[441] | 1 | #*------------------------------------------------------------------- |
---|
| 2 | * EMSO Model Library (EML) Copyright (C) 2004 - 2007 ALSOC. |
---|
| 3 | * |
---|
| 4 | * This LIBRARY is free software; you can distribute it and/or modify |
---|
| 5 | * it under the therms of the ALSOC FREE LICENSE as available at |
---|
| 6 | * http://www.enq.ufrgs.br/alsoc. |
---|
| 7 | * |
---|
| 8 | * EMSO Copyright (C) 2004 - 2007 ALSOC, original code |
---|
| 9 | * from http://www.rps.eng.br Copyright (C) 2002-2004. |
---|
| 10 | * All rights reserved. |
---|
| 11 | * |
---|
| 12 | * EMSO is distributed under the therms of the ALSOC LICENSE as |
---|
| 13 | * available at http://www.enq.ufrgs.br/alsoc. |
---|
| 14 | *-------------------------------------------------------------------- |
---|
| 15 | * Author: Gerson Balbueno Bicca |
---|
| 16 | * $Id: Hairpin.mso Z bicca $ |
---|
| 17 | *------------------------------------------------------------------*# |
---|
| 18 | |
---|
| 19 | using "HEX_Engine"; |
---|
| 20 | |
---|
| 21 | Model Hairpin_Basic |
---|
| 22 | |
---|
| 23 | ATTRIBUTES |
---|
| 24 | Pallete = false; |
---|
| 25 | Brief = "Basic Equations for hairpin heat exchanger model."; |
---|
| 26 | Info = |
---|
| 27 | "to be documented."; |
---|
| 28 | |
---|
| 29 | PARAMETERS |
---|
| 30 | |
---|
| 31 | outer PP as Plugin (Brief="External Physical Properties", Type="PP"); |
---|
| 32 | outer NComp as Integer (Brief="Number of Components"); |
---|
| 33 | |
---|
| 34 | M(NComp) as molweight (Brief="Component Mol Weight"); |
---|
| 35 | |
---|
| 36 | HotSide as Switcher (Brief="Flag for Fluid Alocation ",Valid=["outer","inner"],Default="outer"); |
---|
| 37 | innerFlowRegime as Switcher (Brief="Inner Flow Regime ",Valid=["laminar","transition","turbulent"],Default="laminar"); |
---|
| 38 | outerFlowRegime as Switcher (Brief="Outer Flow Regime ",Valid=["laminar","transition","turbulent"],Default="laminar"); |
---|
| 39 | |
---|
| 40 | InnerLaminarCorrelation as Switcher (Brief="Heat Transfer Correlation in Laminar Flow for the Inner Side",Valid=["Hausen","Schlunder"],Default="Hausen"); |
---|
| 41 | InnerTransitionCorrelation as Switcher (Brief="Heat Transfer Correlation in Transition Flow for the Inner Side",Valid=["Gnielinski","Hausen"],Default="Gnielinski"); |
---|
| 42 | InnerTurbulentCorrelation as Switcher (Brief="Heat Transfer Correlation in Turbulent Flow for the Inner Side",Valid=["Petukhov","SiederTate"],Default="Petukhov"); |
---|
| 43 | |
---|
| 44 | OuterLaminarCorrelation as Switcher (Brief="Heat Transfer Correlation in Laminar Flow for the Outer Side",Valid=["Hausen","Schlunder"],Default="Hausen"); |
---|
| 45 | OuterTransitionCorrelation as Switcher (Brief="Heat Transfer Correlation in Transition Flow for the OuterSide",Valid=["Gnielinski","Hausen"],Default="Gnielinski"); |
---|
| 46 | OuterTurbulentCorrelation as Switcher (Brief="Heat Transfer Correlation in Turbulent Flow for the Outer Side",Valid=["Petukhov","SiederTate"],Default="Petukhov"); |
---|
| 47 | |
---|
[484] | 48 | CalculationApproach as Switcher (Brief="Options for convergence Calculations ",Valid=["Simplified","Full"],Default="Full"); |
---|
| 49 | Qestimated as power (Brief="Estimated Duty", Default=70, Lower=1e-6, Upper=1e10); |
---|
| 50 | |
---|
[441] | 51 | Pi as constant (Brief="Pi Number",Default=3.14159265, Symbol = "\pi"); |
---|
| 52 | DoInner as length (Brief="Outside Diameter of Inner Pipe",Lower=1e-6); |
---|
| 53 | DiInner as length (Brief="Inside Diameter of Inner Pipe",Lower=1e-10); |
---|
| 54 | DiOuter as length (Brief="Inside Diameter of Outer pipe",Lower=1e-10); |
---|
| 55 | Lpipe as length (Brief="Effective Tube Length of one segment of Pipe",Lower=0.1, Symbol = "L_{pipe}"); |
---|
| 56 | Kwall as conductivity (Brief="Tube Wall Material Thermal Conductivity",Default=1.0, Symbol = "K_{wall}"); |
---|
| 57 | Rfi as positive (Brief="Inside Fouling Resistance",Unit='m^2*K/kW',Default=1e-6,Lower=0); |
---|
| 58 | Rfo as positive (Brief="Outside Fouling Resistance",Unit='m^2*K/kW',Default=1e-6,Lower=0); |
---|
| 59 | |
---|
| 60 | VARIABLES |
---|
| 61 | |
---|
| 62 | in InletInner as stream (Brief="Inlet Inner Stream", PosX=1, PosY=0.7, Symbol="_{inInner}"); |
---|
| 63 | in InletOuter as stream (Brief="Inlet Outer Stream", PosX=0.8, PosY=0, Symbol="_{inOuter}"); |
---|
| 64 | out OutletInner as streamPH (Brief="Outlet Inner Stream", PosX=1, PosY=0.3, Symbol="_{outInner}"); |
---|
| 65 | out OutletOuter as streamPH (Brief="Outlet Outer Stream", PosX=0.8, PosY=1, Symbol="_{outOuter}"); |
