Outer.HeatTransfer.Re(i) < 10000 switchto "transition"; |
---|
682 | |
---|
683 | end |
---|
684 | |
---|
685 | end |
---|
686 | |
---|
687 | for i in [2:N] |
---|
688 | |
---|
689 | "Incremental Enthalpy Inner Stream" |
---|
690 | Inner.HeatTransfer.Enth(i) = (1-InletInner.v)*PP.LiquidEnthalpy(Inner.HeatTransfer.Tlocal(i), Inner.PressureDrop.Plocal(i), InletInner.z) + InletInner.v*PP.VapourEnthalpy(Inner.HeatTransfer.Tlocal(i), Inner.PressureDrop.Plocal(i), InletInner.z); |
---|
691 | |
---|
692 | "Incremental Enthalpy Outer Stream" |
---|
693 | Outer.HeatTransfer.Enth(i) = (1-InletOuter.v)*PP.LiquidEnthalpy(Outer.HeatTransfer.Tlocal(i), Outer.PressureDrop.Plocal(i), InletOuter.z) + InletOuter.v*PP.VapourEnthalpy(Outer.HeatTransfer.Tlocal(i), Outer.PressureDrop.Plocal(i), InletOuter.z); |
---|
694 | |
---|
695 | end |
---|
696 | |
---|
697 | "Inner Pipe Film Coefficient" |
---|
698 | Inner.HeatTransfer.hcoeff = (Inner.HeatTransfer.Nu*Inner.Properties.Average.K/DiInner)*Inner.HeatTransfer.Phi; |
---|
699 | |
---|
700 | "Outer Pipe Film Coefficient" |
---|
701 | Outer.HeatTransfer.hcoeff= (Outer.HeatTransfer.Nu*Outer.Properties.Average.K/Outer.HeatTransfer.Dh)*Outer.HeatTransfer.Phi; |
---|
702 | |
---|
703 | "Outer Pipe Phi correction" |
---|
704 | Outer.HeatTransfer.Phi = (Outer.Properties.Average.Mu/Outer.Properties.Wall.Mu)^0.14; |
---|
705 | |
---|
706 | "Inner Pipe Phi correction" |
---|
707 | Inner.HeatTransfer.Phi = (Inner.Properties.Average.Mu/Inner.Properties.Wall.Mu)^0.14; |
---|
708 | |
---|
709 | "Outer Pipe Prandtl Number" |
---|
710 | Outer.HeatTransfer.PR = ((Outer.Properties.Average.Cp/Outer.Properties.Average.Mw)*Outer.Properties.Average.Mu)/Outer.Properties.Average.K; |
---|
711 | |
---|
712 | "Inner Pipe Prandtl Number" |
---|
713 | Inner.HeatTransfer.PR = ((Inner.Properties.Average.Cp/Inner.Properties.Average.Mw)*Inner.Properties.Average.Mu)/Inner.Properties.Average.K; |
---|
714 | |
---|
715 | "Outer Pipe Reynolds Number for Heat Transfer" |
---|
716 | Outer.HeatTransfer.Re = (Outer.Properties.Average.rho*Outer.HeatTransfer.Vmean*Outer.HeatTransfer.Dh)/Outer.Properties.Average.Mu; |
---|
717 | |
---|
718 | "Outer Pipe Reynolds Number for Pressure Drop" |
---|
719 | Outer.PressureDrop.Re = (Outer.Properties.Average.rho*Outer.HeatTransfer.Vmean*Outer.PressureDrop.Dh)/Outer.Properties.Average.Mu; |
---|
720 | |
---|
721 | "Inner Pipe Reynolds Number for Heat Transfer" |
---|
722 | Inner.HeatTransfer.Re = (Inner.Properties.Average.rho*Inner.HeatTransfer.Vmean*Inner.HeatTransfer.Dh)/Inner.Properties.Average.Mu; |
---|
723 | |
---|
724 | "Inner Pipe Reynolds Number for Pressure Drop" |
---|
725 | Inner.PressureDrop.Re = Inner.HeatTransfer.Re; |
---|
726 | |
---|
