[1] | 1 | #*------------------------------------------------------------------- |
---|
| 2 | * Model of a tray |
---|
| 3 | *-------------------------------------------------------------------- |
---|
| 4 | * - Streams |
---|
| 5 | * * a liquid outlet stream |
---|
| 6 | * * a liquid inlet stream |
---|
| 7 | * * a vapour outlet stream |
---|
| 8 | * * a vapour inlet stream |
---|
| 9 | * * a feed stream |
---|
| 10 | * |
---|
| 11 | * - Assumptions |
---|
| 12 | * * both phases (liquid and vapour) exists all the time |
---|
| 13 | * * thermodymanic equilibrium (Murphree plate efficiency=1) |
---|
| 14 | * * no entrainment of liquid or vapour phase |
---|
| 15 | * * no weeping |
---|
| 16 | * * the dymanics in the downcomer are neglected |
---|
| 17 | * |
---|
| 18 | * - Tray hydraulics: Roffel B.,Betlem B.H.L.,Ruijter J.A.F. (2000) |
---|
| 19 | * Computers and Chemical Engineering and |
---|
| 20 | * The gPROMS Model Library |
---|
| 21 | * |
---|
| 22 | * Specify: |
---|
| 23 | * * the Feed stream |
---|
| 24 | * * the Liquid inlet stream |
---|
| 25 | * * the Vapour inlet stream excluding its flow |
---|
| 26 | * * the Vapour outlet flow (Outlet.F) |
---|
| 27 | * |
---|
| 28 | * Initial: |
---|
| 29 | * * the plate temperature (OutletL.T) |
---|
| 30 | * * the liquid height (hl) |
---|
| 31 | * * (NoComps - 1) OutletL (or OutletV) compositions |
---|
| 32 | * |
---|
| 33 | *---------------------------------------------------------------------- |
---|
| 34 | * Author: Paula B. Staudt |
---|
| 35 | * $Id: tray.mso 37 2006-10-23 16:47:17Z paula $ |
---|
| 36 | *--------------------------------------------------------------------*# |
---|
| 37 | |
---|
| 38 | using "streams"; |
---|
| 39 | |
---|
| 40 | Model trayBasic |
---|
| 41 | |
---|
| 42 | PARAMETERS |
---|
| 43 | ext PP as CalcObject; |
---|
| 44 | ext NComp as Integer; |
---|
| 45 | V as volume(Brief="Total Volume of the tray"); |
---|
| 46 | Q as heat_rate (Brief="Rate of heat supply"); |
---|
| 47 | Ap as area (Brief="Plate area = Atray - Adowncomer"); |
---|
| 48 | |
---|
| 49 | VARIABLES |
---|
| 50 | in Inlet as stream; |
---|
| 51 | in InletL as stream; |
---|
| 52 | in InletV as stream; |
---|
| 53 | out OutletL as stream_therm; |
---|
| 54 | out OutletV as stream_therm; |
---|
| 55 | |
---|
| 56 | M(NComp) as mol (Brief="Molar Holdup in the tray"); |
---|
| 57 | ML as mol (Brief="Molar liquid holdup"); |
---|
| 58 | MV as mol (Brief="Molar vapour holdup"); |
---|
| 59 | E as energy (Brief="Total Energy Holdup on tray"); |
---|
| 60 | vL as volume_mol (Brief="Liquid Molar Volume"); |
---|
| 61 | vV as volume_mol (Brief="Vapour Molar volume"); |
---|
| 62 | Level as length (Brief="Height of clear liquid on plate"); |
---|
| 63 | yideal(NComp) as fraction; |
---|
| 64 | Emv as Real (Brief = "Murphree efficiency"); |
---|
| 65 | |
---|
| 66 | EQUATIONS |
---|