---|
| 66 | |
---|
| 67 | Details as Details_Main (Brief="Some Details in the Heat Exchanger", Symbol=" "); |
---|
| 68 | Inner as Main_DoublePipe (Brief="Inner Side of the Heat Exchanger", Symbol="_{Inner}"); |
---|
| 69 | Outer as Main_DoublePipe (Brief="Outer Side of the Heat Exchanger", Symbol="_{Outer}"); |
---|
| 70 | |
---|
| 71 | SET |
---|
| 72 | |
---|
| 73 | #"Component Molecular Weight" |
---|
| 74 | M = PP.MolecularWeight(); |
---|
| 75 | |
---|
| 76 | #"Pi Number" |
---|
| 77 | Pi = 3.14159265; |
---|
| 78 | |
---|
| 79 | #"Inner Pipe Cross Sectional Area for Flow" |
---|
| 80 | Inner.HeatTransfer.As=Pi*DiInner*DiInner/4; |
---|
| 81 | |
---|
| 82 | #"Outer Pipe Cross Sectional Area for Flow" |
---|
| 83 | Outer.HeatTransfer.As=Pi*(DiOuter*DiOuter - DoInner*DoInner)/4; |
---|
| 84 | |
---|
| 85 | #"Inner Pipe Hydraulic Diameter for Heat Transfer" |
---|
| 86 | Inner.HeatTransfer.Dh=DiInner; |
---|
| 87 | |
---|
| 88 | #"Outer Pipe Hydraulic Diameter for Heat Transfer" |
---|
| 89 | Outer.HeatTransfer.Dh=(DiOuter*DiOuter-DoInner*DoInner)/DoInner; |
---|
| 90 | |
---|
| 91 | #"Inner Pipe Hydraulic Diameter for Pressure Drop" |
---|
| 92 | Inner.PressureDrop.Dh=DiInner; |
---|
| 93 | |
---|
| 94 | #"Outer Pipe Hydraulic Diameter for Pressure Drop" |
---|
| 95 | Outer.PressureDrop.Dh=DiOuter-DoInner; |
---|
| 96 | |
---|
| 97 | EQUATIONS |
---|
| 98 | |
---|
| 99 | "Outer Stream Average Temperature" |
---|
| 100 | Outer.Properties.Average.T = 0.5*InletOuter.T + 0.5*OutletOuter.T; |
---|
| 101 | |
---|
| 102 | "Inner Stream Average Temperature" |
---|
| 103 | Inner.Properties.Average.T = 0.5*InletInner.T + 0.5*OutletInner.T; |
---|
| 104 | |
---|
| 105 | "Outer Stream Average Pressure" |
---|
| 106 | Outer.Properties.Average.P = 0.5*InletOuter.P+0.5*OutletOuter.P; |
---|
| 107 | |
---|
| 108 | "Inner Stream Average Pressure" |
---|
| 109 | Inner.Properties.Average.P = 0.5*InletInner.P+0.5*OutletInner.P; |
---|
| 110 | |
---|
| 111 | "Inner Stream Wall Temperature" |
---|
| 112 | Inner.Properties.Wall.Twall = 0.5*Outer.Properties.Average.T + 0.5*Inner.Properties.Average.T; |
---|
| 113 | |
---|
| 114 | "Outer Stream Wall Temperature" |
---|
| 115 | Outer.Properties.Wall.Twall = 0.5*Outer.Properties.Average.T + 0.5*Inner.Properties.Average.T; |
---|
| 116 | |
---|
| 117 | "Outer Stream Average Molecular Weight" |
---|
| 118 | Outer.Properties.Average.Mw = sum(M*InletOuter.z); |
---|
| 119 | |
---|
| 120 | "Inner Stream Average Molecular Weight" |
---|
| 121 | Inner.Properties.Average.Mw = sum(M*InletInner.z); |
---|
| 122 | |
---|
| 123 | if InletInner.v equal 0 |
---|
| 124 | |
---|
| 125 | then |
---|
| 126 | |
---|
| 127 | "Average Heat Capacity Inner Stream" |
---|
| 128 | Inner.Properties.Average.Cp = PP.LiquidCp(Inner.Properties.Average.T,Inner.Properties.Average.P,InletInner.z); |
---|
| 129 | |
---|
| 130 | "Average Mass Density Inner Stream" |
---|
| 131 | Inner.Properties.Average.rho = PP.LiquidDensity(Inner.Properties.Average.T,Inner.Properties.Average.P,InletInner.z); |
---|
| 132 | |
---|
| 133 | "Inlet Mass Density Inner Stream" |
---|
| 134 | Inner.Properties.Inlet.rho = PP.LiquidDensity(InletInner.T,InletInner.P,InletInner.z); |
---|
| 135 | |
---|
| 136 | "Outlet Mass Density Inner Stream" |
---|
| 137 | Inner.Properties.Outlet.rho = PP.LiquidDensity(OutletInner.T,OutletInner.P,OutletInner.z); |
---|
| 138 | |
---|
| 139 | "Average Viscosity Inner Stream" |
---|
| 140 | Inner.Properties.Average.Mu = PP.LiquidViscosity(Inner.Properties.Average.T,Inner.Properties.Average.P,InletInner.z); |
---|
| 141 | |
---|
| 142 | "Average Conductivity Inner Stream" |
---|
| 143 | Inner.Properties.Average.K = PP.LiquidThermalConductivity(Inner.Properties.Average.T,Inner.Properties.Average.P,InletInner.z); |
---|
| 144 | |
---|
| 145 | "Viscosity Inner Stream at wall temperature" |
---|
| 146 | Inner.Properties.Wall.Mu = PP.LiquidViscosity(Inner.Properties.Wall.Twall,Inner.Properties.Average.P,InletInner.z); |
---|
| 147 | |
---|
| 148 | else |
---|
| 149 | |
---|
| 150 | "Average Heat Capacity InnerStream" |
---|
| 151 | Inner.Properties.Average.Cp = PP.VapourCp(Inner.Properties.Average.T,Inner.Properties.Average.P,InletInner.z); |
---|
| 152 | |
---|
| 153 | "Average Mass Density Inner Stream" |
---|
| 154 | Inner.Properties.Average.rho = PP.VapourDensity(Inner.Properties.Average.T,Inner.Properties.Average.P,InletInner.z); |
---|
| 155 | |
---|
| 156 | "Inlet Mass Density Inner Stream" |
---|
| 157 | Inner.Properties.Inlet.rho = PP.VapourDensity(InletInner.T,InletInner.P,InletInner.z); |
