1 | #*------------------------------------------------------------------- |
---|
2 | * EMSO Model Library (EML) Copyright (C) 2004 - 2007 ALSOC. |
---|
3 | * |
---|
4 | * This LIBRARY is free software; you can distribute it and/or modify |
---|
5 | * it under the therms of the ALSOC FREE LICENSE as available at |
---|
6 | * http://www.enq.ufrgs.br/alsoc. |
---|
7 | * |
---|
8 | * EMSO Copyright (C) 2004 - 2007 ALSOC, original code |
---|
9 | * from http://www.rps.eng.br Copyright (C) 2002-2004. |
---|
10 | * All rights reserved. |
---|
11 | * |
---|
12 | * EMSO is distributed under the therms of the ALSOC LICENSE as |
---|
13 | * available at http://www.enq.ufrgs.br/alsoc. |
---|
14 | *-------------------------------------------------------------------- |
---|
15 | * Author: Gerson Balbueno Bicca |
---|
16 | * $Id: DoublePipeIncr.mso $ |
---|
17 | *------------------------------------------------------------------*# |
---|
18 | |
---|
19 | using "streams"; |
---|
20 | |
---|
21 | Model Properties_Average |
---|
22 | |
---|
23 | ATTRIBUTES |
---|
24 | Pallete = false; |
---|
25 | Brief = "Average incremental physical properties of the streams."; |
---|
26 | Info = |
---|
27 | "to be documented."; |
---|
28 | |
---|
29 | PARAMETERS |
---|
30 | |
---|
31 | outer N as Integer (Brief="Number of zones", Default = 2); |
---|
32 | |
---|
33 | VARIABLES |
---|
34 | Mw as molweight (Brief="Average Mol Weight",Default=75, Lower=1, Upper=1e8); |
---|
35 | T(N) as temperature (Brief="Average Incremental Temperature",Lower=50); |
---|
36 | P(N) as pressure (Brief="Average Incremental Pressure",Default=1, Lower=1e-10, Upper=2e4, DisplayUnit='kPa'); |
---|
37 | rho(N) as dens_mass (Brief="Stream Incremental Density" ,Default=1000, Lower=1e-3, Upper=5e5, Symbol = "\rho"); |
---|
38 | Mu(N) as viscosity (Brief="Stream Incremental Viscosity",Lower=0.0001, Symbol = "\mu"); |
---|
39 | Cp(N) as cp_mol (Brief="Stream Incremental Molar Heat Capacity", Upper=1e10); |
---|
40 | K(N) as conductivity (Brief="Stream Incremental Thermal Conductivity", Default=1.0, Lower=1e-5, Upper=500); |
---|
41 | |
---|
42 | end |
---|
43 | |
---|
44 | Model Properties_In_Out |
---|
45 | |
---|
46 | ATTRIBUTES |
---|
47 | Pallete = false; |
---|
48 | Brief = "Inlet and outlet physical properties of the streams."; |
---|
49 | Info = |
---|
50 | "to be documented."; |
---|
51 | |
---|
52 | VARIABLES |
---|
53 | Fw as flow_mass (Brief="Stream Mass Flow"); |
---|
54 | rho as dens_mass (Brief="Stream Density" ,Default=1000, Lower=1e-3, Upper=5e5, Symbol = "\rho"); |
---|
55 | end |
---|
56 | |
---|
57 | Model Properties_Wall |
---|
58 | |
---|
59 | ATTRIBUTES |
---|
60 | Pallete = false; |
---|
61 | Brief = "Incremental Physical properties of the streams at wall temperature."; |
---|
62 | Info = |
---|
63 | "to be documented."; |
---|
64 | |
---|
65 | PARAMETERS |
---|
66 | |
---|
67 | outer N as Integer (Brief="Number of zones", Default = 2); |
---|
68 | |
---|
69 | VARIABLES |
---|
70 | Mu(N) as viscosity (Brief="Stream Incremental Viscosity",Default=1, Lower=1e-5, Upper=1e5, Symbol = "\mu"); |
---|
71 | Twall(N) as temperature (Brief="Incremental Wall Temperature",Lower=50); |
---|
72 | |
---|
73 | end |
---|
74 | |
---|
75 | Model Physical_Properties |
---|
76 | |
---|
77 | ATTRIBUTES |
---|
78 | Pallete = false; |
---|
79 | Brief = "to be documented"; |
---|
80 | Info = |
---|
81 | "to be documented"; |
---|
82 | |
---|
83 | VARIABLES |
---|
84 | Inlet as Properties_In_Out (Brief="Properties at Inlet Stream", Symbol = "^{in}"); |
---|
85 | Average as Properties_Average (Brief="Properties at Average Temperature", Symbol = "^{avg}"); |
---|
86 | Outlet as Properties_In_Out (Brief="Properties at Outlet Stream", Symbol = "^{out}"); |
---|
87 | Wall as Properties_Wall (Brief="Properties at Wall Temperature", Symbol = "^{wall}"); |
---|
88 | |
---|
89 | end |
---|
90 | |
---|
91 | Model Details_Main |
---|
92 | |
---|
93 | ATTRIBUTES |
---|
94 | Pallete = false; |
---|
95 | Brief = "to be documented"; |
---|
96 | Info = |
---|
97 | "to be documented"; |
---|
98 | |
---|
99 | PARAMETERS |
---|
100 | |
---|
101 | outer N as Integer (Brief="Number of zones", Default = 2); |
---|
102 | |
---|
103 | VARIABLES |
---|
104 | A as area (Brief="Total Exchange Surface Area"); |
---|
105 | Q(N) as power (Brief="Incremental Duty", Default=7000, Lower=1e-6, Upper=1e10); |
---|
106 | Qtotal as power (Brief="Total Duty", Default=7000, Lower=1e-6, Upper=1e10); |
---|
107 | Uc(N) as heat_trans_coeff (Brief="Incremental Overall Heat Transfer Coefficient Clean",Default=1,Lower=1e-6,Upper=1e10); |
---|
108 | Ud(N) as heat_trans_coeff (Brief="Incremental Overall Heat Transfer Coefficient Dirty",Default=1,Lower=1e-6,Upper=1e10); |
---|
109 | |
---|
110 | end |
---|
111 | |
---|
112 | Model DoublePipe_HeatTransfer |
---|
113 | |
---|
114 | ATTRIBUTES |
---|
115 | Pallete = false; |
---|
116 | Brief = "to be documented"; |
---|
117 | Info = |
---|
118 | "to be documented"; |
---|
119 | |
---|
120 | PARAMETERS |
---|
121 | |
---|
122 | As as area (Brief="Cross Sectional Area for Flow",Default=0.05,Lower=1e-8); |
---|