727 | "Outer Pipe Velocity" |
---|
728 | Outer.HeatTransfer.Vmean*(Outer.HeatTransfer.As*Outer.Properties.Average.rho) = Outer.Properties.Inlet.Fw; |
---|
729 | |
---|
730 | "Inner Pipe Velocity" |
---|
731 | Inner.HeatTransfer.Vmean*(Inner.HeatTransfer.As*Inner.Properties.Average.rho) = Inner.Properties.Inlet.Fw; |
---|
732 | |
---|
733 | "Average Overall Heat Transfer Coefficient Clean" |
---|
734 | Details.Uc*((DoInner/(sum(Inner.HeatTransfer.hcoeff)/N*DiInner) )+(DoInner*ln(DoInner/DiInner)/(2*Kwall))+(1/(sum(Outer.HeatTransfer.hcoeff)/N)))=1; |
---|
735 | |
---|
736 | "Overall Heat Transfer Coefficient Dirty" |
---|
737 | Details.Ud=1/(Rfi*(DoInner/DiInner) + Rfo + (DoInner/(Inner.HeatTransfer.hcoeff*DiInner) )+(DoInner*ln(DoInner/DiInner)/(2*Kwall))+(1/(Outer.HeatTransfer.hcoeff))); |
---|
738 | |
---|
739 | "Total Duty" |
---|
740 | Details.Qtotal = sum(Details.Q); |
---|
741 | |
---|
742 | end |
---|
743 | |
---|
744 | Model UpperPipe_basic as HairpinIncr_basic |
---|
745 | |
---|
746 | ATTRIBUTES |
---|
747 | Pallete = false; |
---|
748 | Brief = "Incremental Hairpin Heat Exchanger. "; |
---|
749 | Info = |
---|
750 | "Incremental approach for Hairpin heat exchanger. "; |
---|
751 | |
---|
752 | PARAMETERS |
---|
753 | |
---|
754 | outer PP as Plugin (Brief="External Physical Properties", Type="PP"); |
---|
755 | outer NComp as Integer (Brief="Number of Components"); |
---|
756 | |
---|
757 | outer Pi as constant (Brief="Pi Number",Default=3.14159265, Symbol = "\pi"); |
---|
758 | outer N as Integer (Brief="Number of zones", Default = 2); |
---|
759 | outer Npoints as Integer (Brief="Number of incremental points", Default = 3); |
---|
760 | |
---|
761 | outer DoInner as length (Brief="Outside Diameter of Inner Pipe",Lower=1e-6); |
---|
762 | outer DiInner as length (Brief="Inside Diameter of Inner Pipe",Lower=1e-10); |
---|
763 | outer DiOuter as length (Brief="Inside Diameter of Outer pipe",Lower=1e-10); |
---|
764 | outer Lpipe as length (Brief="Effective Tube Length of one segment of Pipe",Lower=0.1, Symbol = "L_{pipe}"); |
---|
765 | outer Kwall as conductivity (Brief="Tube Wall Material Thermal Conductivity",Default=1.0, Symbol = "K_{wall}"); |
---|
766 | outer Rfi as positive (Brief="Inside Fouling Resistance",Unit='m^2*K/kW',Default=1e-6,Lower=0); |
---|
767 | outer Rfo as positive (Brief="Outside Fouling Resistance",Unit='m^2*K/kW',Default=1e-6,Lower=0); |
---|
768 | |
---|
769 | EQUATIONS |
---|
770 | |
---|
771 | switch HotSide |
---|
772 | |
---|
773 | case "outer": |
---|
774 | |
---|
775 | "Energy Balance Outer Stream" |
---|
776 | Details.Q(1:N) = InletOuter.F*(Outer.HeatTransfer.Enth(2:Npoints) - Outer.HeatTransfer.Enth(1:N)); |
---|
777 | |
---|
778 | "Energy Balance Inner Stream" |