---|
| 158 | |
---|
| 159 | "Outlet Mass Density Inner Stream" |
---|
| 160 | Inner.Properties.Outlet.rho = PP.VapourDensity(OutletInner.T,OutletInner.P,OutletInner.z); |
---|
| 161 | |
---|
| 162 | "Average Viscosity Inner Stream" |
---|
| 163 | Inner.Properties.Average.Mu = PP.VapourViscosity(Inner.Properties.Average.T,Inner.Properties.Average.P,InletInner.z); |
---|
| 164 | |
---|
| 165 | "Average Conductivity Inner Stream" |
---|
| 166 | Inner.Properties.Average.K = PP.VapourThermalConductivity(Inner.Properties.Average.T,Inner.Properties.Average.P,InletInner.z); |
---|
| 167 | |
---|
| 168 | "Viscosity Inner Stream at wall temperature" |
---|
| 169 | Inner.Properties.Wall.Mu = PP.VapourViscosity(Inner.Properties.Wall.Twall,Inner.Properties.Average.P,InletInner.z); |
---|
| 170 | |
---|
| 171 | end |
---|
| 172 | |
---|
| 173 | if InletOuter.v equal 0 |
---|
| 174 | |
---|
| 175 | then |
---|
| 176 | |
---|
| 177 | "Average Heat Capacity Outer Stream" |
---|
| 178 | Outer.Properties.Average.Cp = PP.LiquidCp(Outer.Properties.Average.T,Outer.Properties.Average.P,InletOuter.z); |
---|
| 179 | |
---|
| 180 | "Average Mass Density Outer Stream" |
---|
| 181 | Outer.Properties.Average.rho = PP.LiquidDensity(Outer.Properties.Average.T,Outer.Properties.Average.P,InletOuter.z); |
---|
| 182 | |
---|
| 183 | "Inlet Mass Density Outer Stream" |
---|
| 184 | Outer.Properties.Inlet.rho = PP.LiquidDensity(InletOuter.T,InletOuter.P,InletOuter.z); |
---|
| 185 | |
---|
| 186 | "Outlet Mass Density Outer Stream" |
---|
| 187 | Outer.Properties.Outlet.rho = PP.LiquidDensity(OutletOuter.T,OutletOuter.P,OutletOuter.z); |
---|
| 188 | |
---|
| 189 | "Average Viscosity Outer Stream" |
---|
| 190 | Outer.Properties.Average.Mu = PP.LiquidViscosity(Outer.Properties.Average.T,Outer.Properties.Average.P,InletOuter.z); |
---|
| 191 | |
---|
| 192 | "Average Conductivity Outer Stream" |
---|
| 193 | Outer.Properties.Average.K = PP.LiquidThermalConductivity(Outer.Properties.Average.T,Outer.Properties.Average.P,InletOuter.z); |
---|
| 194 | |
---|
| 195 | "Viscosity Outer Stream at wall temperature" |
---|
| 196 | Outer.Properties.Wall.Mu = PP.LiquidViscosity(Outer.Properties.Wall.Twall,Outer.Properties.Average.P,InletOuter.z); |
---|
| 197 | |
---|
| 198 | |
---|
| 199 | else |
---|
| 200 | |
---|
| 201 | "Average Heat Capacity Outer Stream" |
---|
| 202 | Outer.Properties.Average.Cp = PP.VapourCp(Outer.Properties.Average.T,Outer.Properties.Average.P,InletOuter.z); |
---|
| 203 | |
---|
| 204 | "Average Mass Density Outer Stream" |
---|
| 205 | Outer.Properties.Average.rho = PP.VapourDensity(Outer.Properties.Average.T,Outer.Properties.Average.P,InletOuter.z); |
---|
| 206 | |
---|
| 207 | "Inlet Mass Density Outer Stream" |
---|
| 208 | Outer.Properties.Inlet.rho = PP.VapourDensity(InletOuter.T,InletOuter.P,InletOuter.z); |
---|
| 209 | |
---|
| 210 | "Outlet Mass Density Outer Stream" |
---|
| 211 | Outer.Properties.Outlet.rho = PP.VapourDensity(OutletOuter.T,OutletOuter.P,OutletOuter.z); |
---|
| 212 | |
---|
| 213 | "Average Viscosity Outer Stream" |
---|
| 214 | Outer.Properties.Average.Mu = PP.VapourViscosity(Outer.Properties.Average.T,Outer.Properties.Average.P,InletOuter.z); |
---|
| 215 | |
---|
| 216 | "Average Conductivity Outer Stream" |
---|
| 217 | Outer.Properties.Average.K = PP.VapourThermalConductivity(Outer.Properties.Average.T,Outer.Properties.Average.P,InletOuter.z); |
---|
| 218 | |
---|
| 219 | "Viscosity Outer Stream at wall temperature" |
---|
| 220 | Outer.Properties.Wall.Mu = PP.VapourViscosity(Outer.Properties.Wall.Twall,Outer.Properties.Average.P,InletOuter.z); |
---|
| 221 | |
---|
| 222 | end |
---|
| 223 | |
---|
| 224 | switch HotSide |
---|
| 225 | |
---|
| 226 | case "outer": |
---|
| 227 | |
---|
| 228 | "Energy Balance Outer Stream" |
---|
| 229 | Details.Q = InletOuter.F*(InletOuter.h-OutletOuter.h); |
---|
| 230 | |
---|
| 231 | "Energy Balance Inner Stream" |
---|
| 232 | Details.Q = InletInner.F*(OutletInner.h-InletInner.h); |
---|
| 233 | |
---|
| 234 | when InletInner.T > InletOuter.T switchto "inner"; |
---|
| 235 | |
---|
| 236 | case "inner": |
---|
| 237 | |
---|
| 238 | "Energy Balance Hot Stream" |
---|
| 239 | Details.Q = InletInner.F*(InletInner.h-OutletInner.h); |
---|
| 240 | |
---|
| 241 | "Energy Balance Cold Stream" |
---|
| 242 | Details.Q = InletOuter.F*(OutletOuter.h - InletOuter.h); |
---|
| 243 | |
---|
| 244 | when InletInner.T < InletOuter.T switchto "outer"; |
---|
| 245 | |
---|
| 246 | end |
---|
| 247 | |
---|