123 | Dh as length (Brief="Hydraulic Diameter of Pipe for Heat Transfer",Lower=1e-8); |
---|
124 | outer N as Integer (Brief="Number of zones", Default = 2); |
---|
125 | outer Npoints as Integer (Brief="Number of incremental points", Default = 3); |
---|
126 | |
---|
127 | VARIABLES |
---|
128 | |
---|
129 | Tlocal(Npoints) as temperature (Brief="Incremental Local Temperature",Lower=50); |
---|
130 | Re(N) as positive (Brief="Incremental Reynolds Number",Default=100,Lower=1); |
---|
131 | hcoeff(N) as heat_trans_coeff (Brief="Incremental Film Coefficient",Default=1,Lower=1e-12, Upper=1e6, DisplayUnit = 'W/m^2/K'); |
---|
132 | fi(N) as fricfactor (Brief="Incremental Friction Factor", Default=0.05, Lower=1e-10, Upper=2000); |
---|
133 | Nu(N) as positive (Brief="Incremental Nusselt Number",Default=0.5,Lower=1e-8); |
---|
134 | PR(N) as positive (Brief="Incremental Prandtl Number",Default=0.5,Lower=1e-8); |
---|
135 | Phi(N) as positive (Brief="Incremental Phi Correction",Default=1,Lower=1e-3); |
---|
136 | Vmean(N) as velocity (Brief="Incremental Tube Velocity",Lower=1e-8); |
---|
137 | Enth(Npoints) as enth_mol (Brief="Incremental Stream Enthalpy"); |
---|
138 | |
---|
139 | end |
---|
140 | |
---|
141 | Model DoublePipe_PressureDrop |
---|
142 | |
---|
143 | ATTRIBUTES |
---|
144 | Pallete = false; |
---|
145 | Brief = "to be documented"; |
---|
146 | Info = |
---|
147 | "to be documented"; |
---|
148 | |
---|
149 | PARAMETERS |
---|
150 | |
---|
151 | Dh as length (Brief="Hydraulic Diameter of Pipe for Pressure Drop",Lower=1e-6); |
---|
152 | outer N as Integer (Brief="Number of zones", Default = 2); |
---|
153 | outer Npoints as Integer (Brief="Number of incremental points", Default = 3); |
---|
154 | |
---|
155 | VARIABLES |
---|
156 | |
---|
157 | Plocal(Npoints) as pressure (Brief="Incremental Local Pressure",Default=1, Lower=1e-10, Upper=2e4, DisplayUnit='kPa'); |
---|
158 | Pdrop as press_delta (Brief="Total Pressure Drop",Default=0.01, Lower=0,DisplayUnit='kPa', Symbol ="\Delta P"); |
---|
159 | Pd_fric(Npoints) as press_delta (Brief="Incremental Pressure Drop for friction",Default=0.01, Lower=0,DisplayUnit='kPa', Symbol ="\Delta P_{fric}"); |
---|
160 | fi(N) as fricfactor (Brief="Incremental Friction Factor", Default=0.05, Lower=1e-10, Upper=2000); |
---|
161 | Re(N) as positive (Brief="Incremental Reynolds Number",Default=100,Lower=1); |
---|
162 | |
---|
163 | end |
---|
164 | |
---|
165 | Model Main_DoublePipe |
---|
166 | |
---|
167 | ATTRIBUTES |
---|
168 | Pallete = false; |
---|
169 | Brief = "to be documented"; |
---|
170 | Info = |
---|
171 | "to be documented"; |
---|
172 | |
---|
173 | VARIABLES |
---|
174 | |
---|
175 | HeatTransfer as DoublePipe_HeatTransfer (Brief="Double Pipe Heat Transfer"); |
---|
176 | PressureDrop as DoublePipe_PressureDrop (Brief="Double Pipe Pressure Drop"); |
---|
177 | Properties as Physical_Properties (Brief="Double Pipe Properties"); |
---|
178 | |
---|
179 | end |
---|
180 | |
---|
181 | Model DoublePipeIncr |
---|
182 | |
---|
183 | ATTRIBUTES |
---|
184 | Pallete = true; |
---|
185 | Icon = "icon/DoublePipe"; |
---|
186 | Brief = "Incremental Double Pipe Heat Exchanger. "; |
---|
187 | Info = |
---|
188 | "Incremental approach for a single double pipe heat exchanger. "; |
---|
189 | |
---|
190 | PARAMETERS |
---|
191 | |
---|
192 | outer PP as Plugin (Brief="External Physical Properties", Type="PP"); |
---|
193 | outer NComp as Integer (Brief="Number of Components"); |
---|
194 | N as Integer (Brief="Number of zones", Default = 2); |
---|
195 | Npoints as Integer (Brief="Number of incremental points", Default = 3); |
---|
196 | |
---|
197 | M(NComp) as molweight (Brief="Component Mol Weight"); |
---|
198 | |
---|
199 | FlowDirection as Switcher (Brief="Flow Direction",Valid=["counter","cocurrent"],Default="cocurrent"); |
---|
200 | |
---|
201 | HotSide as Switcher (Brief="Flag for Fluid Alocation ",Valid=["outer","inner"],Default="outer"); |
---|
202 | innerFlowRegime as Switcher (Brief="Inner Flow Regime ",Valid=["laminar","transition","turbulent"],Default="laminar"); |
---|
203 | outerFlowRegime as Switcher (Brief="Outer Flow Regime ",Valid=["laminar","transition","turbulent"],Default="laminar"); |
---|
204 | |
---|
205 | InnerLaminarCorrelation as Switcher (Brief="Heat Transfer Correlation in Laminar Flow for the Inner Side",Valid=["Hausen","Schlunder"],Default="Hausen"); |
---|
206 | InnerTransitionCorrelation as Switcher (Brief="Heat Transfer Correlation in Transition Flow for the Inner Side",Valid=["Gnielinski","Hausen"],Default="Gnielinski"); |
---|
207 | InnerTurbulentCorrelation as Switcher (Brief="Heat Transfer Correlation in Turbulent Flow for the Inner Side",Valid=["Petukhov","SiederTate"],Default="Petukhov"); |
---|
208 | |
---|
209 | OuterLaminarCorrelation as Switcher (Brief="Heat Transfer Correlation in Laminar Flow for the Outer Side",Valid=["Hausen","Schlunder"],Default="Hausen"); |
---|
210 | OuterTransitionCorrelation as Switcher (Brief="Heat Transfer Correlation in Transition Flow for the OuterSide",Valid=["Gnielinski","Hausen"],Default="Gnielinski"); |
---|
