1 | #*--------------------------------------------------------------------- |
---|
2 | * Production of acetic anhydride |
---|
3 | *---------------------------------------------------------------------- |
---|
4 | * Solved problem from Fogler (1999) |
---|
5 | * Problem number: 8-7 |
---|
6 | * Page: 421 (Brazilian version, 2002) |
---|
7 | *---------------------------------------------------------------------- |
---|
8 | * |
---|
9 | * Description: |
---|
10 | * The acetic anhydride is produced for thermal craking of the |
---|
11 | * acetone in a PFR: |
---|
12 | * CH3COCH3 -> CH2CO + CH4 |
---|
13 | * This sample calculates the molar conversion and temperature |
---|
14 | * as function of the length in the tubular reactor. In the case I |
---|
15 | * the operation is adiabatic and in the case II the reactor is |
---|
16 | * jacketed. |
---|
17 | * |
---|
18 | * Assumptions |
---|
19 | * * first-order reaction with respect to acetone |
---|
20 | * * steady-state |
---|
21 | * * gaseous phase |
---|
22 | * |
---|
23 | * Specify: |
---|
24 | * * the inlet stream |
---|
25 | * * the kinetic parameters |
---|
26 | * * the parameters of components |
---|
27 | * |
---|
28 | *---------------------------------------------------------------------- |
---|
29 | * Author: Christiano D. W. Guerra and Rodolfo Rodrigues |
---|
30 | * GIMSCOP/UFRGS - Group of Integration, Modeling, Simulation, |
---|
31 | * Control and Optimization of Processes |
---|
32 | * $Id$ |
---|
33 | *--------------------------------------------------------------------*# |
---|
34 | |
---|
35 | using "types"; |
---|
36 | |
---|
37 | |
---|
38 | #*--------------------------------------------------------------------- |
---|
39 | * Model of the thermal craking of acetone |
---|
40 | *--------------------------------------------------------------------*# |
---|
41 | |
---|
42 | Model thermal_cracking |
---|
43 | PARAMETERS |
---|
44 | NComp as Integer (Brief="Number of components", Lower=1); |
---|
45 | stoic(NComp)as Real (Brief="Stoichiometric number"); |
---|
46 | Pa0 as pressure (Brief="Input pressure of A"); |
---|
47 | Tr as temperature (Brief="Reference temperature"); |
---|
48 | T0 as temperature (Brief="Inlet temperature"); |
---|
49 | Ta as temperature (Brief="Internal temperature"); |
---|
50 | Hr(NComp) as enth_mol (Brief="Enthalpy of component"); |
---|
51 | R as Real (Brief="Universal gas constant", Unit="kPa*m^3/kmol/K", Default=8.314); |
---|
52 | U as Real (Brief="Heat transfer coefficient", Unit="J/m^2/K/s"); |
---|
53 | a as Real (Brief="Heat transfer area per volume of tube", Unit="1/m"); |
---|
54 | alpha(NComp)as cp_mol (Brief="Alpha term of Cp expression"); |
---|
55 | beta(NComp) as Real (Brief="Beta term of Cp expression", Unit="J/mol/K^2"); |
---|
56 | gamma(NComp)as Real (Brief="Gamma term of Cp expression", Unit="J/mol/K^3"); |
---|
57 | |
---|
58 | VARIABLES |
---|
59 | Ca as conc_mol (Brief="Molar concentration of A", Unit="kmol/m^3"); |
---|
60 | Ca0 as conc_mol (Brief="Inlet molar concentration of A", Unit="mol/m^3"); |
---|
61 | Fa0 as flow_mol (Brief="Inlet molar flow of A"); |
---|
62 | v0 as flow_vol (Brief="Volumetric flow", Unit="m^3/s"); |
---|
63 | r as reaction_mol (Brief="Rate of reaction", Unit="kmol/m^3/s"); |
---|
64 | k as Real (Brief="Specific rate of reaction", Unit="1/s"); |
---|
65 | T as temperature (Brief="Temperature of reactor", Unit="K"); |
---|
66 | X as fraction (Brief="Molar conversion", Lower=0); |
---|
67 | V as volume (Brief="Volume", Unit="m^3"); |
---|
68 | eps as Real (Brief="Parameter epsilon"); |
---|
69 | Cp(NComp) as cp_mol (Brief="Molar heat capacity", Unit="J/mol/K"); |
---|
70 | DHr as enth_mol (Brief="Enthalpy of reaction", Unit="kJ/mol"); |
