[1] | 1 | #*------------------------------------------------------------------- |
---|
[72] | 2 | * EMSO Model Library (EML) Copyright (C) 2004 - 2007 ALSOC. |
---|
| 3 | * |
---|
| 4 | * This LIBRARY is free software; you can distribute it and/or modify |
---|
| 5 | * it under the therms of the ALSOC FREE LICENSE as available at |
---|
| 6 | * http://www.enq.ufrgs.br/alsoc. |
---|
| 7 | * |
---|
| 8 | * EMSO Copyright (C) 2004 - 2007 ALSOC, original code |
---|
| 9 | * from http://www.rps.eng.br Copyright (C) 2002-2004. |
---|
| 10 | * All rights reserved. |
---|
| 11 | * |
---|
| 12 | * EMSO is distributed under the therms of the ALSOC LICENSE as |
---|
| 13 | * available at http://www.enq.ufrgs.br/alsoc. |
---|
| 14 | * |
---|
| 15 | *-------------------------------------------------------------------- |
---|
[1] | 16 | * Model of a tray |
---|
[72] | 17 | *-------------------------------------------------------------------- |
---|
| 18 | * - Streams |
---|
| 19 | * * a liquid outlet stream |
---|
| 20 | * * a liquid inlet stream |
---|
| 21 | * * a vapour outlet stream |
---|
| 22 | * * a vapour inlet stream |
---|
| 23 | * * a feed stream |
---|
[1] | 24 | * |
---|
| 25 | * - Assumptions |
---|
| 26 | * * both phases (liquid and vapour) exists all the time |
---|
| 27 | * * thermodymanic equilibrium (Murphree plate efficiency=1) |
---|
| 28 | * * no entrainment of liquid or vapour phase |
---|
| 29 | * * no weeping |
---|
| 30 | * * the dymanics in the downcomer are neglected |
---|
| 31 | * |
---|
| 32 | * - Tray hydraulics: Roffel B.,Betlem B.H.L.,Ruijter J.A.F. (2000) |
---|
[72] | 33 | * Computers and Chemical Engineering |
---|
| 34 | * Frauke Reepmeyer, Jens-Uwe Repke and Günter Wozny (2003) |
---|
| 35 | * Chem. Eng. Technol. 26 (2003) 1 |
---|
[1] | 36 | * |
---|
[72] | 37 | * - Specify: |
---|
[1] | 38 | * * the Feed stream |
---|
| 39 | * * the Liquid inlet stream |
---|
[72] | 40 | * * the Vapour inlet stream |
---|
| 41 | * * the Vapour outlet flow (OutletV.F) |
---|
[1] | 42 | * |
---|
[72] | 43 | * - Initial: |
---|
[1] | 44 | * * the plate temperature (OutletL.T) |
---|
[72] | 45 | * * the liquid height (Level) or the liquid flow OutletL.F |
---|
| 46 | * * (NoComps - 1) OutletL compositions |
---|
[1] | 47 | * |
---|
| 48 | *---------------------------------------------------------------------- |
---|
| 49 | * Author: Paula B. Staudt |
---|
| 50 | * $Id: tray.mso 103 2007-01-10 15:25:26Z paula $ |
---|
| 51 | *--------------------------------------------------------------------*# |
---|
| 52 | |
---|
| 53 | using "streams"; |
---|
| 54 | |
---|
| 55 | Model trayBasic |
---|
| 56 | |
---|
| 57 | PARAMETERS |
---|
| 58 | ext PP as CalcObject; |
---|
| 59 | ext NComp as Integer; |
---|
| 60 | V as volume(Brief="Total Volume of the tray"); |
---|
| 61 | Q as heat_rate (Brief="Rate of heat supply"); |
---|