211 | OuterTurbulentCorrelation as Switcher (Brief="Heat Transfer Correlation in Turbulent Flow for the Outer Side",Valid=["Petukhov","SiederTate"],Default="Petukhov"); |
---|
212 | |
---|
213 | Pi as constant (Brief="Pi Number",Default=3.14159265, Symbol = "\pi"); |
---|
214 | DoInner as length (Brief="Outside Diameter of Inner Pipe",Lower=1e-6); |
---|
215 | DiInner as length (Brief="Inside Diameter of Inner Pipe",Lower=1e-10); |
---|
216 | DiOuter as length (Brief="Inside Diameter of Outer pipe",Lower=1e-10); |
---|
217 | Lpipe as length (Brief="Effective Tube Length of one segment of Pipe",Lower=0.1, Symbol = "L_{pipe}"); |
---|
218 | Kwall as conductivity (Brief="Tube Wall Material Thermal Conductivity",Default=1.0, Symbol = "K_{wall}"); |
---|
219 | Rfi as positive (Brief="Inside Fouling Resistance",Unit='m^2*K/kW',Default=1e-6,Lower=0); |
---|
220 | Rfo as positive (Brief="Outside Fouling Resistance",Unit='m^2*K/kW',Default=1e-6,Lower=0); |
---|
221 | |
---|
222 | VARIABLES |
---|
223 | |
---|
224 | in InletInner as stream (Brief="Inlet Inner Stream", PosX=0, PosY=0.5225, Symbol="_{inInner}"); |
---|
225 | in InletOuter as stream (Brief="Inlet Outer Stream", PosX=0.2805, PosY=0, Symbol="_{inOuter}"); |
---|
226 | |
---|
227 | out OutletInner as streamPH (Brief="Outlet Inner Stream", PosX=1, PosY=0.5225, Symbol="_{outInner}"); |
---|
228 | out OutletOuter as streamPH (Brief="Outlet Outer Stream", PosX=0.7264, PosY=1, Symbol="_{outOuter}"); |
---|
229 | |
---|
230 | Details as Details_Main (Brief="Some Details in the Heat Exchanger", Symbol=" "); |
---|
231 | Inner as Main_DoublePipe (Brief="Inner Side of the Heat Exchanger", Symbol="_{Inner}"); |
---|
232 | Outer as Main_DoublePipe (Brief="Outer Side of the Heat Exchanger", Symbol="_{Outer}"); |
---|
233 | |
---|
234 | Lincr(Npoints) as length (Brief = "Incremental Tube Length", Symbol = "L_{incr}"); |
---|
235 | |
---|
236 | SET |
---|
237 | |
---|
238 | #"Number of incremental points" |
---|
239 | Npoints = N+1; |
---|
240 | |
---|
241 | #"Component Molecular Weight" |
---|
242 | M = PP.MolecularWeight(); |
---|
243 | |
---|
244 | #"Pi Number" |
---|
245 | Pi = 3.14159265; |
---|
246 | |
---|
247 | #"Inner Pipe Cross Sectional Area for Flow" |
---|
248 | Inner.HeatTransfer.As=0.25*Pi*DiInner*DiInner; |
---|
249 | |
---|
250 | #"Outer Pipe Cross Sectional Area for Flow" |
---|
251 | Outer.HeatTransfer.As=0.25*Pi*(DiOuter*DiOuter - DoInner*DoInner); |
---|
252 | |
---|
253 | #"Inner Pipe Hydraulic Diameter for Heat Transfer" |
---|
254 | Inner.HeatTransfer.Dh=DiInner; |
---|
255 | |
---|
256 | #"Outer Pipe Hydraulic Diameter for Heat Transfer" |
---|
257 | Outer.HeatTransfer.Dh=(DiOuter*DiOuter-DoInner*DoInner)/DoInner; |
---|
258 | |
---|
259 | #"Inner Pipe Hydraulic Diameter for Pressure Drop" |
---|
260 | Inner.PressureDrop.Dh=DiInner; |
---|
261 | |
---|
262 | #"Outer Pipe Hydraulic Diameter for Pressure Drop" |
---|
263 | Outer.PressureDrop.Dh=DiOuter-DoInner; |
---|
264 | |
---|
265 | EQUATIONS |
---|
266 | |
---|
267 | "Outer Stream Average Temperature" |
---|
268 | Outer.Properties.Average.T(1:N) = 0.5*Outer.HeatTransfer.Tlocal(1:N) + 0.5*Outer.HeatTransfer.Tlocal(2:Npoints); |
---|
269 | |
---|
270 | "Inner Stream Average Temperature" |
---|
271 | Inner.Properties.Average.T(1:N) = 0.5*Inner.HeatTransfer.Tlocal(1:N) + 0.5*Inner.HeatTransfer.Tlocal(2:Npoints); |
---|
272 | |
---|
273 | "Outer Stream Average Pressure" |
---|
274 | Outer.Properties.Average.P(1:N) = 0.5*Outer.PressureDrop.Plocal(1:N) + 0.5*Outer.PressureDrop.Plocal(2:Npoints); |
---|
275 | |
---|
276 | "Inner Stream Average Pressure" |
---|
277 | Inner.Properties.Average.P(1:N) = 0.5*Inner.PressureDrop.Plocal(1:N) + 0.5*Inner.PressureDrop.Plocal(2:Npoints); |
---|
278 | |
---|
279 | "Inner Stream Wall Temperature" |
---|
280 | Inner.Properties.Wall.Twall = 0.5*Outer.Properties.Average.T + 0.5*Inner.Properties.Average.T; |
---|
281 | |
---|
282 | "Outer Stream Wall Temperature" |
---|
283 | Outer.Properties.Wall.Twall = 0.5*Outer.Properties.Average.T + 0.5*Inner.Properties.Average.T; |
---|
284 | |
---|
285 | "Outer Stream Average Molecular Weight" |
---|
286 | Outer.Properties.Average.Mw = sum(M*InletOuter.z); |
---|
287 | |
---|
288 | "Inner Stream Average Molecular Weight" |
---|
289 | Inner.Properties.Average.Mw = sum(M*InletInner.z); |
---|
290 | |
---|
291 | |
---|
292 | if InletInner.v equal 0 |
---|
293 | |
---|
294 | then |
---|
295 | "Inlet Mass Density Inner Stream" |
---|
296 | Inner.Properties.Inlet.rho = PP.LiquidDensity(InletInner.T,InletInner.P,InletInner.z); |
---|
297 | |
---|
298 | "Outlet Mass Density Inner Stream" |
---|
299 | Inner.Properties.Outlet.rho = PP.LiquidDensity(OutletInner.T,OutletInner.P,OutletInner.z); |
---|
300 | |
---|
301 | else |
---|
302 | "Inlet Mass Density Inner Stream" |
---|
303 | Inner.Properties.Inlet.rho = PP.VapourDensity(InletInner.T,InletInner.P,InletInner.z); |
---|
304 | |
---|
305 | "Outlet Mass Density Inner Stream" |
---|
306 | Inner.Properties.Outlet.rho = PP.VapourDensity(OutletInner.T,OutletInner.P,OutletInner.z); |
---|
307 | |
---|
308 | end |
---|
309 | |
---|
310 | if InletOuter.v equal 0 |
---|
311 | |
---|
312 | then |
---|
313 | "Inlet Mass Density Outer Stream" |
---|
