source: mso/sample/reactors/fogler/chap8/propylene_glycol.mso @ 82

Last change on this file since 82 was 82, checked in by Paula Bettio Staudt, 16 years ago

Updated reactors sample files header

  • Property svn:keywords set to Id
File size: 6.4 KB
Line 
1#*-------------------------------------------------------------------
2* EMSO Model Library (EML) Copyright (C) 2004 - 2007 ALSOC.
3*
4* This LIBRARY is free software; you can distribute it and/or modify
5* it under the therms of the ALSOC FREE LICENSE as available at
6* http://www.enq.ufrgs.br/alsoc.
7*
8* EMSO Copyright (C) 2004 - 2007 ALSOC, original code
9* from http://www.rps.eng.br Copyright (C) 2002-2004.
10* All rights reserved.
11*
12* EMSO is distributed under the therms of the ALSOC LICENSE as
13* available at http://www.enq.ufrgs.br/alsoc.
14*
15*---------------------------------------------------------------------
16* Hydrolysis of propylene glycol
17*----------------------------------------------------------------------
18* Solved problem from Fogler (1999)
19* Problem number: 8-4 and 8-5
20* Page: 404-410 (Brazilian edition, 2002)
21*----------------------------------------------------------------------
22*
23*   Description:
24*               The propylene glycol is produced for hydrolysis reaction of
25*       propylene oxide in a CSTR:
26*                       CH3(O)CHCH3 + H2O -> CH2(OH)CH2(OH)CH3
27*               This sample calculates the molar conversion that is reached
28*       with this operation condition. In the example 8-4 is used an
29*       adiabatic CSTR and in the example 8-5 is used a CSTR with a
30*       cooling coil.
31*
32*   Assumptions
33*               * first-order reaction with respect to propylene oxide
34*               * steady-state
35*       * adiabatic system
36*       * liquid phase
37*
38*       Specify:
39*               * the inlet stream
40*               * the kinetic parameters
41*               * the components parameters
42*
43*----------------------------------------------------------------------
44* Author: Christiano D. W. Guerra and Rodolfo Rodrigues
45* $Id: propylene_glycol.mso 82 2006-12-08 20:11:44Z paula $
46*--------------------------------------------------------------------*#
47
48using "types";
49
50
51#*---------------------------------------------------------------------
52* Example 8-4: In an adiabatic CSTR
53*--------------------------------------------------------------------*#
54
55FlowSheet adiabatic_cstr
56        PARAMETERS
57        NComp           as Integer              (Brief="Number of components", Lower=1);
58        stoic(NComp)as Real             (Brief="Stoichiometric coefficients");
59        vo(NComp)       as flow_vol     (Brief="Total input flow", Unit="ft^3/h");
60        Hro(NComp)      as enth_mol     (Brief="Enthalpy of formation", Unit="Btu/lbmol");
61        To                      as temperature  (Brief="Initial temperature", Unit="degR");
62        Tr                      as temperature  (Brief="Reference temperature", Unit="degR");
63        Cp(NComp)       as Real                 (Brief="Molar heat capacity", Unit="Btu/lbmol/degR");
64        Fo(NComp)       as flow_mol             (Brief="Input molar flow of component", Unit="lbmol/h");
65        V                       as volume               (Brief="Volume of the reactor");
66        # Rate of reaction
67        A                       as frequency    (Brief="Frequency factor");
68        E                       as Real                 (Brief="Energy activation", Unit="Btu/lbmol");
69        R                       as Real                 (Brief="Universal gas constant", Unit="Btu/lbmol/degR", Default=1.987);
70
71        VARIABLES
72        T                       as temperature  (Brief="Temperature", Unit="degR");
73        k                       as Real                 (Brief="Specific rate of reaction", Unit="1/h");
74        XMB                     as fraction             (Brief="Conversion as Material balance");
75        XEB                     as fraction             (Brief="Conversion as Energy balance");
76        tau                     as time_h               (Brief="Residence time", Unit="h");
77        Theta(NComp)as Real                     (Brief="Molar fraction between components");
78       
79        EQUATIONS
80        "Change time in T"
81        T = time*"degR/s";
82       
83        "Residence time"
84        V = tau*sum(vo);
85       
86        "Parameter Theta"
87        Theta = Fo/Fo(1);
88       
89        "Specific rate of reaction"
90        k = A*exp(-E/R/T);
91       
92        "Conversion as Material balance"
93        XMB*(1 + tau*k) = tau*k;
94       
95        "Conversion as Energy balance"