| 248 | "Flow Mass Inlet Inner Stream" |
---|
| 249 | Inner.Properties.Inlet.Fw = sum(M*InletInner.z)*InletInner.F; |
---|
| 250 | |
---|
| 251 | "Flow Mass Outlet Inner Stream" |
---|
| 252 | Inner.Properties.Outlet.Fw = sum(M*OutletInner.z)*OutletInner.F; |
---|
| 253 | |
---|
| 254 | "Flow Mass Inlet Outer Stream" |
---|
| 255 | Outer.Properties.Inlet.Fw = sum(M*InletOuter.z)*InletOuter.F; |
---|
| 256 | |
---|
| 257 | "Flow Mass Outlet Outer Stream" |
---|
| 258 | Outer.Properties.Outlet.Fw = sum(M*OutletOuter.z)*OutletOuter.F; |
---|
| 259 | |
---|
| 260 | "Molar Balance Outer Stream" |
---|
| 261 | OutletOuter.F = InletOuter.F; |
---|
| 262 | |
---|
| 263 | "Molar Balance Inner Stream" |
---|
| 264 | OutletInner.F = InletInner.F; |
---|
| 265 | |
---|
| 266 | "Outer Stream Molar Fraction Constraint" |
---|
| 267 | OutletOuter.z=InletOuter.z; |
---|
| 268 | |
---|
| 269 | "InnerStream Molar Fraction Constraint" |
---|
| 270 | OutletInner.z=InletInner.z; |
---|
| 271 | |
---|
| 272 | "Exchange Surface Area for one segment of pipe" |
---|
| 273 | Details.A=Pi*DoInner*(2*Lpipe); |
---|
| 274 | |
---|
| 275 | switch innerFlowRegime |
---|
| 276 | |
---|
| 277 | case "laminar": |
---|
| 278 | |
---|
| 279 | "Inner Side Friction Factor for Pressure Drop - laminar Flow" |
---|
| 280 | Inner.PressureDrop.fi*Inner.PressureDrop.Re = 16; |
---|
| 281 | |
---|
| 282 | when Inner.PressureDrop.Re > 2300 switchto "transition"; |
---|
| 283 | |
---|
| 284 | case "transition": |
---|
| 285 | |
---|
| 286 | "using Turbulent Flow - to be implemented" |
---|
| 287 | (Inner.PressureDrop.fi-0.0035)*(Inner.PressureDrop.Re^0.42) = 0.264; |
---|
| 288 | |
---|
| 289 | when Inner.PressureDrop.Re < 2300 switchto "laminar"; |
---|
| 290 | when Inner.PressureDrop.Re > 10000 switchto "turbulent"; |
---|
| 291 | |
---|
| 292 | case "turbulent": |
---|
| 293 | |
---|
| 294 | "Inner Side Friction Factor - Turbulent Flow" |
---|
| 295 | (Inner.PressureDrop.fi-0.0035)*(Inner.PressureDrop.Re^0.42) = 0.264; |
---|
| 296 | |
---|
| 297 | when Inner.PressureDrop.Re < 10000 switchto "transition"; |
---|
| 298 | |
---|
| 299 | end |
---|
| 300 | |
---|
| 301 | switch outerFlowRegime |
---|
| 302 | |
---|
| 303 | case "laminar": |
---|
| 304 | |
---|
| 305 | "Outer Side Friction Factor - laminar Flow" |
---|
| 306 | Outer.PressureDrop.fi*Outer.PressureDrop.Re = 16; |
---|
| 307 | |
---|
| 308 | when Outer.PressureDrop.Re > 2300 switchto "transition"; |
---|
| 309 | |
---|
| 310 | case "transition": |
---|
| 311 | |
---|
| 312 | "using Turbulent Flow - Transition Flow must be implemented" |
---|
| 313 | (Outer.PressureDrop.fi-0.0035)*(Outer.PressureDrop.Re^0.42) = 0.264; |
---|
| 314 | |
---|
| 315 | when Outer.PressureDrop.Re < 2300 switchto "laminar"; |
---|
| 316 | when Outer.PressureDrop.Re > 10000 switchto "turbulent"; |
---|
| 317 | |
---|
| 318 | case "turbulent": |
---|
| 319 | |
---|
| 320 | "Outer Side Friction Factor - Turbulent Flow" |
---|
| 321 | (Outer.PressureDrop.fi-0.0035)*(Outer.PressureDrop.Re^0.42) = 0.264; |
---|
| 322 | |
---|
| 323 | when Outer.PressureDrop.Re < 10000 switchto "transition"; |
---|
| 324 | |
---|
| 325 | end |
---|
| 326 | |
---|
| 327 | switch innerFlowRegime |
---|
| 328 | |
---|
| 329 | case "laminar": |
---|
| 330 | |
---|
| 331 | "Inner Side Friction Factor for Heat Transfer - laminar Flow" |
---|
| 332 | Inner.HeatTransfer.fi = 1/(0.79*ln(Inner.HeatTransfer.Re)-1.64)^2; |
---|
| 333 | |
---|
| 334 | switch InnerLaminarCorrelation |
---|
| 335 | |
---|
| 336 | case "Hausen": |
---|
| 337 | |
---|
| 338 | "Nusselt Number" |
---|
| 339 | Inner.HeatTransfer.Nu = 3.665 + ((0.19*((DiInner/Lpipe)*Inner.HeatTransfer.Re*Inner.HeatTransfer.PR)^0.8)/(1+0.117*((DiInner/Lpipe)*Inner.HeatTransfer.Re*Inner.HeatTransfer.PR)^0.467)); |
---|
| 340 | |
---|
| 341 | case "Schlunder": |
---|
| 342 | |
---|
| 343 | "Nusselt Number" |
---|
| 344 | Inner.HeatTransfer.Nu = (49.027896+4.173281*Inner.HeatTransfer.Re*Inner.HeatTransfer.PR*(DiInner/Lpipe))^(1/3); |
---|
| 345 | |
---|
| 346 | end |
---|
| 347 | |
---|
| 348 | when Inner.HeatTransfer.Re > 2300 switchto "transition"; |
---|
| 349 | |
---|
| 350 | case "transition": |
---|
| 351 | |
---|
| 352 | "Inner Side Friction Factor for Heat Transfer - transition Flow" |
---|
| 353 | Inner.HeatTransfer.fi = 1/(0.79*ln(Inner.HeatTransfer.Re)-1.64)^2; |
---|
| 354 | |
---|
| 355 | switch InnerTransitionCorrelation |
---|
| 356 | |
---|
| 357 | case "Gnielinski": |
---|
| 358 | |
---|
| 359 | "Nusselt Number" |
---|