314 | Outer.Properties.Inlet.rho = PP.LiquidDensity(InletOuter.T,InletOuter.P,InletOuter.z); |
---|
315 | |
---|
316 | "Outlet Mass Density Outer Stream" |
---|
317 | Outer.Properties.Outlet.rho = PP.LiquidDensity(OutletOuter.T,OutletOuter.P,OutletOuter.z); |
---|
318 | |
---|
319 | else |
---|
320 | "Inlet Mass Density Outer Stream" |
---|
321 | Outer.Properties.Inlet.rho = PP.VapourDensity(InletOuter.T,InletOuter.P,InletOuter.z); |
---|
322 | |
---|
323 | "Outlet Mass Density Outer Stream" |
---|
324 | Outer.Properties.Outlet.rho = PP.VapourDensity(OutletOuter.T,OutletOuter.P,OutletOuter.z); |
---|
325 | |
---|
326 | end |
---|
327 | |
---|
328 | for i in [1:N] |
---|
329 | |
---|
330 | if InletInner.v equal 0 |
---|
331 | |
---|
332 | then |
---|
333 | |
---|
334 | "Average Heat Capacity Inner Stream" |
---|
335 | Inner.Properties.Average.Cp(i) = PP.LiquidCp(Inner.Properties.Average.T(i),Inner.Properties.Average.P(i),InletInner.z); |
---|
336 | |
---|
337 | "Average Mass Density Inner Stream" |
---|
338 | Inner.Properties.Average.rho(i) = PP.LiquidDensity(Inner.Properties.Average.T(i),Inner.Properties.Average.P(i),InletInner.z); |
---|
339 | |
---|
340 | "Average Viscosity Inner Stream" |
---|
341 | Inner.Properties.Average.Mu(i) = PP.LiquidViscosity(Inner.Properties.Average.T(i),Inner.Properties.Average.P(i),InletInner.z); |
---|
342 | |
---|
343 | "Average Conductivity Inner Stream" |
---|
344 | Inner.Properties.Average.K(i) = PP.LiquidThermalConductivity(Inner.Properties.Average.T(i),Inner.Properties.Average.P(i),InletInner.z); |
---|
345 | |
---|
346 | "Viscosity Inner Stream at wall temperature" |
---|
347 | Inner.Properties.Wall.Mu(i) = PP.LiquidViscosity(Inner.Properties.Wall.Twall(i),Inner.Properties.Average.P(i),InletInner.z); |
---|
348 | |
---|
349 | else |
---|
350 | |
---|
351 | "Average Heat Capacity InnerStream" |
---|
352 | Inner.Properties.Average.Cp(i) = PP.VapourCp(Inner.Properties.Average.T(i),Inner.Properties.Average.P(i),InletInner.z); |
---|
353 | |
---|
354 | "Average Mass Density Inner Stream" |
---|
355 | Inner.Properties.Average.rho(i) = PP.VapourDensity(Inner.Properties.Average.T(i),Inner.Properties.Average.P(i),InletInner.z); |
---|
356 | |
---|
357 | "Average Viscosity Inner Stream" |
---|
358 | Inner.Properties.Average.Mu(i) = PP.VapourViscosity(Inner.Properties.Average.T(i),Inner.Properties.Average.P(i),InletInner.z); |
---|
359 | |
---|
360 | "Average Conductivity Inner Stream" |
---|
361 | Inner.Properties.Average.K(i) = PP.VapourThermalConductivity(Inner.Properties.Average.T(i),Inner.Properties.Average.P(i),InletInner.z); |
---|
362 | |
---|
363 | "Viscosity Inner Stream at wall temperature" |
---|
364 | Inner.Properties.Wall.Mu(i) = PP.VapourViscosity(Inner.Properties.Wall.Twall(i),Inner.Properties.Average.P(i),InletInner.z); |
---|
365 | |
---|
366 | end |
---|
367 | |
---|
368 | if InletOuter.v equal 0 |
---|
369 | |
---|
370 | then |
---|
371 | |
---|
372 | "Average Heat Capacity Outer Stream" |
---|
373 | Outer.Properties.Average.Cp(i) = PP.LiquidCp(Outer.Properties.Average.T(i),Outer.Properties.Average.P(i),InletOuter.z); |
---|
374 | |
---|
375 | "Average Mass Density Outer Stream" |
---|
376 | Outer.Properties.Average.rho(i) = PP.LiquidDensity(Outer.Properties.Average.T(i),Outer.Properties.Average.P(i),InletOuter.z); |
---|
377 | |
---|
378 | "Average Viscosity Outer Stream" |
---|
379 | Outer.Properties.Average.Mu(i) = PP.LiquidViscosity(Outer.Properties.Average.T(i),Outer.Properties.Average.P(i),InletOuter.z); |
---|
380 | |
---|
381 | "Average Conductivity Outer Stream" |
---|
382 | Outer.Properties.Average.K(i) = PP.LiquidThermalConductivity(Outer.Properties.Average.T(i),Outer.Properties.Average.P(i),InletOuter.z); |
---|
383 | |
---|
384 | "Viscosity Outer Stream at wall temperature" |
---|
385 | Outer.Properties.Wall.Mu(i) = PP.LiquidViscosity(Outer.Properties.Wall.Twall(i),Outer.Properties.Average.P(i),InletOuter.z); |
---|
386 | |
---|
387 | |
---|
388 | else |
---|
389 | |
---|
390 | "Average Heat Capacity Outer Stream" |
---|
391 | Outer.Properties.Average.Cp(i) = PP.VapourCp(Outer.Properties.Average.T(i),Outer.Properties.Average.P(i),InletOuter.z); |
---|
392 | |
---|
393 | "Average Mass Density Outer Stream" |
---|
394 | Outer.Properties.Average.rho(i) = PP.VapourDensity(Outer.Properties.Average.T(i),Outer.Properties.Average.P(i),InletOuter.z); |
---|
395 | |
---|
396 | "Average Viscosity Outer Stream" |
---|
397 | Outer.Properties.Average.Mu(i) = PP.VapourViscosity(Outer.Properties.Average.T(i),Outer.Properties.Average.P(i),InletOuter.z); |
---|
398 | |
---|
399 | "Average Conductivity Outer Stream" |
---|
400 | Outer.Properties.Average.K(i) = PP.VapourThermalConductivity(Outer.Properties.Average.T(i),Outer.Properties.Average.P(i),InletOuter.z); |
---|
401 | |
---|
402 | "Viscosity Outer Stream at wall temperature" |
---|
403 | Outer.Properties.Wall.Mu(i) = PP.VapourViscosity(Outer.Properties.Wall.Twall(i),Outer.Properties.Average.P(i),InletOuter.z); |
---|
404 | |
---|
405 | end |
---|
406 | |
---|
407 | end |
---|
408 | |
---|
409 | switch HotSide |
---|
410 | |
---|
411 | case "outer": |
---|
412 | |
---|
413 | switch FlowDirection |
