source: mso/sample/reactors/fogler/chap4/spheric_reactor.mso @ 82

Last change on this file since 82 was 82, checked in by Paula Bettio Staudt, 16 years ago

Updated reactors sample files header

  • Property svn:keywords set to Id
File size: 3.6 KB
Line 
1#*-------------------------------------------------------------------
2* EMSO Model Library (EML) Copyright (C) 2004 - 2007 ALSOC.
3*
4* This LIBRARY is free software; you can distribute it and/or modify
5* it under the therms of the ALSOC FREE LICENSE as available at
6* http://www.enq.ufrgs.br/alsoc.
7*
8* EMSO Copyright (C) 2004 - 2007 ALSOC, original code
9* from http://www.rps.eng.br Copyright (C) 2002-2004.
10* All rights reserved.
11*
12* EMSO is distributed under the therms of the ALSOC LICENSE as
13* available at http://www.enq.ufrgs.br/alsoc.
14*
15*---------------------------------------------------------------------
16* Spheric reactor
17*----------------------------------------------------------------------
18* Solved problem from Fogler (1999)
19* Problem number: 4-8
20* Page: 151 (Brazilian version, 2002)
21*----------------------------------------------------------------------
22*
23*   Description:
24*               Sample to calculate of the molar conversion and pressure drop
25*       as function of the length in a spheric reactor with a reaction of
26*       dehydrogenation (reforming reaction):
27*                       paraffin -> oleffin + H2
28*       of first-order with respect to paraffin.
29*       
30*   Assumptions:
31*               * change time in length
32*       * steady-state
33*       * isotermic system
34*       * gaseous phase
35*
36*       Specify:
37*               * the inlet stream
38*               * the kinetic parameters
39*               * the parameters of reactor
40*               * the parameters of catalyst packed bed
41*
42*----------------------------------------------------------------------
43* Author: Christiano D. Wetzel Guerra and Rodolfo Rodrigues
44* GIMSCOP/UFRGS - Group of Integration, Modeling, Simulation, Control,
45*                                       and Optimization of Processes
46* $Id: spheric_reactor.mso 82 2006-12-08 20:11:44Z paula $
47*--------------------------------------------------------------------*#
48
49using "types";
50
51
52FlowSheet spheric_reactor
53        PARAMETERS
54        rho_0 as dens_mass      (Brief="Initial density");
55        Dp    as length         (Brief="Particle diameter");
56        k_lin as Real           (Brief="Specific rate of reaction", Unit="m^3/kg/s");
57        visc  as viscosity      (Brief="Flow viscosity");
58        L     as length         (Brief="Fixed bed half length");
59        rho_c as dens_mass      (Brief="Catalyser density");
60        phi   as fraction       (Brief="Fixed bed porosity");
61        pi        as Real               (Brief="Number pi", Default=3.14159);
62        R     as length         (Brief="Radius reactor");
63       
64        VARIABLES
65        X     as fraction       (Brief="Molar conversion");
66        y     as Real           (Brief="Dimensionless pressure drop (P/P0)", Lower=0);
67        P     as pressure       (Brief="Output pressure", Unit="kPa");
68        z         as length             (Brief="Length of reactor");
69        beta0 as Real           (Brief="Parameter beta0 of Ergun equation", Unit="Pa/m");
70        Ac    as area           (Brief="Tranversal section area", Lower=0);
71        Ca0   as conc_mol       (Brief="Input molar concentration of A");
72        Fa0   as flow_mol       (Brief="Input molar flow of A");
73        P0    as pressure       (Brief="Initial pressure", Unit="kPa");
74        m         as flow_mass  (Brief="Mass flow");
75       
76        EQUATIONS
77        "Change time in z"
78        z = time*"m/s";
79       
80        "Transversal section area"
81        Ac = pi*(R^2 - (z - L)^2);
82       
83        "Parameter beta0 of Ergun equation"
84        beta0 = m*(1 - phi)/(rho_0*Ac*Dp*(phi^3))*(150*(1 - phi)*visc/Dp - 1.75*m/Ac);
85       
86       
87        "Molar conversion"
88        diff(X) = k_lin*(Ca0*(1 - X)/(1 + X)*y)*rho_c*(1 - phi)*Ac/Fa0*"m/s";
89       
90        "Pressure drop"
91        diff(y) = -beta0/P0/y*(1 + X)*"m/s";
92       
93        "Dimensionless pressure drop"
94        y = P/P0;
95       
96        SET
97        rho_0 = 32*"kg/m^3";
98        Dp        = 0.002*"m";
99        k_lin = 2e-5*"m^3/kg/s";
100        visc  = 1.5e-5*"kg/m/s";
101        L         = 2.7*"m";
102        rho_c = 2600*"kg/m^3";
103        phi   = 0.4;
104        R         = 3*"m";
105       
106        SPECIFY
107        "Input molar concentration of A"
108        Ca0 = 320*"mol/m^3";
109        "Input molar flow of A"
110        Fa0 = 440*"mol/s";
111        "Initial pressure"
112        P0      = 2000*"kPa";
113        "Input mass flow"
114        m       = 44*"kg/s";
115
116        INITIAL
117        "Molar conversion"
118        X = 0; 
119        "Dimensionless pressure drop"
120        y = 1;
121
122        OPTIONS
123        time =[0:0.1:5.4];
124end
Note: See TracBrowser for help on using the repository browser.