---|
71 | |
---|
72 | EQUATIONS |
---|
73 | "Change time in V" |
---|
74 | V = time*"m^3/s"; |
---|
75 | |
---|
76 | "Molar balance" |
---|
77 | diff(X) = (-r)/Fa0*"m^3/s"; |
---|
78 | |
---|
79 | "Rate of reaction" |
---|
80 | r = -k*Ca; |
---|
81 | |
---|
82 | "Specific rate of reaction" |
---|
83 | k = exp(34.34)*exp(-34222*"K"/T)*"1/s"; |
---|
84 | |
---|
85 | "Concentration of component A" |
---|
86 | Ca = Ca0*(1 - X)/(1 + eps*X)*T0/T; |
---|
87 | |
---|
88 | "Parameter epsilon" |
---|
89 | eps = sum(stoic); # yAo = 1 |
---|
90 | |
---|
91 | "Inlet molar concentration of A" |
---|
92 | Ca0 = Pa0/(R*T0); |
---|
93 | |
---|
94 | "Volumetric flow" |
---|
95 | Fa0 = Ca0*v0; |
---|
96 | |
---|
97 | "Energy balance" |
---|
98 | diff(T)*(Fa0*(Cp(1) + X*sumt(stoic*Cp))) = (U*a*(Ta - T) + (-r)*(-DHr))*"m^3/s"; |
---|
99 | |
---|
100 | "Enthalpy of reaction" |
---|
101 | DHr = sumt(stoic*Hr) + sumt(stoic*alpha)*(T - Tr) + sumt(stoic*beta)/2*(T^2 - Tr^2) |
---|
102 | + sumt(stoic*gamma)/3*(T^3 - Tr^3); |
---|
103 | |
---|
104 | "Molar heat capacity" |
---|
105 | Cp = alpha + beta*T + gamma*T^2; |
---|
106 | end |
---|
107 | |
---|
108 | |
---|
109 | #*--------------------------------------------------------------------- |
---|
110 | * Case I: In an adiabatic PFR |
---|
111 | *--------------------------------------------------------------------*# |
---|
112 | |
---|
113 | FlowSheet adiabatic_reactor |
---|
114 | DEVICES |
---|
115 | R as thermal_cracking; |
---|
116 | |
---|
117 | SET |
---|
118 | R.NComp = 3; # A: acetone, B: ketene and C: methane |
---|
119 | R.stoic = [-1.0, 1.0, 1.0]; # A -> B + C |
---|
120 | |
---|
121 | R.Pa0 = 162*"kPa"; |
---|
122 | |
---|
123 | R.alpha = [26.63, 20.04, 13.39]*"J/mol/K"; |
---|
124 | R.beta = [0.183, 0.0945, 0.077]*"J/mol/K^2"; |
---|
125 | R.gamma = [-45.86e-6, -30.95e-6, -18.71e-6]*"J/mol/K^3"; |
---|
126 | |
---|
127 | R.Hr = [-216.67, -61.09, -74.81]*"kJ/mol"; |
---|
128 | R.Tr = 298*"K"; |
---|
129 | R.T0 = 1035*"K"; |
---|
130 | R.Ta = 1150*"K"; |
---|
131 | R.U = 0.0*"J/m^2/K/s"; |
---|
132 | R.a = 150*"1/m"; |
---|
133 | |
---|
134 | SPECIFY |
---|
135 | "Inlet molar flow" |
---|
136 | R.Fa0 = (8000/58)*"kmol/h"; |
---|
137 | |
---|
138 | INITIAL |
---|
139 | "Molar conversion" |
---|
140 | R.X = 0.0; |
---|
141 | "Temperature" |
---|
142 | R.T = 1035*"K"; |
---|
143 | |
---|
144 | OPTIONS |
---|
145 | time = [0:0.05:5]; |
---|
146 | end |
---|
147 | |
---|
148 | |
---|
149 | #*--------------------------------------------------------------------- |
---|
150 | * Case II: In an jacketed PFR |
---|
151 | *--------------------------------------------------------------------*# |
---|
152 | |
---|
153 | FlowSheet jacketed_reactor |
---|
154 | DEVICES |
---|
155 | R as thermal_cracking; |
---|
156 | |
---|
157 | SET |
---|
158 | R.NComp = 3; # A: acetone, B: ketene and C: methane |
---|
159 | R.stoic = [-1.0, 1.0, 1.0]; # A -> B + C |
---|
160 | |
---|
161 | R.Pa0 = 162*"kPa"; |
---|
162 | |
---|
163 | R.alpha = [26.63, 20.04, 13.39]*"J/mol/K"; |
---|
164 | R.beta = [0.183, 0.0945, 0.077]*"J/mol/K^2"; |
---|
165 | R.gamma = [-45.86e-6, -30.95e-6, -18.71e-6]*"J/mol/K^3"; |
---|
166 | |
---|
167 | R.Hr = [-216.67, -61.09, -74.81]*"kJ/mol"; |
---|
168 | R.Tr = 298*"K"; |
---|
169 | R.T0 = 1035*"K"; |
---|
170 | R.Ta = 1150*"K"; |
---|
171 | R.U = 110*"J/m^2/K/s"; |
---|
172 | R.a = 150*"1/m"; |
---|
173 | |
---|
174 | SPECIFY |
---|
175 | "Inlet molar flow" |
---|
176 | R.Fa0 = (18.8*2e-3)*"mol/s"; |
---|
177 | |
---|
178 | INITIAL |
---|
179 | "Molar conversion" |
---|
180 | R.X = 0.0; |
---|
181 | "Temperature" |
---|
182 | R.T = 1035*"K"; |
---|
183 | |
---|
184 | OPTIONS |
---|
185 | time = [0:1e-5:1e-3]; |
---|
186 | end |
---|