96        XEB*(sumt(stoic*Hro) + sumt(stoic*Cp)*(T - Tr)) = -sumt(Theta*Cp)*(T - To);
97       
98        SET
99        NComp = 4;      #       A: propylene oxide, B: water,
100                                #       C: propylene glicol, and M: methanol
101        stoic = [-1, -1, 1, 0]; # A + B -> C
102       
103        V       = 300*"gal";
104        Hro = [-6.66e4, -1.23e5, -2.26e5, 0]*"Btu/lbmol"; # at Tr
105        Cp  = [35, 18, 46, 19.5]*"Btu/lbmol/degR";
106        vo  = [46.62, 233.1, 0, 46.62]*"ft^3/h";
107       
108        Fo      = [43.04, 802.8, 0, 71.87]*"lbmol/h";
109        To      = (75 + 459.69)*"degR";
110        Tr      = (68 + 459.69)*"degR";
111       
112        A       = 16.96e12*"1/h";
113        E       = 32400*"Btu/lbmol";
114       
115        OPTIONS
116        time=[535:0.45:625];   
117end
118
119
120#*---------------------------------------------------------------------
121* Example 8-5: In a CSTR with a cooling coil
122*--------------------------------------------------------------------*#
123
124FlowSheet cooling_cstr
125        PARAMETERS
126        NComp           as Integer              (Brief="Number of components", Lower=1);
127        stoic(NComp)as Real             (Brief="Stoichiometric coefficients");
128        vo(NComp)       as flow_vol     (Brief="Total input flow", Unit="ft^3/h");
129        Hro(NComp)      as enth_mol     (Brief="Enthalpy of formation", Unit="Btu/lbmol");
130        To                      as temperature  (Brief="Initial temperature");
131        Tr                      as temperature  (Brief="Reference temperature");
132        Ta                      as temperature  (Brief="Temperature of cooling");
133        Cp(NComp)       as Real                 (Brief="Molar heat capacity", Unit="Btu/lbmol/degR");
134        Fo(NComp)       as flow_mol             (Brief="Input molar flow of component", Unit="lbmol/h");
135        V                       as volume               (Brief="Volume of the reactor");
136        U                       as heat_trans_coeff(Brief="Heat transfer coefficient");
137        a                       as area                 (Brief="Heat transfer area");
138        # Rate of reaction
139        A                       as frequency    (Brief="Frequency factor");
140        E                       as Real                 (Brief="Energy Activation", Unit="Btu/lbmol");
141        R                       as Real                 (Brief="Universal gas constant", Unit="Btu/lbmol/degR", Default=1.987);
142
143        VARIABLES
144        XMB                     as fraction             (Brief="Molar conversion as Material balance");
145        XEB                     as fraction             (Brief="Molar conversion as Energy balance", Lower=-0.1, Upper=1.5);
146        k                       as Real                 (Brief="Specific rate of reaction", Unit="1/h");
147        T                       as temperature  (Brief="Temperature", Unit="degR");
148        tau                     as time_h               (Brief="Residence time", Unit="h");
149        Theta(NComp)as Real                     (Brief="Molar fraction between components");
150       
151        EQUATIONS
152        "Change time in T"
153        T = time*"degR/s";
154       
155        "Specific rate of reaction"
156        k = A*exp(-E/(R*T));
157       
158        "Residence time"
159        V = tau*sum(vo);
160       
161        "Parameter Theta"
162        Theta = Fo/Fo(1);
163       
164        "Conversion as Material balance"
165        XMB*(1 + tau*k) = tau*k;
166       
167        "Conversion as Energy balance"
168        XEB*(sumt(stoic*Hro) + sumt(stoic*Cp)*(T - Tr)) =
169                -(sumt(Theta*Cp)*(T - To) + U*a*(T - Ta)/Fo(1));
170
171        SET
172        NComp = 4;      #       A: propylene oxide, B: water,
173                                #       C: propylene glicol, and M: methanol
174        stoic = [-1, -1, 1, 0]; # A + B -> C
175       
176        V       = 300*"gal";
177        U       = 100*"Btu/ft^2/h/degR";
178        a       = 40*"ft^2";
179       
180        Hro = [-6.66e4, -1.23e5, -2.26e5, 0]*"Btu/lbmol"; # at Tr
181        Cp  = [35, 18, 46, 19.5]*"Btu/lbmol/degR";
182        vo  = [46.62, 233.1, 0, 46.62]*"ft^3/h";
183        Fo      = [43.04, 802.8, 0, 71.87]*"lbmol/h";
184       
185        To      = (75 + 459.69)*"degR";
186        Tr      = (68 + 459.69)*"degR";
187        Ta      = (85 + 459.69)*"degR";
188       
189        A       = 16.96e12*"1/h";
190        E       = 32400*"Btu/lbmol";
191       
192        OPTIONS
193        time=[535:0.45:625];
194end
Note: See TracBrowser for help on using the repository browser.