1 | #*------------------------------------------------------------------- |
---|
2 | * Model of a dynamic condenser |
---|
3 | *-------------------------------------------------------------------- |
---|
4 | * |
---|
5 | * Streams: |
---|
6 | * * a vapour inlet stream |
---|
7 | * * a liquid outlet stream |
---|
8 | * |
---|
9 | * Assumptions: |
---|
10 | * * perfect mixing of both phases |
---|
11 | * * thermodynamics equilibrium |
---|
12 | * |
---|
13 | * Specify: |
---|
14 | * * the Inlet stream |
---|
15 | * * the Outlet flows |
---|
16 | * |
---|
17 | * Initial: |
---|
18 | * * the condenser temperature (OutletL.T) |
---|
19 | * * the condenser level (Ll) |
---|
20 | * * (NoComps - 1) Outlet compositions |
---|
21 | * |
---|
22 | *---------------------------------------------------------------------- |
---|
23 | * Author: Paula B. Staudt |
---|
24 | * $Id: condenser.mso 65 2006-11-24 03:22:15Z arge $ |
---|
25 | *--------------------------------------------------------------------*# |
---|
26 | |
---|
27 | using "streams"; |
---|
28 | |
---|
29 | Model condenser |
---|
30 | PARAMETERS |
---|
31 | ext PP as CalcObject; |
---|
32 | ext NComp as Integer; |
---|
33 | V as volume (Brief="Condenser total volume"); |
---|
34 | Across as area (Brief="Cross Section Area of reboiler"); |
---|
35 | |
---|
36 | VARIABLES |
---|
37 | in InletV as stream; #(Brief="Vapour inlet stream"); |
---|
38 | out OutletL as stream_therm; #(Brief="Liquid outlet stream"); |
---|
39 | out OutletV as stream_therm; #(Brief="Vapour outlet stream"); |
---|
40 | in Q as heat_rate (Brief="Heat supplied"); |
---|
41 | |
---|
42 | M(NComp) as mol (Brief="Molar Holdup in the tray"); |
---|
43 | ML as mol (Brief="Molar liquid holdup"); |
---|
44 | MV as mol (Brief="Molar vapour holdup"); |
---|
45 | E as energy (Brief="Total Energy Holdup on tray"); |
---|
46 | vL as volume_mol (Brief="Liquid Molar Volume"); |
---|
47 | vV as volume_mol (Brief="Vapour Molar volume"); |
---|
48 | Level as length (Brief="Level of liquid phase"); |
---|
49 | |
---|
50 | EQUATIONS |
---|
51 | "Component Molar Balance" |
---|
52 | diff(M) = InletV.F*InletV.z - OutletL.F*OutletL.z |
---|
53 | - OutletV.F*OutletV.z; |
---|
54 | |
---|
55 | "Energy Balance" |
---|
56 | diff(E) = InletV.F*InletV.h - OutletL.F*OutletL.h |
---|
57 | - OutletV.F*OutletV.h + Q; |
---|
58 | |
---|
59 | "Molar Holdup" |
---|
60 | M = ML*OutletL.z + MV*OutletV.z; |
---|
61 | |
---|
62 | "Energy Holdup" |
---|
63 | E = ML*OutletL.h + MV*OutletV.h - OutletV.P*V; |
---|
64 | |
---|
65 | "Mol fraction normalisation" |
---|
66 | sum(OutletL.z)=1.0; |
---|
67 | sum(OutletL.z)=sum(OutletV.z); |
---|
68 | |
---|
69 | "Liquid Volume" |
---|
70 | vL = PP.LiquidVolume(OutletL.T, OutletL.P, OutletL.z); |
---|
71 | "Vapour Volume" |
---|
72 | vV = PP.VapourVolume(OutletV.T, OutletV.P, OutletV.z); |
---|
73 | |
---|
74 | "Chemical Equilibrium" |
---|
75 | PP.LiquidFugacityCoefficient(OutletL.T, OutletL.P, OutletL.z)*OutletL.z = |
---|
76 | PP.VapourFugacityCoefficient(OutletV.T, OutletV.P, OutletV.z)*OutletV.z; |
---|
77 | |
---|
78 | "Thermal Equilibrium" |
---|
79 | OutletL.T = OutletV.T; |
---|
80 | |
---|
81 | "Mechanical Equilibrium" |
---|
82 | OutletV.P = OutletL.P; |
---|
83 | |
---|
84 | "Geometry Constraint" |
---|
85 | V = ML*vL + MV*vV; |
---|
86 | |
---|
87 | "Level of liquid phase" |
---|
88 | Level = ML*vL/Across; |
---|
89 | |
---|
90 | "Vapourisation Fraction" |
---|
91 | OutletL.v = 0.0; |
---|
92 | OutletV.v = 1.0; |
---|
93 | end |
---|
94 | |
---|
95 | |
---|
96 | #*---------------------------------------------------------------------- |
---|
97 | * Model of a Steady State condenser with no thermodynamics equilibrium |
---|
98 | *---------------------------------------------------------------------*# |
---|
99 | Model condenserSteady |
---|
100 | PARAMETERS |
---|
101 | ext PP as CalcObject; |
---|
102 | ext NComp as Integer; |
---|
103 | |
---|
104 | VARIABLES |