| 62 | Ap as area (Brief="Plate area = Atray - Adowncomer"); |
---|
| 63 | |
---|
| 64 | VARIABLES |
---|
| 65 | in Inlet as stream; |
---|
| 66 | in InletL as stream; |
---|
| 67 | in InletV as stream; |
---|
| 68 | out OutletL as stream_therm; |
---|
| 69 | out OutletV as stream_therm; |
---|
| 70 | |
---|
| 71 | M(NComp) as mol (Brief="Molar Holdup in the tray"); |
---|
| 72 | ML as mol (Brief="Molar liquid holdup"); |
---|
| 73 | MV as mol (Brief="Molar vapour holdup"); |
---|
| 74 | E as energy (Brief="Total Energy Holdup on tray"); |
---|
| 75 | vL as volume_mol (Brief="Liquid Molar Volume"); |
---|
| 76 | vV as volume_mol (Brief="Vapour Molar volume"); |
---|
| 77 | Level as length (Brief="Height of clear liquid on plate"); |
---|
| 78 | yideal(NComp) as fraction; |
---|
| 79 | Emv as Real (Brief = "Murphree efficiency"); |
---|
| 80 | |
---|
| 81 | EQUATIONS |
---|
| 82 | "Component Molar Balance" |
---|
| 83 | diff(M)=Inlet.F*Inlet.z + InletL.F*InletL.z + InletV.F*InletV.z |
---|
| 84 | - OutletL.F*OutletL.z - OutletV.F*OutletV.z; |
---|
| 85 | |
---|
| 86 | "Energy Balance" |
---|
| 87 | diff(E) = ( Inlet.F*Inlet.h + InletL.F*InletL.h + InletV.F*InletV.h |
---|
| 88 | - OutletL.F*OutletL.h - OutletV.F*OutletV.h + Q ); |
---|
| 89 | |
---|
| 90 | "Molar Holdup" |
---|
| 91 | M = ML*OutletL.z + MV*OutletV.z; |
---|
| 92 | |
---|
| 93 | "Energy Holdup" |
---|
| 94 | E = ML*OutletL.h + MV*OutletV.h - OutletL.P*V; |
---|
| 95 | |
---|
| 96 | "Mol fraction normalisation" |
---|
| 97 | sum(OutletL.z)= 1.0; |
---|
| 98 | sum(OutletL.z)= sum(OutletV.z); |
---|
| 99 | |
---|
| 100 | "Liquid Volume" |
---|
| 101 | vL = PP.LiquidVolume(OutletL.T, OutletL.P, OutletL.z); |
---|
| 102 | "Vapour Volume" |
---|
| 103 | vV = PP.VapourVolume(OutletV.T, OutletV.P, OutletV.z); |
---|
| 104 | |
---|
| 105 | "Chemical Equilibrium" |
---|
| 106 | PP.LiquidFugacityCoefficient(OutletL.T, OutletL.P, OutletL.z)*OutletL.z = |
---|
[60] | 107 | PP.VapourFugacityCoefficient(OutletV.T, OutletV.P, yideal)*yideal; |
---|
[1] | 108 | |
---|
| 109 | "Murphree Efficiency" |
---|
| 110 | OutletV.z = Emv * (yideal - InletV.z) + InletV.z; |
---|
| 111 | |
---|
| 112 | "Thermal Equilibrium" |
---|
| 113 | OutletV.T = OutletL.T; |
---|
| 114 | |
---|
| 115 | "Mechanical Equilibrium" |
---|
| 116 | OutletV.P = OutletL.P; |
---|
| 117 | |
---|
| 118 | "Geometry Constraint" |
---|
| 119 | V = ML* vL + MV*vV; |
---|
| 120 | |
---|
| 121 | "vaporization fraction " |
---|
| 122 | OutletV.v = 1.0; |
---|
| 123 | OutletL.v = 0.0; |
---|
| 124 | |
---|
| 125 | "Level of clear liquid over the weir" |
---|
| 126 | Level = ML*vL/Ap; |
---|
| 127 | end |
---|
| 128 | |
---|
| 129 | Model tray as trayBasic |
---|
| 130 | |
---|
| 131 | PARAMETERS |
---|
| 132 | Ah as area (Brief="Total holes area"); |
---|
| 133 | lw as length (Brief="Weir length"); |
---|
| 134 | g as acceleration (Default=9.81); |
---|