| 67 | "Component Molar Balance" |
---|
| 68 | diff(M)=Inlet.F*Inlet.z + InletL.F*InletL.z + InletV.F*InletV.z |
---|
| 69 | - OutletL.F*OutletL.z - OutletV.F*OutletV.z; |
---|
| 70 | |
---|
| 71 | "Energy Balance" |
---|
| 72 | diff(E) = ( Inlet.F*Inlet.h + InletL.F*InletL.h + InletV.F*InletV.h |
---|
| 73 | - OutletL.F*OutletL.h - OutletV.F*OutletV.h + Q ); |
---|
| 74 | |
---|
| 75 | "Molar Holdup" |
---|
| 76 | M = ML*OutletL.z + MV*OutletV.z; |
---|
| 77 | |
---|
| 78 | "Energy Holdup" |
---|
| 79 | E = ML*OutletL.h + MV*OutletV.h - OutletL.P*V; |
---|
| 80 | |
---|
| 81 | "Mol fraction normalisation" |
---|
| 82 | sum(OutletL.z)= 1.0; |
---|
| 83 | sum(OutletL.z)= sum(OutletV.z); |
---|
| 84 | |
---|
| 85 | "Liquid Volume" |
---|
| 86 | vL = PP.LiquidVolume(OutletL.T, OutletL.P, OutletL.z); |
---|
| 87 | "Vapour Volume" |
---|
| 88 | vV = PP.VapourVolume(OutletV.T, OutletV.P, OutletV.z); |
---|
| 89 | |
---|
| 90 | "Chemical Equilibrium" |
---|
| 91 | PP.LiquidFugacityCoefficient(OutletL.T, OutletL.P, OutletL.z)*OutletL.z = |
---|
| 92 | PP.VapourFugacityCoefficient(OutletV.T, OutletV.P, OutletV.z)*yideal; |
---|
| 93 | |
---|
| 94 | "Murphree Efficiency" |
---|
| 95 | OutletV.z = Emv * (yideal - InletV.z) + InletV.z; |
---|
| 96 | |
---|
| 97 | "Thermal Equilibrium" |
---|
| 98 | OutletV.T = OutletL.T; |
---|
| 99 | |
---|
| 100 | "Mechanical Equilibrium" |
---|
| 101 | OutletV.P = OutletL.P; |
---|
| 102 | |
---|
| 103 | "Geometry Constraint" |
---|
| 104 | V = ML* vL + MV*vV; |
---|
| 105 | |
---|
| 106 | "vaporization fraction " |
---|
| 107 | OutletV.v = 1.0; |
---|
| 108 | OutletL.v = 0.0; |
---|
| 109 | |
---|
| 110 | "Level of clear liquid over the weir" |
---|
| 111 | Level = ML*vL/Ap; |
---|
| 112 | end |
---|
| 113 | |
---|
| 114 | Model tray as trayBasic |
---|
| 115 | |
---|
| 116 | PARAMETERS |
---|
| 117 | Ah as area (Brief="Total holes area"); |
---|
| 118 | lw as length (Brief="Weir length"); |
---|
| 119 | g as acceleration (Default=9.81); |
---|
| 120 | hw as length (Brief="Weir height"); |
---|
| 121 | beta as fraction (Brief="Aeration fraction"); |
---|
| 122 | alfa as fraction (Brief="Dry pressure drop coefficient"); |
---|
| 123 | |
---|
| 124 | VARIABLES |
---|
| 125 | rhoL as dens_mass; |
---|
| 126 | rhoV as dens_mass; |
---|
| 127 | |
---|
| 128 | EQUATIONS |
---|
| 129 | "Liquid Density" |
---|
| 130 | rhoL = PP.LiquidDensity(OutletL.T, OutletL.P, OutletL.z); |
---|
| 131 | "Vapour Density" |
---|
| 132 | rhoV = PP.VapourDensity(InletV.T, InletV.P, InletV.z); |
---|
| 133 | |
---|
| 134 | if (Level > (beta * hw)) then |
---|
| 135 | "Francis Equation" |
---|
[37] | 136 | OutletL.F = 1.84*"m^0.5/s"*lw*((Level-(beta*hw))/(beta))^1.5/vL; |
---|
[1] | 137 | else |
---|
| 138 | "Low level" |
---|
| 139 | OutletL.F = 0 * "mol/h"; |
---|
| 140 | end |
---|
| 141 | |
---|
| 142 | end |
---|
| 143 | |
---|