---|
779 | Details.Q(1:N) = -InletInner.F*(Inner.HeatTransfer.Enth(1:N) - Inner.HeatTransfer.Enth(2:Npoints)); |
---|
780 | |
---|
781 | "Incremental Duty" |
---|
782 | Details.Q = Details.Ud*Pi*DoInner*(Lpipe/N)*(Outer.Properties.Average.T - Inner.Properties.Average.T); |
---|
783 | |
---|
784 | when InletInner.T > InletOuter.T switchto "inner"; |
---|
785 | |
---|
786 | case "inner": |
---|
787 | |
---|
788 | "Energy Balance Hot Stream" |
---|
789 | Details.Q(1:N) = InletInner.F*(Inner.HeatTransfer.Enth(1:N)-Inner.HeatTransfer.Enth(2:Npoints)); |
---|
790 | |
---|
791 | "Energy Balance Cold Stream" |
---|
792 | Details.Q(1:N) = -InletOuter.F*(Outer.HeatTransfer.Enth(2:Npoints) - Outer.HeatTransfer.Enth(1:N)); |
---|
793 | |
---|
794 | "Incremental Duty" |
---|
795 | Details.Q = Details.Ud*Pi*DoInner*(Lpipe/N)*(Inner.Properties.Average.T - Outer.Properties.Average.T); |
---|
796 | |
---|
797 | when InletInner.T < InletOuter.T switchto "outer"; |
---|
798 | |
---|
799 | end |
---|
800 | |
---|
801 | "Enthalpy of Inner Side - Inlet Boundary" |
---|
802 | Inner.HeatTransfer.Enth(1) = InletInner.h; |
---|
803 | |
---|
804 | "Enthalpy of inner Side - Outlet Boundary" |
---|
805 | Inner.HeatTransfer.Enth(Npoints) = OutletInner.h; |
---|
806 | |
---|
807 | "Temperature of Inner Side - Inlet Boundary" |
---|
808 | Inner.HeatTransfer.Tlocal(1) = InletInner.T; |
---|
809 | |
---|
810 | "Temperature of Inner Side - Outlet Boundary" |
---|
811 | Inner.HeatTransfer.Tlocal(Npoints) = OutletInner.T; |
---|
812 | |
---|
813 | "Pressure of Inner Side - Inlet Boundary" |
---|
814 | Inner.PressureDrop.Plocal(1) = InletInner.P; |
---|
815 | |
---|
816 | "Pressure of Inner Side - Outlet Boundary" |
---|
817 | Inner.PressureDrop.Plocal(Npoints) = OutletInner.P; |
---|
818 | |
---|
819 | "Enthalpy of Outer Side - Inlet Boundary" |
---|
820 | Outer.HeatTransfer.Enth(Npoints) = InletOuter.h; |
---|
821 | |
---|
822 | "Enthalpy of Outer Side - Outlet Boundary" |
---|
823 | Outer.HeatTransfer.Enth(1) = OutletOuter.h; |
---|
824 | |
---|
825 | "Temperature of Outer Side - Inlet Boundary" |
---|
826 | Outer.HeatTransfer.Tlocal(Npoints) = InletOuter.T; |
---|
827 | |
---|
828 | "Temperature of Outer Side - Outlet Boundary" |
---|
829 | Outer.HeatTransfer.Tlocal(1) = OutletOuter.T; |
---|
830 | |
---|
831 | "Pressure of Outer Side - Inlet Boundary" |
---|
832 | Outer.PressureDrop.Plocal(Npoints) = InletOuter.P; |
---|
833 | |
---|
834 | "Pressure of Outer Side - Outlet Boundary" |
---|
835 | Outer.PressureDrop.Plocal(1) = OutletOuter.P; |
---|
836 | |
---|
837 | for i in [1:N] |
---|
838 | |
---|
839 | "Outer Pipe Pressure Drop for friction" |
---|