---|
105 | in InletV as stream; #(Brief="Vapour inlet stream"); |
---|
106 | out OutletL as stream_therm; #(Brief="Liquid outlet stream"); |
---|
107 | in Q as heat_rate (Brief="Heat supplied"); |
---|
108 | DP as press_delta (Brief="Pressure Drop in the condenser"); |
---|
109 | |
---|
110 | EQUATIONS |
---|
111 | "Molar Balance" |
---|
112 | InletV.F = OutletL.F; |
---|
113 | InletV.z = OutletL.z; |
---|
114 | |
---|
115 | "Energy Balance" |
---|
116 | InletV.F*InletV.h = OutletL.F*OutletL.h + Q; |
---|
117 | |
---|
118 | "Pressure" |
---|
119 | DP = InletV.P - OutletL.P; |
---|
120 | |
---|
121 | "Vapourisation Fraction" |
---|
122 | OutletL.v = 0.0; |
---|
123 | end |
---|
124 | |
---|
125 | #*------------------------------------------------------------------- |
---|
126 | * Condenser with reaction in liquid phase |
---|
127 | *--------------------------------------------------------------------*# |
---|
128 | Model condenserReact |
---|
129 | PARAMETERS |
---|
130 | ext PP as CalcObject; |
---|
131 | ext NComp as Integer; |
---|
132 | V as volume (Brief="Condenser total volume"); |
---|
133 | Across as area (Brief="Cross Section Area of reboiler"); |
---|
134 | |
---|
135 | stoic(NComp) as Real(Brief="Stoichiometric matrix"); |
---|
136 | Hr as energy_mol; |
---|
137 | Pstartup as pressure; |
---|
138 | |
---|
139 | VARIABLES |
---|
140 | in InletV as stream; #(Brief="Vapour inlet stream"); |
---|
141 | out OutletL as stream_therm; #(Brief="Liquid outlet stream"); |
---|
142 | out OutletV as stream_therm; #(Brief="Vapour outlet stream"); |
---|
143 | |
---|
144 | M(NComp) as mol (Brief="Molar Holdup in the tray"); |
---|
145 | ML as mol (Brief="Molar liquid holdup"); |
---|
146 | MV as mol (Brief="Molar vapour holdup"); |
---|
147 | E as energy (Brief="Total Energy Holdup on tray"); |
---|
148 | vL as volume_mol (Brief="Liquid Molar Volume"); |
---|
149 | vV as volume_mol (Brief="Vapour Molar volume"); |
---|
150 | Level as length (Brief="Level of liquid phase"); |
---|
151 | Q as heat_rate (Brief="Heat supplied"); |
---|
152 | Vol as volume; |
---|
153 | r as reaction_mol (Brief = "Reaction rate", Unit = "mol/l/s"); |
---|
154 | C(NComp) as conc_mol (Brief = "Molar concentration", Lower = -1); |
---|
155 | |
---|
156 | EQUATIONS |
---|
157 | "Molar Concentration" |
---|
158 | OutletL.z = vL * C; |
---|
159 | |
---|
160 | "Component Molar Balance" |
---|
161 | diff(M) = InletV.F*InletV.z - OutletL.F*OutletL.z |
---|
162 | - OutletV.F*OutletV.z + stoic*r*ML*vL; |
---|
163 | |
---|
164 | "Energy Balance" |
---|
165 | diff(E) = InletV.F*InletV.h - OutletL.F*OutletL.h |
---|
166 | - OutletV.F*OutletV.h + Q + Hr * r * ML*vL; |
---|
167 | |
---|
168 | "Molar Holdup" |
---|
169 | M = ML*OutletL.z + MV*OutletV.z; |
---|
170 | |
---|
171 | "Energy Holdup" |
---|
172 | E = ML*OutletL.h + MV*OutletV.h - OutletV.P*V; |
---|
173 | |
---|
174 | "Mol fraction normalisation" |
---|
175 | sum(OutletL.z)=1.0; |
---|
176 | |
---|
177 | "Liquid Volume" |
---|
178 | vL = PP.LiquidVolume(OutletL.T, OutletL.P, OutletL.z); |
---|
179 | "Vapour Volume" |
---|
180 | vV = PP.VapourVolume(OutletV.T, OutletV.P, OutletV.z); |
---|
181 | |
---|
182 | "Thermal Equilibrium" |
---|
183 | OutletL.T = OutletV.T; |
---|
184 | |
---|
185 | "Mechanical Equilibrium" |
---|
186 | OutletV.P = OutletL.P; |
---|
187 | |
---|
188 | "Geometry Constraint" |
---|
189 | V = ML*vL + MV*vV; |
---|
190 | |
---|
191 | Vol = ML*vL; |
---|
192 | |
---|
193 | "Level of liquid phase" |
---|
194 | Level = ML*vL/Across; |
---|
195 | |
---|
196 | "Vapourisation Fraction" |
---|
197 | OutletL.v = 0.0; |
---|
198 | OutletV.v = 1.0; |
---|
199 | |
---|
200 | "Chemical Equilibrium" |
---|
201 | PP.LiquidFugacityCoefficient(OutletL.T, OutletL.P, OutletL.z)*OutletL.z = |
---|
202 | PP.VapourFugacityCoefficient(OutletV.T, OutletV.P, OutletV.z)*OutletV.z; |
---|
203 | |
---|
204 | sum(OutletL.z)=sum(OutletV.z); |
---|
205 | |
---|
206 | end |
---|