| 360 | Inner.HeatTransfer.Nu*(1+(12.7*sqrt(0.125*Inner.HeatTransfer.fi)*((Inner.HeatTransfer.PR)^(2/3) -1))) = 0.125*Inner.HeatTransfer.fi*(Inner.HeatTransfer.Re-1000)*Inner.HeatTransfer.PR; |
---|
| 361 | |
---|
| 362 | case "Hausen": |
---|
| 363 | |
---|
| 364 | "Nusselt Number" |
---|
| 365 | Inner.HeatTransfer.Nu =0.116*(Inner.HeatTransfer.Re^(0.667)-125)*Inner.HeatTransfer.PR^(0.333)*(1+(DiInner/Lpipe)^0.667); |
---|
| 366 | |
---|
| 367 | end |
---|
| 368 | |
---|
| 369 | when Inner.HeatTransfer.Re < 2300 switchto "laminar"; |
---|
| 370 | when Inner.HeatTransfer.Re > 10000 switchto "turbulent"; |
---|
| 371 | |
---|
| 372 | case "turbulent": |
---|
| 373 | |
---|
| 374 | switch InnerTurbulentCorrelation |
---|
| 375 | |
---|
| 376 | case "Petukhov": |
---|
| 377 | |
---|
| 378 | "Inner Side Friction Factor for Heat Transfer - turbulent Flow" |
---|
| 379 | Inner.HeatTransfer.fi = 1/(1.82*log(Inner.HeatTransfer.Re)-1.64)^2; |
---|
| 380 | |
---|
| 381 | "Nusselt Number" |
---|
| 382 | Inner.HeatTransfer.Nu*(1.07+(12.7*sqrt(0.125*Inner.HeatTransfer.fi)*((Inner.HeatTransfer.PR)^(2/3) -1))) = 0.125*Inner.HeatTransfer.fi*Inner.HeatTransfer.Re*Inner.HeatTransfer.PR; |
---|
| 383 | |
---|
| 384 | case "SiederTate": |
---|
| 385 | |
---|
| 386 | "Nusselt Number" |
---|
| 387 | Inner.HeatTransfer.Nu = 0.027*(Inner.HeatTransfer.PR)^(1/3)*(Inner.HeatTransfer.Re)^(4/5); |
---|
| 388 | |
---|
| 389 | "Inner Side Friction Factor for Heat Transfer - turbulent Flow" |
---|
| 390 | Inner.HeatTransfer.fi = 1/(1.82*log(Inner.HeatTransfer.Re)-1.64)^2; |
---|
| 391 | |
---|
| 392 | end |
---|
| 393 | |
---|
| 394 | when Inner.HeatTransfer.Re < 10000 switchto "transition"; |
---|
| 395 | |
---|
| 396 | end |
---|
| 397 | |
---|
| 398 | switch outerFlowRegime |
---|
| 399 | |
---|
| 400 | case "laminar": |
---|
| 401 | |
---|
| 402 | "Outer Side Friction Factor for Heat Transfer - laminar Flow" |
---|
| 403 | Outer.HeatTransfer.fi = 1/(0.79*ln(Outer.HeatTransfer.Re)-1.64)^2; |
---|
| 404 | |
---|
| 405 | switch OuterLaminarCorrelation |
---|
| 406 | |
---|
| 407 | case "Hausen": |
---|
| 408 | |
---|
| 409 | "Nusselt Number" |
---|
| 410 | Outer.HeatTransfer.Nu = 3.665 + ((0.19*((Outer.HeatTransfer.Dh/Lpipe)*Outer.HeatTransfer.Re*Outer.HeatTransfer.PR)^0.8)/(1+0.117*((Outer.HeatTransfer.Dh/Lpipe)*Outer.HeatTransfer.Re*Outer.HeatTransfer.PR)^0.467)); |
---|
| 411 | |
---|
| 412 | case "Schlunder": |
---|
| 413 | |
---|
| 414 | "Nusselt Number" |
---|
| 415 | Outer.HeatTransfer.Nu = (49.027896+4.173281*Outer.HeatTransfer.Re*Outer.HeatTransfer.PR*(Outer.HeatTransfer.Dh/Lpipe))^(1/3); |
---|
| 416 | |
---|
| 417 | end |
---|
| 418 | |
---|
| 419 | when Outer.HeatTransfer.Re > 2300 switchto "transition"; |
---|
| 420 | |
---|
| 421 | case "transition": |
---|
| 422 | |
---|
| 423 | switch OuterTransitionCorrelation |
---|
| 424 | |
---|
| 425 | case "Gnielinski": |
---|
| 426 | |
---|
| 427 | "Outer Side Friction Factor for Heat Transfer - transition Flow" |
---|
| 428 | Outer.HeatTransfer.fi = 1/(0.79*ln(Outer.HeatTransfer.Re)-1.64)^2; |
---|
| 429 | |
---|
| 430 | "Nusselt Number" |
---|
| 431 | Outer.HeatTransfer.Nu*(1+(12.7*sqrt(0.125*Outer.HeatTransfer.fi)*((Outer.HeatTransfer.PR)^(2/3) -1))) = 0.125*Outer.HeatTransfer.fi*(Outer.HeatTransfer.Re-1000)*Outer.HeatTransfer.PR; |
---|
| 432 | |
---|
| 433 | case "Hausen": |
---|
| 434 | |
---|
| 435 | "Nusselt Number" |
---|
| 436 | Outer.HeatTransfer.Nu = 0.116*(Outer.HeatTransfer.Re^(0.667)-125)*Outer.HeatTransfer.PR^(0.333)*(1+(Outer.HeatTransfer.Dh/Lpipe)^0.667); |
---|
| 437 | |
---|
| 438 | |
---|
| 439 | "Outer Side Friction Factor for Heat Transfer - transition Flow" |
---|
| 440 | Outer.HeatTransfer.fi = 1/(0.79*ln(Outer.HeatTransfer.Re)-1.64)^2; |
---|
| 441 | |
---|
| 442 | end |
---|
| 443 | |
---|
| 444 | when Outer.HeatTransfer.Re < 2300 switchto "laminar"; |
---|
| 445 | when Outer.HeatTransfer.Re > 10000 switchto "turbulent"; |
---|
| 446 | |
---|
| 447 | case "turbulent": |
---|
| 448 | |
---|
| 449 | switch OuterTurbulentCorrelation |
---|
| 450 | |
---|
| 451 | case "Petukhov": |
---|
| 452 | |
---|
| 453 | "Outer Side Friction Factor for Heat Transfer - turbulent Flow" |
---|
| 454 | Outer.HeatTransfer.fi = 1/(1.82*log(Outer.HeatTransfer.Re)-1.64)^2; |
---|
| 455 | |
---|
| 456 | "Nusselt Number" |
---|
| 457 | Outer.HeatTransfer.Nu*(1.07+(12.7*sqrt(0.125*Outer.HeatTransfer.fi)*((Outer.HeatTransfer.PR)^(2/3) -1))) = 0.125*Outer.HeatTransfer.fi*Outer.HeatTransfer.Re*Outer.HeatTransfer.PR; |
---|
| 458 | |
---|
| 459 | case "SiederTate": |
---|
| 460 | |
---|