840 | Outer.PressureDrop.Pd_fric(i) = (2*Outer.PressureDrop.fi(i)*Lincr(1+Npoints-i)*Outer.Properties.Average.rho(i)*Outer.HeatTransfer.Vmean(i)^2)/(Outer.PressureDrop.Dh*Outer.HeatTransfer.Phi(i)); |
---|
841 | |
---|
842 | end |
---|
843 | |
---|
844 | "Outer Pipe Pressure Drop for friction" |
---|
845 | Outer.PressureDrop.Pd_fric(Npoints) = 0*'kPa'; |
---|
846 | |
---|
847 | "Inner Pipe Pressure Drop for friction" |
---|
848 | Inner.PressureDrop.Pd_fric(2:Npoints) = (2*Inner.PressureDrop.fi*Lincr(2:Npoints)*Inner.Properties.Average.rho*Inner.HeatTransfer.Vmean^2)/(DiInner*Inner.HeatTransfer.Phi); |
---|
849 | |
---|
850 | "Inner Pipe Pressure Drop for friction" |
---|
851 | Inner.PressureDrop.Pd_fric(1) = 0*'kPa'; |
---|
852 | |
---|
853 | end |
---|
854 | |
---|
855 | Model LowerPipe_basic as HairpinIncr_basic |
---|
856 | |
---|
857 | ATTRIBUTES |
---|
858 | Pallete = false; |
---|
859 | Brief = "Incremental Hairpin Heat Exchanger. "; |
---|
860 | Info = |
---|
861 | "Incremental approach for Hairpin heat exchanger. "; |
---|
862 | |
---|
863 | PARAMETERS |
---|
864 | |
---|
865 | outer PP as Plugin (Brief="External Physical Properties", Type="PP"); |
---|
866 | outer NComp as Integer (Brief="Number of Components"); |
---|
867 | |
---|
868 | outer Pi as constant (Brief="Pi Number",Default=3.14159265, Symbol = "\pi"); |
---|
869 | outer N as Integer (Brief="Number of zones", Default = 2); |
---|
870 | outer Npoints as Integer (Brief="Number of incremental points", Default = 3); |
---|
871 | |
---|
872 | |
---|
873 | outer DoInner as length (Brief="Outside Diameter of Inner Pipe",Lower=1e-6); |
---|
874 | outer DiInner as length (Brief="Inside Diameter of Inner Pipe",Lower=1e-10); |
---|
875 | outer DiOuter as length (Brief="Inside Diameter of Outer pipe",Lower=1e-10); |
---|
876 | outer Lpipe as length (Brief="Effective Tube Length of one segment of Pipe",Lower=0.1, Symbol = "L_{pipe}"); |
---|
877 | outer Kwall as conductivity (Brief="Tube Wall Material Thermal Conductivity",Default=1.0, Symbol = "K_{wall}"); |
---|
878 | outer Rfi as positive (Brief="Inside Fouling Resistance",Unit='m^2*K/kW',Default=1e-6,Lower=0); |
---|
879 | outer Rfo as positive (Brief="Outside Fouling Resistance",Unit='m^2*K/kW',Default=1e-6,Lower=0); |
---|
880 | |
---|
881 | EQUATIONS |
---|
882 | |
---|
883 | switch HotSide |
---|
884 | |
---|
885 | case "outer": |
---|
886 | |
---|
887 | "Energy Balance Outer Stream in counter flow" |
---|
888 | Details.Q(1:N) = InletOuter.F*(Outer.HeatTransfer.Enth(1:N) - Outer.HeatTransfer.Enth(2:Npoints)); |
---|
889 | |
---|
890 | "Energy Balance Inner Stream" |
---|
891 | Details.Q(1:N) = -InletInner.F*(Inner.HeatTransfer.Enth(2:Npoints) - Inner.HeatTransfer.Enth(1:N)); |
---|
892 | |
---|
893 | "Incremental Duty" |