| 135 | hw as length (Brief="Weir height"); |
---|
| 136 | beta as fraction (Brief="Aeration fraction"); |
---|
| 137 | alfa as fraction (Brief="Dry pressure drop coefficient"); |
---|
| 138 | |
---|
| 139 | VARIABLES |
---|
| 140 | rhoL as dens_mass; |
---|
| 141 | rhoV as dens_mass; |
---|
| 142 | |
---|
| 143 | EQUATIONS |
---|
| 144 | "Liquid Density" |
---|
| 145 | rhoL = PP.LiquidDensity(OutletL.T, OutletL.P, OutletL.z); |
---|
| 146 | "Vapour Density" |
---|
| 147 | rhoV = PP.VapourDensity(InletV.T, InletV.P, InletV.z); |
---|
| 148 | |
---|
| 149 | if (Level > (beta * hw)) then |
---|
| 150 | "Francis Equation" |
---|
[103] | 151 | OutletL.F = 1.84*"m^0.5/s"*lw*((Level-(beta*hw))/(beta))^2/vL; |
---|
[1] | 152 | else |
---|
| 153 | "Low level" |
---|
| 154 | OutletL.F = 0 * "mol/h"; |
---|
| 155 | end |
---|
| 156 | |
---|
| 157 | end |
---|
| 158 | |
---|
[38] | 159 | #*------------------------------------------------------------------- |
---|
| 160 | * Model of a tray with reaction |
---|
| 161 | *-------------------------------------------------------------------*# |
---|
| 162 | Model trayReact |
---|
| 163 | |
---|
| 164 | PARAMETERS |
---|
| 165 | ext PP as CalcObject; |
---|
| 166 | ext NComp as Integer; |
---|
| 167 | V as volume(Brief="Total Volume of the tray"); |
---|
| 168 | Q as power (Brief="Rate of heat supply"); |
---|
| 169 | Ap as area (Brief="Plate area = Atray - Adowncomer"); |
---|
| 170 | |
---|
| 171 | Ah as area (Brief="Total holes area"); |
---|
| 172 | lw as length (Brief="Weir length"); |
---|
| 173 | g as acceleration (Default=9.81); |
---|
| 174 | hw as length (Brief="Weir height"); |
---|
| 175 | beta as fraction (Brief="Aeration fraction"); |
---|
| 176 | alfa as fraction (Brief="Dry pressure drop coefficient"); |
---|
| 177 | |
---|
| 178 | stoic(NComp) as Real(Brief="Stoichiometric matrix"); |
---|
| 179 | Hr as energy_mol; |
---|
| 180 | Pstartup as pressure; |
---|
| 181 | |
---|
| 182 | VARIABLES |
---|
| 183 | in Inlet as stream; |
---|
| 184 | in InletL as stream; |
---|
| 185 | in InletV as stream; |
---|
| 186 | out OutletL as stream_therm; |
---|
| 187 | out OutletV as stream_therm; |
---|
| 188 | |
---|
| 189 | yideal(NComp) as fraction; |
---|
| 190 | Emv as Real (Brief = "Murphree efficiency"); |
---|
| 191 | |
---|
| 192 | M(NComp) as mol (Brief="Molar Holdup in the tray"); |
---|
| 193 | ML as mol (Brief="Molar liquid holdup"); |
---|
| 194 | MV as mol (Brief="Molar vapour holdup"); |
---|
| 195 | E as energy (Brief="Total Energy Holdup on tray"); |
---|
| 196 | vL as volume_mol (Brief="Liquid Molar Volume"); |
---|
| 197 | vV as volume_mol (Brief="Vapour Molar volume"); |
---|
| 198 | Level as length (Brief="Height of clear liquid on plate"); |
---|
| 199 | Vol as volume; |
---|
| 200 | |
---|
| 201 | rhoL as dens_mass; |
---|
| 202 | rhoV as dens_mass; |
---|