---|
414 | |
---|
415 | case "cocurrent": |
---|
416 | "Energy Balance Outer Stream in cocurrent flow" |
---|
417 | Details.Q(1:N) = InletOuter.F*(Outer.HeatTransfer.Enth(1:N) - Outer.HeatTransfer.Enth(2:Npoints)); |
---|
418 | |
---|
419 | case "counter": |
---|
420 | "Energy Balance Outer Stream in counter flow" |
---|
421 | Details.Q(1:N) = InletOuter.F*(Outer.HeatTransfer.Enth(2:Npoints) - Outer.HeatTransfer.Enth(1:N)); |
---|
422 | |
---|
423 | end |
---|
424 | |
---|
425 | "Energy Balance Inner Stream" |
---|
426 | Details.Q(1:N) = -InletInner.F*(Inner.HeatTransfer.Enth(1:N) - Inner.HeatTransfer.Enth(2:Npoints)); |
---|
427 | |
---|
428 | when InletInner.T > InletOuter.T switchto "inner"; |
---|
429 | |
---|
430 | case "inner": |
---|
431 | |
---|
432 | "Energy Balance Hot Stream" |
---|
433 | Details.Q(1:N) = InletInner.F*(Inner.HeatTransfer.Enth(1:N)-Inner.HeatTransfer.Enth(2:Npoints)); |
---|
434 | |
---|
435 | switch FlowDirection |
---|
436 | |
---|
437 | case "cocurrent": |
---|
438 | "Energy Balance Cold Stream in cocurrent flow" |
---|
439 | Details.Q(1:N) = -InletOuter.F*(Outer.HeatTransfer.Enth(1:N) - Outer.HeatTransfer.Enth(2:Npoints)); |
---|
440 | |
---|
441 | case "counter": |
---|
442 | "Energy Balance Cold Stream in counter flow" |
---|
443 | Details.Q(1:N) = -InletOuter.F*(Outer.HeatTransfer.Enth(2:Npoints) - Outer.HeatTransfer.Enth(1:N)); |
---|
444 | |
---|
445 | end |
---|
446 | |
---|
447 | when InletInner.T < InletOuter.T switchto "outer"; |
---|
448 | |
---|
449 | end |
---|
450 | |
---|
451 | "Flow Mass Inlet Inner Stream" |
---|
452 | Inner.Properties.Inlet.Fw = sum(M*InletInner.z)*InletInner.F; |
---|
453 | |
---|
454 | "Flow Mass Outlet Inner Stream" |
---|
455 | Inner.Properties.Outlet.Fw = sum(M*OutletInner.z)*OutletInner.F; |
---|
456 | |
---|
457 | "Flow Mass Inlet Outer Stream" |
---|
458 | Outer.Properties.Inlet.Fw = sum(M*InletOuter.z)*InletOuter.F; |
---|
459 | |
---|
460 | "Flow Mass Outlet Outer Stream" |
---|
461 | Outer.Properties.Outlet.Fw = sum(M*OutletOuter.z)*OutletOuter.F; |
---|
462 | |
---|
463 | "Molar Balance Outer Stream" |
---|
464 | OutletOuter.F = InletOuter.F; |
---|
465 | |
---|
466 | "Molar Balance Inner Stream" |
---|
467 | OutletInner.F = InletInner.F; |
---|
468 | |
---|
469 | "Outer Stream Molar Fraction Constraint" |
---|
470 | OutletOuter.z=InletOuter.z; |
---|
471 | |
---|
472 | "InnerStream Molar Fraction Constraint" |
---|
473 | OutletInner.z=InletInner.z; |
---|
474 | |
---|
475 | "Total Exchange Surface Area for one segment of pipe" |
---|
476 | Details.A=Pi*DoInner*Lpipe; |
---|
477 | |
---|
478 | "Pipe Initial Length from Left to Right - OBS: Left: Always Inlet inner side" |
---|
479 | Lincr(1) = 0*'m'; |
---|
480 | |
---|
481 | for i in [1:N] |
---|
482 | |
---|
483 | "Incremental Length" |
---|
484 | Lincr(i+1) = i*abs(Lpipe)/N; |
---|
485 | |
---|
486 | end |
---|
487 | |
---|
488 | for i in [1:N] |
---|
489 | |
---|
490 | switch innerFlowRegime |
---|
491 | |
---|
492 | case "laminar": |
---|
493 | |
---|
494 | "Inner Side Friction Factor for Pressure Drop - laminar Flow" |
---|
495 | Inner.PressureDrop.fi(i)*Inner.PressureDrop.Re(i) = 16; |
---|
496 | |
---|
497 | when Inner.PressureDrop.Re(i) > 2300 switchto "transition"; |
---|
498 | |
---|
499 | case "transition": |
---|
500 | |
---|
501 | "using Turbulent Flow - to be implemented" |
---|
502 | (Inner.PressureDrop.fi(i)-0.0035)*(Inner.PressureDrop.Re(i)^0.42) = 0.264; |
---|
503 | |
---|
504 | when Inner.PressureDrop.Re(i) < 2300 switchto "laminar"; |
---|
505 | when Inner.PressureDrop.Re(i) > 10000 switchto "turbulent"; |
---|
506 | |
---|
507 | case "turbulent": |
---|
508 | |
---|
509 | "Inner Side Friction Factor - Turbulent Flow" |
---|
510 | (Inner.PressureDrop.fi(i)-0.0035)*(Inner.PressureDrop.Re(i)^0.42) = 0.264; |
---|
511 | |
---|
512 | when Inner.PressureDrop.Re(i) < 10000 switchto "transition"; |
---|
513 | |
---|
514 | end |
---|
515 | |
---|
516 | end |
---|
517 | |
---|
518 | for i in [1:N] |
---|
519 | |
---|
520 | switch outerFlowRegime |
---|
521 | |
---|
522 | case "laminar": |
---|
523 | |
---|
524 | "Outer Side Friction Factor - laminar Flow" |
---|
525 | Outer.PressureDrop.fi(i)*Outer.PressureDrop.Re(i) = 16; |
---|
526 | |
---|
527 | when Outer.PressureDrop.Re(i) > 2300 switchto "transition"; |
---|
528 | |
---|
529 | case "transition": |
---|
530 | |
---|
531 | "using Turbulent Flow - Transition Flow must be implemented" |
---|
532 | (Outer.PressureDrop.fi(i)-0.0035)*(Outer.PressureDrop.Re(i)^0.42) = 0.264; |
---|
533 | |
---|
534 | when Outer.PressureDrop.Re(i) < 2300 switchto "laminar"; |
---|
535 | when Outer.PressureDrop.Re(i) > 10000 switchto "turbulent"; |
---|
536 | |
---|
537 | case "turbulent": |
---|
538 | |
---|
539 | "Outer Side Friction Factor - Turbulent Flow" |
---|
540 | (Outer.PressureDrop.fi(i)-0.0035)*(Outer.PressureDrop.Re(i)^0.42) = 0.264; |
---|
541 | |
---|
542 | when Outer.PressureDrop.Re(i) < 10000 switchto "transition"; |
---|
543 | |
---|
544 | end |
---|
545 | |
---|
546 | end |
---|
547 | |
---|
548 | for i in [1:N] |
---|
549 | |
---|
550 | switch innerFlowRegime |
---|
551 | |
---|