| 461 | "Nusselt Number" |
---|
| 462 | Outer.HeatTransfer.Nu = 0.027*(Outer.HeatTransfer.PR)^(1/3)*(Outer.HeatTransfer.Re)^(4/5); |
---|
| 463 | |
---|
| 464 | "Outer Side Friction Factor for Heat Transfer - turbulent Flow" |
---|
| 465 | Outer.HeatTransfer.fi = 1/(1.82*log(Outer.HeatTransfer.Re)-1.64)^2; |
---|
| 466 | |
---|
| 467 | end |
---|
| 468 | |
---|
| 469 | when Outer.HeatTransfer.Re < 10000 switchto "transition"; |
---|
| 470 | |
---|
| 471 | end |
---|
| 472 | |
---|
| 473 | "Inner Pipe Film Coefficient" |
---|
| 474 | Inner.HeatTransfer.hcoeff = (Inner.HeatTransfer.Nu*Inner.Properties.Average.K/DiInner)*Inner.HeatTransfer.Phi; |
---|
| 475 | |
---|
| 476 | "Outer Pipe Film Coefficient" |
---|
| 477 | Outer.HeatTransfer.hcoeff= (Outer.HeatTransfer.Nu*Outer.Properties.Average.K/Outer.HeatTransfer.Dh)*Outer.HeatTransfer.Phi; |
---|
| 478 | |
---|
[484] | 479 | switch CalculationApproach |
---|
| 480 | |
---|
| 481 | case "Full": |
---|
| 482 | |
---|
[441] | 483 | "Total Pressure Drop Outer Stream" |
---|
| 484 | Outer.PressureDrop.Pdrop = Outer.PressureDrop.Pd_fric+Outer.PressureDrop.Pd_ret; |
---|
| 485 | |
---|
| 486 | "Total Pressure Drop Inner Stream" |
---|
| 487 | Inner.PressureDrop.Pdrop = Inner.PressureDrop.Pd_fric+Inner.PressureDrop.Pd_ret; |
---|
| 488 | |
---|
| 489 | "Pressure Drop Outer Stream" |
---|
| 490 | OutletOuter.P = InletOuter.P - Outer.PressureDrop.Pdrop; |
---|
| 491 | |
---|
| 492 | "Pressure Drop Inner Stream" |
---|
| 493 | OutletInner.P = InletInner.P - Inner.PressureDrop.Pdrop; |
---|
| 494 | |
---|
| 495 | "Outer Pipe Pressure Drop for friction" |
---|
| 496 | Outer.PressureDrop.Pd_fric = (2*Outer.PressureDrop.fi*(2*Lpipe)*Outer.Properties.Average.rho*Outer.HeatTransfer.Vmean^2)/(Outer.PressureDrop.Dh*Outer.HeatTransfer.Phi); |
---|
| 497 | |
---|
| 498 | "Inner Pipe Pressure Drop for friction" |
---|
| 499 | Inner.PressureDrop.Pd_fric = (2*Inner.PressureDrop.fi*(2*Lpipe)*Inner.Properties.Average.rho*Inner.HeatTransfer.Vmean^2)/(DiInner*Inner.HeatTransfer.Phi); |
---|
| 500 | |
---|
| 501 | "Outer Pipe Pressure Drop due to return" |
---|
| 502 | Outer.PressureDrop.Pd_ret = 1.5*Outer.Properties.Average.rho*Outer.HeatTransfer.Vmean^2; |
---|
| 503 | |
---|
| 504 | "Inner Pipe Pressure Drop due to return" |
---|
| 505 | Inner.PressureDrop.Pd_ret = 1.5*Inner.Properties.Average.rho*Inner.HeatTransfer.Vmean^2; |
---|
| 506 | |
---|
| 507 | "Outer Pipe Phi correction" |
---|
| 508 | Outer.HeatTransfer.Phi = (Outer.Properties.Average.Mu/Outer.Properties.Wall.Mu)^0.14; |
---|
| 509 | |
---|
| 510 | "Inner Pipe Phi correction" |
---|
| 511 | Inner.HeatTransfer.Phi = (Inner.Properties.Average.Mu/Inner.Properties.Wall.Mu)^0.14; |
---|
| 512 | |
---|
[484] | 513 | case "Simplified": |
---|
| 514 | |
---|
| 515 | "Total Pressure Drop Outer Stream" |
---|
| 516 | Outer.PressureDrop.Pdrop = 0*'kPa'; |
---|
| 517 | |
---|
| 518 | "Total Pressure Drop Inner Stream" |
---|
| 519 | Inner.PressureDrop.Pdrop = 0*'kPa'; |
---|
| 520 | |
---|
| 521 | "Pressure Drop Outer Stream" |
---|
| 522 | OutletOuter.P = InletOuter.P; |
---|
| 523 | |
---|
| 524 | "Pressure Drop Inner Stream" |
---|
| 525 | OutletInner.P = InletInner.P; |
---|
| 526 | |
---|
| 527 | "Outer Pipe Pressure Drop for friction" |
---|
| 528 | Outer.PressureDrop.Pd_fric = 0*'kPa'; |
---|
| 529 | |
---|
| 530 | "Inner Pipe Pressure Drop for friction" |
---|
| 531 | Inner.PressureDrop.Pd_fric = 0*'kPa'; |
---|
| 532 | |
---|
| 533 | "Outer Pipe Pressure Drop due to return" |
---|
| 534 | Outer.PressureDrop.Pd_ret = 0*'kPa'; |
---|
| 535 | |
---|
| 536 | "Inner Pipe Pressure Drop due to return" |
---|
| 537 | Inner.PressureDrop.Pd_ret = 0*'kPa'; |
---|
| 538 | |
---|
| 539 | "Outer Pipe Phi correction" |
---|
| 540 | Outer.HeatTransfer.Phi = 1; |
---|
| 541 | |
---|
| 542 | "Inner Pipe Phi correction" |
---|
| 543 | Inner.HeatTransfer.Phi = 1; |
---|
| 544 | |
---|
| 545 | end |
---|
| 546 | |
---|
[441] | 547 | "Outer Pipe Prandtl Number" |
---|
| 548 | Outer.HeatTransfer.PR = ((Outer.Properties.Average.Cp/Outer.Properties.Average.Mw)*Outer.Properties.Average.Mu)/Outer.Properties.Average.K; |
---|
| 549 | |
---|
| 550 | "Inner Pipe Prandtl Number" |
---|
| 551 | Inner.HeatTransfer.PR = ((Inner.Properties.Average.Cp/Inner.Properties.Average.Mw)*Inner.Properties.Average.Mu)/Inner.Properties.Average.K; |
---|
| 552 | |
---|
| 553 | "Outer Pipe Reynolds Number for Heat Transfer" |
---|
| 554 | Outer.HeatTransfer.Re = (Outer.Properties.Average.rho*Outer.HeatTransfer.Vmean*Outer.HeatTransfer.Dh)/Outer.Properties.Average.Mu; |