---|
894 | Details.Q = Details.Ud*Pi*DoInner*(Lpipe/N)*(Outer.Properties.Average.T - Inner.Properties.Average.T); |
---|
895 | #Details.Q = 0.6; |
---|
896 | |
---|
897 | when InletInner.T > InletOuter.T switchto "inner"; |
---|
898 | |
---|
899 | case "inner": |
---|
900 | |
---|
901 | "Energy Balance Hot Stream" |
---|
902 | Details.Q(1:N) = InletInner.F*(Inner.HeatTransfer.Enth(2:Npoints)-Inner.HeatTransfer.Enth(1:N)); |
---|
903 | |
---|
904 | "Energy Balance Cold Stream in counter flow" |
---|
905 | Details.Q(1:N) = -InletOuter.F*(Outer.HeatTransfer.Enth(1:N) - Outer.HeatTransfer.Enth(2:Npoints)); |
---|
906 | |
---|
907 | "Incremental Duty" |
---|
908 | Details.Q = Details.Ud*Pi*DoInner*(Lpipe/N)*(Inner.Properties.Average.T - Outer.Properties.Average.T); |
---|
909 | |
---|
910 | when InletInner.T < InletOuter.T switchto "outer"; |
---|
911 | |
---|
912 | end |
---|
913 | |
---|
914 | "Enthalpy of Outer Side - Inlet Boundary" |
---|
915 | Outer.HeatTransfer.Enth(1) = InletOuter.h; |
---|
916 | |
---|
917 | "Enthalpy of Outer Side - Outlet Boundary" |
---|
918 | Outer.HeatTransfer.Enth(Npoints) = OutletOuter.h; |
---|
919 | |
---|
920 | "Temperature of OuterSide - Inlet Boundary" |
---|
921 | Outer.HeatTransfer.Tlocal(1) = InletOuter.T; |
---|
922 | |
---|
923 | "Temperature of Outer Side - Outlet Boundary" |
---|
924 | Outer.HeatTransfer.Tlocal(Npoints) = OutletOuter.T; |
---|
925 | |
---|
926 | "Pressure of Outer Side - Inlet Boundary" |
---|
927 | Outer.PressureDrop.Plocal(1) = InletOuter.P; |
---|
928 | |
---|
929 | "Pressure of Outer Side - Outlet Boundary" |
---|
930 | Outer.PressureDrop.Plocal(Npoints) = OutletOuter.P; |
---|
931 | |
---|
932 | "Enthalpy of Inner Side - Inlet Boundary" |
---|
933 | Inner.HeatTransfer.Enth(Npoints) = InletInner.h; |
---|
934 | |
---|
935 | "Enthalpy of Inner Side - Outlet Boundary" |
---|
936 | Inner.HeatTransfer.Enth(1) = OutletInner.h; |
---|
937 | |
---|
938 | "Temperature of Inner Side - Inlet Boundary" |
---|
939 | Inner.HeatTransfer.Tlocal(Npoints) = InletInner.T; |
---|
940 | |
---|
941 | "Temperature of Inner Side - Outlet Boundary" |
---|
942 | Inner.HeatTransfer.Tlocal(1) = OutletInner.T; |
---|
943 | |
---|
944 | "Pressure of Inner Side - Inlet Boundary" |
---|
945 | Inner.PressureDrop.Plocal(Npoints) = InletInner.P; |
---|
946 | |
---|
947 | "Pressure of Inner Side - Outlet Boundary" |
---|
948 | Inner.PressureDrop.Plocal(1) = OutletInner.P; |
---|
949 | |
---|
950 | for i in [1:N] |
---|
951 | |
---|
952 | "Inner Pipe Pressure Drop for friction" |
---|
953 | Inner.PressureDrop.Pd_fric(i) = (2*Inner.PressureDrop.fi(i)*Lincr(1+Npoints-i)*Inner.Properties.Average.rho(i)*Inner.HeatTransfer.Vmean(i)^2)/(DiInner*Inner.HeatTransfer.Phi(i)); |