552 | case "laminar": |
---|
553 | |
---|
554 | "Inner Side Friction Factor for Heat Transfer - laminar Flow" |
---|
555 | Inner.HeatTransfer.fi(i) = 1/(0.79*ln(Inner.HeatTransfer.Re(i))-1.64)^2; |
---|
556 | |
---|
557 | switch InnerLaminarCorrelation |
---|
558 | |
---|
559 | case "Hausen": |
---|
560 | |
---|
561 | "Nusselt Number" |
---|
562 | Inner.HeatTransfer.Nu(i) = 3.665 + ((0.19*((DiInner/Lpipe)*Inner.HeatTransfer.Re(i)*Inner.HeatTransfer.PR(i))^0.8)/(1+0.117*((DiInner/Lpipe)*Inner.HeatTransfer.Re(i)*Inner.HeatTransfer.PR(i))^0.467)); |
---|
563 | |
---|
564 | case "Schlunder": |
---|
565 | |
---|
566 | "Nusselt Number" |
---|
567 | Inner.HeatTransfer.Nu(i) = (49.027896+4.173281*Inner.HeatTransfer.Re(i)*Inner.HeatTransfer.PR(i)*(DiInner/Lpipe))^(1/3); |
---|
568 | |
---|
569 | end |
---|
570 | |
---|
571 | when Inner.HeatTransfer.Re(i) > 2300 switchto "transition"; |
---|
572 | |
---|
573 | case "transition": |
---|
574 | |
---|
575 | "Inner Side Friction Factor for Heat Transfer - transition Flow" |
---|
576 | Inner.HeatTransfer.fi(i) = 1/(0.79*ln(Inner.HeatTransfer.Re(i))-1.64)^2; |
---|
577 | |
---|
578 | switch InnerTransitionCorrelation |
---|
579 | |
---|
580 | case "Gnielinski": |
---|
581 | |
---|
582 | "Nusselt Number" |
---|
583 | Inner.HeatTransfer.Nu(i)*(1+(12.7*sqrt(0.125*Inner.HeatTransfer.fi(i))*((Inner.HeatTransfer.PR(i))^(2/3) -1))) = 0.125*Inner.HeatTransfer.fi(i)*(Inner.HeatTransfer.Re(i)-1000)*Inner.HeatTransfer.PR(i); |
---|
584 | |
---|
585 | case "Hausen": |
---|
586 | |
---|
587 | "Nusselt Number" |
---|
588 | Inner.HeatTransfer.Nu(i) =0.116*(Inner.HeatTransfer.Re(i)^(0.667)-125)*Inner.HeatTransfer.PR(i)^(0.333)*(1+(DiInner/Lpipe)^0.667); |
---|
589 | |
---|
590 | end |
---|
591 | |
---|
592 | when Inner.HeatTransfer.Re(i) < 2300 switchto "laminar"; |
---|
593 | when Inner.HeatTransfer.Re(i) > 10000 switchto "turbulent"; |
---|
594 | |
---|
595 | case "turbulent": |
---|
596 | |
---|
597 | switch InnerTurbulentCorrelation |
---|
598 | |
---|
599 | case "Petukhov": |
---|
600 | |
---|
601 | "Inner Side Friction Factor for Heat Transfer - turbulent Flow" |
---|
602 | Inner.HeatTransfer.fi(i) = 1/(1.82*log(Inner.HeatTransfer.Re(i))-1.64)^2; |
---|
603 | |
---|
604 | "Nusselt Number" |
---|
605 | Inner.HeatTransfer.Nu(i)*(1.07+(12.7*sqrt(0.125*Inner.HeatTransfer.fi(i))*((Inner.HeatTransfer.PR(i))^(2/3) -1))) = 0.125*Inner.HeatTransfer.fi(i)*Inner.HeatTransfer.Re(i)*Inner.HeatTransfer.PR(i); |
---|
606 | |
---|
607 | case "SiederTate": |
---|
608 | |
---|
609 | "Nusselt Number" |
---|
610 | Inner.HeatTransfer.Nu(i) = 0.027*(Inner.HeatTransfer.PR(i))^(1/3)*(Inner.HeatTransfer.Re(i))^(4/5); |
---|
611 | |
---|
612 | "Inner Side Friction Factor for Heat Transfer - turbulent Flow" |
---|
613 | Inner.HeatTransfer.fi(i) = 1/(1.82*log(Inner.HeatTransfer.Re(i))-1.64)^2; |
---|
614 | |
---|
615 | end |
---|
616 | |
---|
617 | when Inner.HeatTransfer.Re(i) < 10000 switchto "transition"; |
---|
618 | |
---|
619 | end |
---|
620 | |
---|
621 | end |
---|
622 | |
---|
623 | for i in [1:N] |
---|
624 | |
---|
625 | switch outerFlowRegime |
---|
626 | |
---|
627 | case "laminar": |
---|
628 | |
---|
629 | "Outer Side Friction Factor for Heat Transfer - laminar Flow" |
---|
630 | Outer.HeatTransfer.fi(i) = 1/(0.79*ln(Outer.HeatTransfer.Re(i))-1.64)^2; |
---|
631 | |
---|
632 | switch OuterLaminarCorrelation |
---|
633 | |
---|
634 | case "Hausen": |
---|
635 | |
---|
636 | "Nusselt Number" |
---|
637 | Outer.HeatTransfer.Nu(i) = 3.665 + ((0.19*((Outer.HeatTransfer.Dh/Lpipe)*Outer.HeatTransfer.Re(i)*Outer.HeatTransfer.PR(i))^0.8)/(1+0.117*((Outer.HeatTransfer.Dh/Lpipe)*Outer.HeatTransfer.Re(i)*Outer.HeatTransfer.PR(i))^0.467)); |
---|
638 | |
---|
639 | case "Schlunder": |
---|
640 | |
---|
641 | "Nusselt Number" |
---|
642 | Outer.HeatTransfer.Nu(i) = (49.027896+4.173281*Outer.HeatTransfer.Re(i)*Outer.HeatTransfer.PR(i)*(Outer.HeatTransfer.Dh/Lpipe))^(1/3); |
---|
643 | |
---|
644 | end |
---|
645 | |
---|
646 | when Outer.HeatTransfer.Re(i) > 2300 switchto "transition"; |
---|
647 | |
---|
648 | case "transition": |
---|
649 | |
---|
650 | switch OuterTransitionCorrelation |
---|
651 | |
---|
652 | case "Gnielinski": |
---|
653 | |
---|
654 | "Outer Side Friction Factor for Heat Transfer - transition Flow" |
---|
655 | Outer.HeatTransfer.fi(i) = 1/(0.79*ln(Outer.HeatTransfer.Re(i))-1.64)^2; |
---|
656 | |
---|
657 | "Nusselt Number" |
---|
658 | Outer.HeatTransfer.Nu(i)*(1+(12.7*sqrt(0.125*Outer.HeatTransfer.fi(i))*((Outer.HeatTransfer.PR(i))^(2/3) -1))) = 0.125*Outer.HeatTransfer.fi(i)*(Outer.HeatTransfer.Re(i)-1000)*Outer.HeatTransfer.PR(i); |
---|
659 | |
---|
660 | case "Hausen": |
---|
661 | |
---|
662 | "Nusselt Number" |
---|
663 | Outer.HeatTransfer.Nu(i) = 0.116*(Outer.HeatTransfer.Re(i)^(0.667)-125)*Outer.HeatTransfer.PR(i)^(0.333)*(1+(Outer.HeatTransfer.Dh/Lpipe)^0.667); |
---|
664 | |
---|
665 | |
---|
666 | "Outer Side Friction Factor for Heat Transfer - transition Flow" |
---|
667 | Outer.HeatTransfer.fi(i) = 1/(0.79*ln(Outer.HeatTransfer.Re(i))-1.64)^2; |
---|
668 | |
---|
669 | end |
---|
670 | |
---|
671 | when Outer.HeatTransfer.Re(i) < 2300 switchto "laminar"; |