---|
| 555 | |
---|
| 556 | "Outer Pipe Reynolds Number for Pressure Drop" |
---|
| 557 | Outer.PressureDrop.Re = (Outer.Properties.Average.rho*Outer.HeatTransfer.Vmean*Outer.PressureDrop.Dh)/Outer.Properties.Average.Mu; |
---|
| 558 | |
---|
| 559 | "Inner Pipe Reynolds Number for Heat Transfer" |
---|
| 560 | Inner.HeatTransfer.Re = (Inner.Properties.Average.rho*Inner.HeatTransfer.Vmean*Inner.HeatTransfer.Dh)/Inner.Properties.Average.Mu; |
---|
| 561 | |
---|
| 562 | "Inner Pipe Reynolds Number for Pressure Drop" |
---|
| 563 | Inner.PressureDrop.Re = Inner.HeatTransfer.Re; |
---|
| 564 | |
---|
| 565 | "Outer Pipe Velocity" |
---|
| 566 | Outer.HeatTransfer.Vmean*(Outer.HeatTransfer.As*Outer.Properties.Average.rho) = Outer.Properties.Inlet.Fw; |
---|
| 567 | |
---|
| 568 | "Inner Pipe Velocity" |
---|
| 569 | Inner.HeatTransfer.Vmean*(Inner.HeatTransfer.As*Inner.Properties.Average.rho) = Inner.Properties.Inlet.Fw; |
---|
| 570 | |
---|
| 571 | "Overall Heat Transfer Coefficient Clean" |
---|
| 572 | Details.Uc*((DoInner/(Inner.HeatTransfer.hcoeff*DiInner) )+(DoInner*ln(DoInner/DiInner)/(2*Kwall))+(1/(Outer.HeatTransfer.hcoeff)))=1; |
---|
| 573 | |
---|
| 574 | "Overall Heat Transfer Coefficient Dirty" |
---|
| 575 | Details.Ud*(Rfi*(DoInner/DiInner) + Rfo + (DoInner/(Inner.HeatTransfer.hcoeff*DiInner) )+(DoInner*ln(DoInner/DiInner)/(2*Kwall))+(1/(Outer.HeatTransfer.hcoeff)))=1; |
---|
| 576 | |
---|
| 577 | end |
---|
| 578 | |
---|
| 579 | Model Hairpin_NTU as Hairpin_Basic |
---|
| 580 | |
---|
| 581 | ATTRIBUTES |
---|
| 582 | |
---|
| 583 | Icon = "icon/hairpin"; |
---|
| 584 | Pallete = true; |
---|
| 585 | Brief = "Hairpin Heat Exchanger - NTU Method"; |
---|
| 586 | Info = |
---|
| 587 | "to be documented."; |
---|
| 588 | |
---|
| 589 | PARAMETERS |
---|
| 590 | |
---|
| 591 | FlowDirection as Switcher (Brief="Flow Direction",Valid=["counter","cocurrent"],Default="cocurrent"); |
---|
[484] | 592 | Eftestimated as positive (Brief="Effectiveness estimate",Default=0.5); |
---|
| 593 | |
---|
[441] | 594 | VARIABLES |
---|
| 595 | |
---|
| 596 | Method as NTU_Basic (Brief="NTU Method of Calculation", Symbol=" "); |
---|
| 597 | |
---|
| 598 | EQUATIONS |
---|
| 599 | |
---|
[484] | 600 | "Effectiveness Correction" |
---|
| 601 | Method.Eft1 = 1; |
---|
| 602 | |
---|
| 603 | switch CalculationApproach |
---|
| 604 | |
---|
| 605 | case "Full": |
---|
| 606 | |
---|
[441] | 607 | "Number of Units Transference" |
---|
| 608 | Method.NTU*Method.Cmin = Details.Ud*Pi*DoInner*(2*Lpipe); |
---|
| 609 | |
---|
| 610 | "Minimum Heat Capacity" |
---|
| 611 | Method.Cmin = min([Method.Ch,Method.Cc]); |
---|
| 612 | |
---|
| 613 | "Maximum Heat Capacity" |
---|
| 614 | Method.Cmax = max([Method.Ch,Method.Cc]); |
---|
| 615 | |
---|
| 616 | "Thermal Capacity Ratio" |
---|
| 617 | Method.Cr = Method.Cmin/Method.Cmax; |
---|
| 618 | |
---|
| 619 | if Method.Cr equal 0 |
---|
| 620 | |
---|
| 621 | then |
---|
| 622 | "Effectiveness" |
---|
| 623 | Method.Eft = 1-exp(-Method.NTU); |
---|
| 624 | |
---|
| 625 | else |
---|
| 626 | |
---|
| 627 | switch FlowDirection |
---|
| 628 | |
---|
| 629 | case "cocurrent": |
---|
| 630 | |
---|
| 631 | "Effectiveness in Cocurrent Flow" |
---|
| 632 | Method.Eft = (1-exp(-Method.NTU*(1+Method.Cr)))/(1+Method.Cr); |
---|
| 633 | |
---|
| 634 | case "counter": |
---|
| 635 | |
---|
| 636 | if Method.Eft >= 1 |
---|
| 637 | |
---|
| 638 | then |
---|
| 639 | |
---|
| 640 | "Effectiveness in Counter Flow" |
---|
| 641 | Method.Eft = 1; |
---|
| 642 | |
---|
| 643 | else |
---|
| 644 | |
---|
| 645 | "Effectiveness in Counter Flow" |
---|
| 646 | Method.NTU*(Method.Cr-1.00001) = ln(abs((Method.Eft-1.00001))) - ln(abs((Method.Cr*Method.Eft-1.00001))); |
---|
| 647 | end |
---|
| 648 | |
---|
| 649 | end |
---|
| 650 | |
---|
| 651 | end |
---|
| 652 | |
---|
[484] | 653 | case "Simplified": |
---|
| 654 | |
---|
| 655 | "Number of Units Transference" |
---|
| 656 | Method.NTU = 1; |
---|
| 657 | |
---|
| 658 | "Minimum Heat Capacity" |
---|
| 659 | Method.Cmin = min([Method.Ch,Method.Cc]); |
---|
| 660 | |
---|
| 661 | "Maximum Heat Capacity" |
---|
| 662 | Method.Cmax = max([Method.Ch,Method.Cc]); |
---|
| 663 | |
---|
| 664 | "Thermal Capacity Ratio" |
---|
| 665 | Method.Cr = 1; |
---|
| 666 | |
---|
| 667 | "Effectiveness" |
---|
| 668 | Method.Eft = Eftestimated; |
---|
| 669 | |
---|
| 670 | end |
---|
| 671 | |
---|
[441] | 672 | switch HotSide |
---|
| 673 | |
---|
| 674 | case "outer": |
---|
| 675 | |
---|
[484] | 676 | switch CalculationApproach |