---|
954 | |
---|
955 | end |
---|
956 | |
---|
957 | "Inner Pipe Pressure Drop for friction" |
---|
958 | Inner.PressureDrop.Pd_fric(Npoints) = 0*'kPa'; |
---|
959 | |
---|
960 | "Outer Pipe Pressure Drop for friction" |
---|
961 | Outer.PressureDrop.Pd_fric(2:Npoints) = (2*Outer.PressureDrop.fi*Lincr(2:Npoints)*Outer.Properties.Average.rho*Outer.HeatTransfer.Vmean^2)/(Outer.PressureDrop.Dh*Outer.HeatTransfer.Phi); |
---|
962 | |
---|
963 | "Outer Pipe Pressure Drop for friction" |
---|
964 | Outer.PressureDrop.Pd_fric(1) = 0*'kPa'; |
---|
965 | |
---|
966 | end |
---|
967 | |
---|
968 | Model HairpinIncr |
---|
969 | |
---|
970 | ATTRIBUTES |
---|
971 | Pallete = true; |
---|
972 | Icon = "icon/hairpin"; |
---|
973 | Brief = "Incremental Hairpin Heat Exchanger. "; |
---|
974 | Info = |
---|
975 | "Incremental approach for Hairpin heat exchanger. |
---|
976 | OBS: LEFT = 0 e N = N, RIGTH= L e N=1 |
---|
977 | "; |
---|
978 | |
---|
979 | PARAMETERS |
---|
980 | |
---|
981 | outer PP as Plugin (Brief="External Physical Properties", Type="PP"); |
---|
982 | outer NComp as Integer (Brief="Number of Components"); |
---|
983 | Pi as constant (Brief="Pi Number",Default=3.14159265, Symbol = "\pi"); |
---|
984 | N as Integer (Brief="Number of zones", Default = 2); |
---|
985 | Npoints as Integer (Brief="Number of incremental points", Default = 3); |
---|
986 | |
---|
987 | DoInner as length (Brief="Outside Diameter of Inner Pipe",Lower=1e-6); |
---|
988 | DiInner as length (Brief="Inside Diameter of Inner Pipe",Lower=1e-10); |
---|
989 | DiOuter as length (Brief="Inside Diameter of Outer pipe",Lower=1e-10); |
---|
990 | Lpipe as length (Brief="Effective Tube Length of one segment of Pipe",Lower=0.1, Symbol = "L_{pipe}"); |
---|
991 | Kwall as conductivity (Brief="Tube Wall Material Thermal Conductivity",Default=1.0, Symbol = "K_{wall}"); |
---|
992 | Rfi as positive (Brief="Inside Fouling Resistance",Unit='m^2*K/kW',Default=1e-6,Lower=0); |
---|
993 | Rfo as positive (Brief="Outside Fouling Resistance",Unit='m^2*K/kW',Default=1e-6,Lower=0); |
---|
994 | |
---|
995 | Donozzle_Inner as length (Brief="Inner Side Outlet Nozzle Diameter",Default = 0.036,Lower=1e-6); |
---|
996 | Dinozzle_Inner as length (Brief="Inner Side Inlet Nozzle Diameter",Default = 0.036,Lower=1e-6); |
---|
997 | |
---|
998 | Donozzle_Outer as length (Brief="Outer Side Outlet Nozzle Diameter",Default = 0.036,Lower=1e-6); |
---|
999 | Dinozzle_Outer as length (Brief="Outer Side Inlet Nozzle Diameter",Default = 0.036,Lower=1e-6); |
---|
1000 | |
---|
1001 | InnerKinlet as positive (Brief="Inner Side Inlet Nozzle Pressure Loss Coeff",Default=1.1); |
---|
1002 | InnerKoutlet as positive (Brief="Inner Side Outlet Nozzle Pressure Loss Coeff",Default=0.7); |