---|
672 | when Outer.HeatTransfer.Re(i) > 10000 switchto "turbulent"; |
---|
673 | |
---|
674 | case "turbulent": |
---|
675 | |
---|
676 | switch OuterTurbulentCorrelation |
---|
677 | |
---|
678 | case "Petukhov": |
---|
679 | |
---|
680 | "Outer Side Friction Factor for Heat Transfer - turbulent Flow" |
---|
681 | Outer.HeatTransfer.fi(i) = 1/(1.82*log(Outer.HeatTransfer.Re(i))-1.64)^2; |
---|
682 | |
---|
683 | "Nusselt Number" |
---|
684 | Outer.HeatTransfer.Nu(i)*(1.07+(12.7*sqrt(0.125*Outer.HeatTransfer.fi(i))*((Outer.HeatTransfer.PR(i))^(2/3) -1))) = 0.125*Outer.HeatTransfer.fi(i)*Outer.HeatTransfer.Re(i)*Outer.HeatTransfer.PR(i); |
---|
685 | |
---|
686 | case "SiederTate": |
---|
687 | |
---|
688 | "Nusselt Number" |
---|
689 | Outer.HeatTransfer.Nu(i) = 0.027*(Outer.HeatTransfer.PR(i))^(1/3)*(Outer.HeatTransfer.Re(i))^(4/5); |
---|
690 | |
---|
691 | "Outer Side Friction Factor for Heat Transfer - turbulent Flow" |
---|
692 | Outer.HeatTransfer.fi(i) = 1/(1.82*log(Outer.HeatTransfer.Re(i))-1.64)^2; |
---|
693 | |
---|
694 | end |
---|
695 | |
---|
696 | when Outer.HeatTransfer.Re(i) < 10000 switchto "transition"; |
---|
697 | |
---|
698 | end |
---|
699 | |
---|
700 | end |
---|
701 | |
---|
702 | "Inner Pipe Film Coefficient" |
---|
703 | Inner.HeatTransfer.hcoeff = (Inner.HeatTransfer.Nu*Inner.Properties.Average.K/DiInner)*Inner.HeatTransfer.Phi; |
---|
704 | |
---|
705 | "Outer Pipe Film Coefficient" |
---|
706 | Outer.HeatTransfer.hcoeff= (Outer.HeatTransfer.Nu*Outer.Properties.Average.K/Outer.HeatTransfer.Dh)*Outer.HeatTransfer.Phi; |
---|
707 | |
---|
708 | "Outer Pipe Phi correction" |
---|
709 | Outer.HeatTransfer.Phi = (Outer.Properties.Average.Mu/Outer.Properties.Wall.Mu)^0.14; |
---|
710 | |
---|
711 | "Inner Pipe Phi correction" |
---|
712 | Inner.HeatTransfer.Phi = (Inner.Properties.Average.Mu/Inner.Properties.Wall.Mu)^0.14; |
---|
713 | |
---|
714 | "Outer Pipe Prandtl Number" |
---|
715 | Outer.HeatTransfer.PR = ((Outer.Properties.Average.Cp/Outer.Properties.Average.Mw)*Outer.Properties.Average.Mu)/Outer.Properties.Average.K; |
---|
716 | |
---|
717 | "Inner Pipe Prandtl Number" |
---|
718 | Inner.HeatTransfer.PR = ((Inner.Properties.Average.Cp/Inner.Properties.Average.Mw)*Inner.Properties.Average.Mu)/Inner.Properties.Average.K; |
---|
719 | |
---|
720 | "Outer Pipe Reynolds Number for Heat Transfer" |
---|
721 | Outer.HeatTransfer.Re = (Outer.Properties.Average.rho*Outer.HeatTransfer.Vmean*Outer.HeatTransfer.Dh)/Outer.Properties.Average.Mu; |
---|
722 | |
---|
723 | "Outer Pipe Reynolds Number for Pressure Drop" |
---|
724 | Outer.PressureDrop.Re = (Outer.Properties.Average.rho*Outer.HeatTransfer.Vmean*Outer.PressureDrop.Dh)/Outer.Properties.Average.Mu; |
---|
725 | |
---|
726 | "Inner Pipe Reynolds Number for Heat Transfer" |
---|
727 | Inner.HeatTransfer.Re = (Inner.Properties.Average.rho*Inner.HeatTransfer.Vmean*Inner.HeatTransfer.Dh)/Inner.Properties.Average.Mu; |
---|
728 | |
---|
729 | "Inner Pipe Reynolds Number for Pressure Drop" |
---|
730 | Inner.PressureDrop.Re = Inner.HeatTransfer.Re; |
---|
731 | |
---|
732 | "Outer Pipe Velocity" |
---|
733 | Outer.HeatTransfer.Vmean*(Outer.HeatTransfer.As*Outer.Properties.Average.rho) = Outer.Properties.Inlet.Fw; |
---|
734 | |
---|
735 | "Inner Pipe Velocity" |
---|
736 | Inner.HeatTransfer.Vmean*(Inner.HeatTransfer.As*Inner.Properties.Average.rho) = Inner.Properties.Inlet.Fw; |
---|
737 | |
---|
738 | "Overall Heat Transfer Coefficient Clean" |
---|
739 | Details.Uc*((DoInner/(Inner.HeatTransfer.hcoeff*DiInner) )+(DoInner*ln(DoInner/DiInner)/(2*Kwall))+(1/(Outer.HeatTransfer.hcoeff)))=1; |
---|
740 | |
---|
741 | "Overall Heat Transfer Coefficient Dirty" |
---|
742 | Details.Ud*(Rfi*(DoInner/DiInner) + Rfo + (DoInner/(Inner.HeatTransfer.hcoeff*DiInner) )+(DoInner*ln(DoInner/DiInner)/(2*Kwall))+(1/(Outer.HeatTransfer.hcoeff)))=1; |
---|
743 | |
---|
744 | "Total Duty" |
---|
745 | Details.Qtotal = sum(Details.Q); |
---|
746 | |
---|
747 | switch HotSide |
---|
748 | |
---|
749 | case "outer": |
---|
750 | |
---|
751 | "Incremental Duty" |
---|
752 | Details.Q = Details.Ud*Pi*DoInner*(Lpipe/N)*(Outer.Properties.Average.T - Inner.Properties.Average.T); |
---|
753 | |
---|
754 | when InletInner.T > InletOuter.T switchto "inner"; |
---|
755 | |
---|
756 | case "inner": |
---|
757 | |
---|
758 | "Incremental Duty" |
---|
759 | Details.Q = Details.Ud*Pi*DoInner*(Lpipe/N)*(Inner.Properties.Average.T - Outer.Properties.Average.T); |
---|
760 | |
---|
761 | when InletInner.T < InletOuter.T switchto "outer"; |
---|
762 | |
---|
763 | end |
---|
764 | |
---|
765 | for i in [2:N] |
---|
766 | |
---|
767 | "Incremental Enthalpy Inner Stream" |
---|
768 | Inner.HeatTransfer.Enth(i) = (1-InletInner.v)*PP.LiquidEnthalpy(Inner.HeatTransfer.Tlocal(i), Inner.PressureDrop.Plocal(i), InletInner.z) - InletInner.v*PP.VapourEnthalpy(Inner.HeatTransfer.Tlocal(i), Inner.PressureDrop.Plocal(i), InletInner.z); |
---|
769 | |
---|
770 | "Incremental Enthalpy Outer Stream" |
---|
771 | Outer.HeatTransfer.Enth(i) = (1-InletOuter.v)*PP.LiquidEnthalpy(Outer.HeatTransfer.Tlocal(i), Outer.PressureDrop.Plocal(i), InletOuter.z) - InletOuter.v*PP.VapourEnthalpy(Outer.HeatTransfer.Tlocal(i), Outer.PressureDrop.Plocal(i), InletOuter.z); |