| 203 | r as reaction_mol (Brief = "Reaction rate", Unit = "mol/l/s"); |
---|
| 204 | C(NComp) as conc_mol (Brief = "Molar concentration", Lower = -1); #, Unit = "mol/l"); |
---|
| 205 | |
---|
| 206 | EQUATIONS |
---|
| 207 | "Molar Concentration" |
---|
| 208 | OutletL.z = vL * C; |
---|
| 209 | |
---|
| 210 | "Component Molar Balance" |
---|
| 211 | diff(M)=Inlet.F*Inlet.z + InletL.F*InletL.z + InletV.F*InletV.z |
---|
| 212 | - OutletL.F*OutletL.z - OutletV.F*OutletV.z + stoic*r*ML*vL; |
---|
| 213 | |
---|
| 214 | "Energy Balance" |
---|
| 215 | diff(E) = ( Inlet.F*Inlet.h + InletL.F*InletL.h + InletV.F*InletV.h |
---|
| 216 | - OutletL.F*OutletL.h - OutletV.F*OutletV.h + Q ) + Hr * r * vL*ML; |
---|
| 217 | |
---|
| 218 | "Molar Holdup" |
---|
| 219 | M = ML*OutletL.z + MV*OutletV.z; |
---|
| 220 | |
---|
| 221 | "Energy Holdup" |
---|
| 222 | E = ML*OutletL.h + MV*OutletV.h - OutletL.P*V; |
---|
| 223 | |
---|
| 224 | "Mol fraction normalisation" |
---|
| 225 | sum(OutletL.z)= 1.0; |
---|
| 226 | |
---|
| 227 | "Liquid Volume" |
---|
| 228 | vL = PP.LiquidVolume(OutletL.T, OutletL.P, OutletL.z); |
---|
| 229 | "Vapour Volume" |
---|
| 230 | vV = PP.VapourVolume(OutletV.T, OutletV.P, OutletV.z); |
---|
| 231 | |
---|
| 232 | "Thermal Equilibrium" |
---|
| 233 | OutletV.T = OutletL.T; |
---|
| 234 | |
---|
| 235 | "Mechanical Equilibrium" |
---|
| 236 | OutletV.P = OutletL.P; |
---|
| 237 | |
---|
| 238 | "vaporization fraction " |
---|
| 239 | OutletV.v = 1.0; |
---|
| 240 | OutletL.v = 0.0; |
---|
| 241 | |
---|
| 242 | "Level of clear liquid over the weir" |
---|
| 243 | Level = ML*vL/Ap; |
---|
| 244 | |
---|
| 245 | Vol = ML*vL; |
---|
| 246 | |
---|
| 247 | "Liquid Density" |
---|
| 248 | rhoL = PP.LiquidDensity(OutletL.T, OutletL.P, OutletL.z); |
---|
| 249 | "Vapour Density" |
---|
| 250 | rhoV = PP.VapourDensity(InletV.T, InletV.P, InletV.z); |
---|
| 251 | |
---|
| 252 | if (Level > (beta * hw)) then |
---|
| 253 | "Francis Equation" |
---|
[72] | 254 | OutletL.F = (1.84*"1/s"*lw*((Level-(beta*hw))/(beta))^2/vL); |
---|
[38] | 255 | else |
---|
| 256 | "Low level" |
---|
| 257 | OutletL.F = 0 * "mol/h"; |
---|
| 258 | end |
---|
| 259 | |
---|
| 260 | |
---|
| 261 | "Pressure Drop through the tray" |
---|
| 262 | OutletV.F = (1 + tanh(1 * (OutletV.P - Pstartup)/"Pa"))/2 * |
---|
| 263 | Ah/vV * sqrt(2*(OutletV.P - InletL.P + 1e-8 * "atm") / (alfa*rhoV) ); |
---|
| 264 | |
---|
| 265 | |
---|
| 266 | "Chemical Equilibrium" |
---|
| 267 | PP.LiquidFugacityCoefficient(OutletL.T, OutletL.P, OutletL.z)*OutletL.z = |
---|
[60] | 268 | PP.VapourFugacityCoefficient(OutletV.T, OutletV.P, yideal)*yideal; |
---|
[38] | 269 | |
---|
| 270 | OutletV.z = Emv * (yideal - InletV.z) + InletV.z; |
---|
| 271 | |
---|
| 272 | sum(OutletL.z)= sum(OutletV.z); |
---|
| 273 | |
---|
| 274 | "Geometry Constraint" |
---|
| 275 | V = ML* vL + MV*vV; |
---|
| 276 | end |
---|