---|
1003 | OuterKinlet as positive (Brief="Outer Side Inlet Nozzle Pressure Loss Coeff",Default=1.1); |
---|
1004 | OuterKoutlet as positive (Brief="Outer Side Outlet Nozzle Pressure Loss Coeff",Default=0.7); |
---|
1005 | |
---|
1006 | SET |
---|
1007 | |
---|
1008 | #"Pi Number" |
---|
1009 | Pi = 3.14159265; |
---|
1010 | |
---|
1011 | #"Number of incremental points" |
---|
1012 | Npoints = N+1; |
---|
1013 | |
---|
1014 | VARIABLES |
---|
1015 | |
---|
1016 | Summary as Summary_Hairpin (Brief="Results for The Whole Heat Exchanger"); |
---|
1017 | |
---|
1018 | UpperPipe as UpperPipe_basic (Brief="Upper Pipe Results"); |
---|
1019 | LowerPipe as LowerPipe_basic (Brief="Lower Pipe Results"); |
---|
1020 | |
---|
1021 | CONNECTIONS |
---|
1022 | |
---|
1023 | LowerPipe.OutletInner to UpperPipe.InletInner; |
---|
1024 | UpperPipe.OutletOuter to LowerPipe.InletOuter; |
---|
1025 | |
---|
1026 | EQUATIONS |
---|
1027 | |
---|
1028 | "Total Exchange Surface Area" |
---|
1029 | Summary.A = LowerPipe.Details.A+UpperPipe.Details.A; |
---|
1030 | |
---|
1031 | "Total Duty" |
---|
1032 | Summary.Qtotal = LowerPipe.Details.Qtotal+UpperPipe.Details.Qtotal; |
---|
1033 | |
---|
1034 | "Total Pressure Drop Inner Side" |
---|
1035 | Summary.Inner.Pdrop = Summary.Inner.Pdnozzle_in+Summary.Inner.Pdnozzle_out+LowerPipe.Inner.PressureDrop.Pd_fric(1) |
---|
1036 | +UpperPipe.Inner.PressureDrop.Pd_fric(Npoints); |
---|
1037 | |
---|
1038 | "Total Pressure Drop Outer Side" |
---|
1039 | Summary.Outer.Pdrop = Summary.Outer.Pdnozzle_in+Summary.Outer.Pdnozzle_out+LowerPipe.Outer.PressureDrop.Pd_fric(Npoints) |
---|
1040 | +UpperPipe.Outer.PressureDrop.Pd_fric(1); |
---|
1041 | |
---|
1042 | for i in [1:N] |
---|
1043 | |
---|
1044 | "Outer Pipe Local Pressure"# FIXME: NOZZLE PRESSURE DROP MUST BE ADDED |
---|
1045 | UpperPipe.Outer.PressureDrop.Plocal(i) = UpperPipe.Outer.PressureDrop.Plocal(Npoints) - UpperPipe.Outer.PressureDrop.Pd_fric(i); |
---|
1046 | |
---|
1047 | "Inner Pipe Local Pressure"# FIXME: NOZZLE PRESSURE DROP MUST BE ADDED |
---|
1048 | UpperPipe.Inner.PressureDrop.Plocal(i+1) = UpperPipe.Inner.PressureDrop.Plocal(1) - UpperPipe.Inner.PressureDrop.Pd_fric(i+1); |
---|
1049 | |
---|
1050 | "Inner Pipe Local Pressure"# FIXME: NOZZLE PRESSURE DROP MUST BE ADDED |
---|
1051 | LowerPipe.Inner.PressureDrop.Plocal(i) = LowerPipe.Inner.PressureDrop.Plocal(Npoints) - LowerPipe.Inner.PressureDrop.Pd_fric(i); |
---|
1052 | |
---|
1053 | "Outer Pipe Local Pressure"# FIXME: NOZZLE PRESSURE DROP MUST BE ADDED |
---|
1054 | LowerPipe.Outer.PressureDrop.Plocal(i+1) = LowerPipe.Outer.PressureDrop.Plocal(1) - LowerPipe.Outer.PressureDrop.Pd_fric(i+1); |
---|
1055 | |