---|
772 | |
---|
773 | end |
---|
774 | |
---|
775 | "Enthalpy of Inner Side - Inlet Boundary" |
---|
776 | Inner.HeatTransfer.Enth(1) = InletInner.h; |
---|
777 | |
---|
778 | "Enthalpy of inner Side - Outlet Boundary" |
---|
779 | Inner.HeatTransfer.Enth(Npoints) = OutletInner.h; |
---|
780 | |
---|
781 | "Temperature of Inner Side - Inlet Boundary" |
---|
782 | Inner.HeatTransfer.Tlocal(1) = InletInner.T; |
---|
783 | |
---|
784 | "Temperature of Inner Side - Outlet Boundary" |
---|
785 | Inner.HeatTransfer.Tlocal(Npoints) = OutletInner.T; |
---|
786 | |
---|
787 | "Pressure of Inner Side - Inlet Boundary" |
---|
788 | Inner.PressureDrop.Plocal(1) = InletInner.P; |
---|
789 | |
---|
790 | "Pressure of Inner Side - Outlet Boundary" |
---|
791 | Inner.PressureDrop.Plocal(Npoints) = OutletInner.P; |
---|
792 | |
---|
793 | switch FlowDirection |
---|
794 | |
---|
795 | case "cocurrent": |
---|
796 | |
---|
797 | "Enthalpy of Outer Side - Inlet Boundary" |
---|
798 | Outer.HeatTransfer.Enth(1) = InletOuter.h; |
---|
799 | |
---|
800 | "Enthalpy of Outer Side - Outlet Boundary" |
---|
801 | Outer.HeatTransfer.Enth(Npoints) = OutletOuter.h; |
---|
802 | |
---|
803 | "Temperature of Outer Side - Inlet Boundary" |
---|
804 | Outer.HeatTransfer.Tlocal(1) = InletOuter.T; |
---|
805 | |
---|
806 | "Temperature of Outer Side - Outlet Boundary" |
---|
807 | Outer.HeatTransfer.Tlocal(Npoints) = OutletOuter.T; |
---|
808 | |
---|
809 | "Pressure of Outer Side - Inlet Boundary" |
---|
810 | Outer.PressureDrop.Plocal(1) = InletOuter.P; |
---|
811 | |
---|
812 | "Pressure of Outer Side - Outlet Boundary" |
---|
813 | Outer.PressureDrop.Plocal(Npoints) = OutletOuter.P; |
---|
814 | |
---|
815 | case "counter": |
---|
816 | |
---|
817 | "Enthalpy of Outer Side - Inlet Boundary" |
---|
818 | Outer.HeatTransfer.Enth(Npoints) = InletOuter.h; |
---|
819 | |
---|
820 | "Enthalpy of Outer Side - Outlet Boundary" |
---|
821 | Outer.HeatTransfer.Enth(1) = OutletOuter.h; |
---|
822 | |
---|
823 | "Temperature of Outer Side - Inlet Boundary" |
---|
824 | Outer.HeatTransfer.Tlocal(Npoints) = InletOuter.T; |
---|
825 | |
---|
826 | "Temperature of Outer Side - Outlet Boundary" |
---|
827 | Outer.HeatTransfer.Tlocal(1) = OutletOuter.T; |
---|
828 | |
---|
829 | "Pressure of Outer Side - Inlet Boundary" |
---|
830 | Outer.PressureDrop.Plocal(Npoints) = InletOuter.P; |
---|
831 | |
---|
832 | "Pressure of Outer Side - Outlet Boundary" |
---|
833 | Outer.PressureDrop.Plocal(1) = OutletOuter.P; |
---|
834 | |
---|
835 | end |
---|
836 | |
---|
837 | switch FlowDirection |
---|
838 | |
---|
839 | case "cocurrent": |
---|
840 | |
---|
841 | "Total Pressure Drop Outer Stream" |
---|
842 | Outer.PressureDrop.Pdrop = Outer.PressureDrop.Pd_fric(Npoints); |
---|
843 | |
---|
844 | "Outer Pipe Pressure Drop for friction" |
---|
845 | Outer.PressureDrop.Pd_fric(2:Npoints) = (2*Outer.PressureDrop.fi*Lincr(2:Npoints)*Outer.Properties.Average.rho*Outer.HeatTransfer.Vmean^2)/(Outer.PressureDrop.Dh*Outer.HeatTransfer.Phi); |
---|
846 | |
---|
847 | "Outer Pipe Pressure Drop for friction" |
---|
848 | Outer.PressureDrop.Pd_fric(1) = 0*'kPa'; |
---|
849 | |
---|
850 | for i in [1:N] |
---|
851 | |
---|
852 | "Outer Pipe Local Pressure" |
---|
853 | Outer.PressureDrop.Plocal(i+1) = Outer.PressureDrop.Plocal(1) - Outer.PressureDrop.Pd_fric(i+1); |
---|
854 | |
---|
855 | end |
---|
856 | |
---|
857 | case "counter": |
---|
858 | |
---|
859 | "Total Pressure Drop Outer Stream" |
---|
860 | Outer.PressureDrop.Pdrop = Outer.PressureDrop.Pd_fric(1); |
---|
861 | |
---|
862 | for i in [1:N] |
---|
863 | |
---|
864 | "Outer Pipe Pressure Drop for friction" |
---|
865 | Outer.PressureDrop.Pd_fric(i) = (2*Outer.PressureDrop.fi(i)*Lincr(1+N-i)*Outer.Properties.Average.rho(i)*Outer.HeatTransfer.Vmean(i)^2)/(Outer.PressureDrop.Dh*Outer.HeatTransfer.Phi(i)); |
---|
866 | |
---|
867 | end |
---|
868 | |
---|
869 | "Outer Pipe Pressure Drop for friction" |
---|
870 | Outer.PressureDrop.Pd_fric(Npoints) = 0*'kPa'; |
---|
871 | |
---|
872 | for i in [1:N] |
---|
873 | |
---|
874 | "Outer Pipe Local Pressure" |
---|
875 | Outer.PressureDrop.Plocal(i) = Outer.PressureDrop.Plocal(Npoints) - Outer.PressureDrop.Pd_fric(i+1); |
---|
876 | |
---|
877 | end |
---|
878 | |
---|
879 | end |
---|
880 | |
---|
881 | "Total Pressure Drop Inner Stream" |
---|
882 | Inner.PressureDrop.Pdrop = Inner.PressureDrop.Pd_fric(Npoints); |
---|
883 | |
---|
884 | "Inner Pipe Pressure Drop for friction" |
---|
885 | Inner.PressureDrop.Pd_fric(2:Npoints) = (2*Inner.PressureDrop.fi*Lincr(2:Npoints)*Inner.Properties.Average.rho*Inner.HeatTransfer.Vmean^2)/(DiInner*Inner.HeatTransfer.Phi); |
---|
886 | |
---|
887 | "Inner Pipe Pressure Drop for friction" |
---|
888 | Inner.PressureDrop.Pd_fric(1) = 0*'kPa'; |
---|
889 | |
---|
890 | for i in [1:N] |
---|
891 | |
---|
892 | "Inner Pipe Local Pressure" |
---|
893 | Inner.PressureDrop.Plocal(i+1) = Inner.PressureDrop.Plocal(1) - Inner.PressureDrop.Pd_fric(i+1); |
---|
894 | |
---|
895 | end |
---|
896 | |
---|
897 | end |
---|