---|
| 677 | |
---|
| 678 | case "Full": |
---|
| 679 | |
---|
[441] | 680 | "Duty" |
---|
| 681 | Details.Q = Method.Eft*Method.Cmin*(InletOuter.T-InletInner.T); |
---|
| 682 | |
---|
[484] | 683 | case "Simplified": |
---|
| 684 | |
---|
| 685 | "Duty" |
---|
| 686 | Details.Q = Qestimated; |
---|
| 687 | |
---|
| 688 | end |
---|
| 689 | |
---|
[441] | 690 | "Hot Stream Heat Capacity" |
---|
| 691 | Method.Ch = InletOuter.F*Outer.Properties.Average.Cp; |
---|
| 692 | |
---|
| 693 | "Cold Stream Heat Capacity" |
---|
| 694 | Method.Cc = InletInner.F*Inner.Properties.Average.Cp; |
---|
| 695 | |
---|
| 696 | when InletInner.T > InletOuter.T switchto "inner"; |
---|
| 697 | |
---|
| 698 | case "inner": |
---|
| 699 | |
---|
[484] | 700 | switch CalculationApproach |
---|
| 701 | |
---|
| 702 | case "Full": |
---|
| 703 | |
---|
[441] | 704 | "Duty" |
---|
| 705 | Details.Q = Method.Eft*Method.Cmin*(InletInner.T-InletOuter.T); |
---|
| 706 | |
---|
[484] | 707 | case "Simplified": |
---|
| 708 | |
---|
| 709 | "Duty" |
---|
| 710 | Details.Q = Qestimated; |
---|
| 711 | |
---|
| 712 | end |
---|
| 713 | |
---|
[441] | 714 | "Cold Stream Heat Capacity" |
---|
| 715 | Method.Cc = InletOuter.F*Outer.Properties.Average.Cp; |
---|
| 716 | |
---|
| 717 | "Hot Stream Heat Capacity" |
---|
| 718 | Method.Ch = InletInner.F*Inner.Properties.Average.Cp; |
---|
| 719 | |
---|
| 720 | when InletInner.T < InletOuter.T switchto "outer"; |
---|
| 721 | |
---|
| 722 | end |
---|
| 723 | |
---|
| 724 | end |
---|
| 725 | |
---|
| 726 | Model Hairpin_LMTD as Hairpin_Basic |
---|
| 727 | |
---|
| 728 | ATTRIBUTES |
---|
| 729 | |
---|
| 730 | Icon = "icon/hairpin"; |
---|
| 731 | Pallete = true; |
---|
| 732 | Brief = "Hairpin Heat Exchanger - LMTD Method"; |
---|
| 733 | Info = |
---|
| 734 | "to be documented."; |
---|
| 735 | |
---|
| 736 | PARAMETERS |
---|
| 737 | |
---|
| 738 | FlowDirection as Switcher (Brief="Flow Direction",Valid=["counter","cocurrent"],Default="cocurrent"); |
---|
| 739 | |
---|
| 740 | VARIABLES |
---|
| 741 | |
---|
| 742 | Method as LMTD_Basic (Brief="LMTD Method of Calculation", Symbol=" "); |
---|
| 743 | |
---|
| 744 | EQUATIONS |
---|
| 745 | |
---|
[484] | 746 | switch CalculationApproach |
---|
| 747 | |
---|
| 748 | case "Full": |
---|
| 749 | |
---|
| 750 | "Duty" |
---|
[441] | 751 | Details.Q = Details.Ud*Pi*DoInner*(2*Lpipe)*Method.LMTD; |
---|
[484] | 752 | |
---|
| 753 | case "Simplified": |
---|
| 754 | |
---|
| 755 | "Duty Estimated" |
---|
| 756 | Details.Q = Qestimated; |
---|
| 757 | |
---|
| 758 | end |
---|
| 759 | |
---|
[441] | 760 | "LMTD Correction Factor - True counter ou cocurrent flow" |
---|
| 761 | Method.Fc = 1; |
---|
| 762 | |
---|
| 763 | switch HotSide |
---|
| 764 | |
---|
| 765 | case "outer": |
---|
| 766 | |
---|
| 767 | switch FlowDirection |
---|
| 768 | |
---|
| 769 | case "cocurrent": |
---|
| 770 | |
---|
| 771 | "Temperature Difference at Inlet - Cocurrent Flow" |
---|
| 772 | Method.DT0 = InletOuter.T - InletInner.T; |
---|
| 773 | |
---|
| 774 | "Temperature Difference at Outlet - Cocurrent Flow" |
---|
| 775 | Method.DTL = OutletOuter.T - OutletInner.T; |
---|
| 776 | |
---|
| 777 | case "counter": |
---|
| 778 | |
---|
| 779 | "Temperature Difference at Inlet - Counter Flow" |
---|
| 780 | Method.DT0 = InletOuter.T - OutletInner.T; |
---|
| 781 | |
---|
| 782 | "Temperature Difference at Outlet - Counter Flow" |
---|
| 783 | Method.DTL = OutletOuter.T - InletInner.T; |
---|
| 784 | |
---|
| 785 | |
---|
| 786 | end |
---|
| 787 | |
---|
| 788 | when InletInner.T > InletOuter.T switchto "inner"; |
---|
| 789 | |
---|
| 790 | case "inner": |
---|
| 791 | |
---|
| 792 | switch FlowDirection |
---|
| 793 | |
---|
| 794 | case "cocurrent": |
---|
| 795 | |
---|
| 796 | "Temperature Difference at Inlet - Cocurrent Flow" |
---|
| 797 | Method.DT0 = InletInner.T - InletOuter.T; |
---|
| 798 | |
---|
| 799 | "Temperature Difference at Outlet - Cocurrent Flow" |
---|
| 800 | Method.DTL = OutletInner.T - OutletOuter.T; |
---|
| 801 | |
---|
| 802 | case "counter": |
---|
| 803 | |
---|
| 804 | "Temperature Difference at Inlet - Counter Flow" |
---|
| 805 | Method.DT0 = InletInner.T - OutletOuter.T; |
---|
| 806 | |
---|
| 807 | "Temperature Difference at Outlet - Counter Flow" |
---|
| 808 | Method.DTL = OutletInner.T - InletOuter.T; |
---|
| 809 | |
---|
| 810 | end |
---|
| 811 | |
---|
| 812 | when InletInner.T < InletOuter.T switchto "outer"; |
---|
| 813 | |
---|
| 814 | end |
---|
| 815 | |
---|
| 816 | end |
---|