---|
1056 | end |
---|
1057 | |
---|
1058 | "Velocity Inner Side Inlet Nozzle" |
---|
1059 | Summary.Inner.Vnozzle_in = UpperPipe.Inner.Properties.Inlet.Fw/(UpperPipe.Inner.Properties.Inlet.rho*(0.25*Pi*Dinozzle_Inner^2)); |
---|
1060 | |
---|
1061 | "Velocity Inner Side Outlet Nozzle" |
---|
1062 | Summary.Inner.Vnozzle_out = LowerPipe.Inner.Properties.Outlet.Fw/(LowerPipe.Inner.Properties.Outlet.rho*(0.25*Pi*Donozzle_Inner^2)); |
---|
1063 | |
---|
1064 | "Velocity Outer Side Inlet Nozzle" |
---|
1065 | Summary.Outer.Vnozzle_in = LowerPipe.Outer.Properties.Inlet.Fw/(LowerPipe.Outer.Properties.Inlet.rho*(0.25*Pi*Dinozzle_Outer^2)); |
---|
1066 | |
---|
1067 | "Velocity Outer Side Outlet Nozzle" |
---|
1068 | Summary.Outer.Vnozzle_out = UpperPipe.Outer.Properties.Outlet.Fw/(UpperPipe.Outer.Properties.Outlet.rho*(0.25*Pi*Donozzle_Outer^2)); |
---|
1069 | |
---|
1070 | "Pressure Drop Inner Side Inlet Nozzle" |
---|
1071 | Summary.Inner.Pdnozzle_in = 0.5*InnerKinlet*UpperPipe.Inner.Properties.Inlet.rho*Summary.Inner.Vnozzle_in^2; |
---|
1072 | |
---|
1073 | "Pressure Drop Inner Side Outlet Nozzle" |
---|
1074 | Summary.Inner.Pdnozzle_out = 0.5*InnerKoutlet*LowerPipe.Inner.Properties.Outlet.rho*Summary.Inner.Vnozzle_out^2; |
---|
1075 | |
---|
1076 | "Pressure Drop Outer Side Inlet Nozzle" |
---|
1077 | Summary.Outer.Pdnozzle_in = 0.5*OuterKinlet*LowerPipe.Outer.Properties.Inlet.rho*Summary.Outer.Vnozzle_in^2; |
---|
1078 | |
---|
1079 | "Pressure Drop Outer Side Outlet Nozzle" |
---|
1080 | Summary.Outer.Pdnozzle_out = 0.5*OuterKoutlet*UpperPipe.Outer.Properties.Outlet.rho*Summary.Outer.Vnozzle_out^2; |
---|
1081 | |
---|
1082 | "Inner Side Inlet Nozzle rho-V^2" |
---|
1083 | Summary.Inner.RVsquare_in = UpperPipe.Inner.Properties.Inlet.rho*(Summary.Inner.Vnozzle_in)^2; |
---|
1084 | |
---|
1085 | "Inner Side Outlet Nozzle rho-V^2" |
---|
1086 | Summary.Inner.RVsquare_out = LowerPipe.Inner.Properties.Outlet.rho*(Summary.Inner.Vnozzle_out)^2; |
---|
1087 | |
---|
1088 | "Outer Side Inlet Nozzle rho-V^2" |
---|
1089 | Summary.Outer.RVsquare_in = LowerPipe.Outer.Properties.Inlet.rho*(Summary.Outer.Vnozzle_in)^2; |
---|
1090 | |
---|
1091 | "Outer Side Outlet Nozzle rho-V^2" |
---|
1092 | Summary.Outer.RVsquare_out = UpperPipe.Outer.Properties.Outlet.rho*(Summary.Outer.Vnozzle_out)^2; |
---|
1093 | |
---|
1094 | "Average Film Coefficient Outer Side" |
---|
1095 | Summary.Outer.hcoeff = sum(UpperPipe.Outer.HeatTransfer.hcoeff+LowerPipe.Outer.HeatTransfer.hcoeff)/(2*N); |
---|
1096 | |
---|
1097 | "Average Film Coefficient Inner Side" |
---|
1098 | Summary.Inner.hcoeff = sum(UpperPipe.Inner.HeatTransfer.hcoeff+LowerPipe.Inner.HeatTransfer.hcoeff)/(2*N); |
---|
1099 | |
---|
1100 | end |
---|