1 | #*--------------------------------------------------------------------* |
---|
2 | * |
---|
3 | * |
---|
4 | * |
---|
5 | * |
---|
6 | * |
---|
7 | * |
---|
8 | * |
---|
9 | * |
---|
10 | * |
---|
11 | * |
---|
12 | *---------------------------------------------------------------------- |
---|
13 | * Author: Gerson Balbueno Bicca |
---|
14 | * $Id: HeatExchangerSimplified.mso 1 2006-06-20 17:33:53Z rafael $ |
---|
15 | *--------------------------------------------------------------------*# |
---|
16 | |
---|
17 | using "HEX_Engine"; |
---|
18 | |
---|
19 | #===================================================================== |
---|
20 | # Basic Models for Simplified Heat Exchangers |
---|
21 | #===================================================================== |
---|
22 | |
---|
23 | Model HeatExchangerSimplified_Basic |
---|
24 | |
---|
25 | PARAMETERS |
---|
26 | |
---|
27 | ext PP as CalcObject(Brief="External Physical Properties"); |
---|
28 | ext HE as CalcObject(Brief="STHE Calculations",File="heatex.dll"); |
---|
29 | ext NComp as Integer (Brief="Number of Components"); |
---|
30 | M(NComp) as molweight (Brief="Component Mol Weight"); |
---|
31 | |
---|
32 | VARIABLES |
---|
33 | |
---|
34 | in Inlet as Inlet_Main_Stream; # Hot and Cold Inlets |
---|
35 | out Outlet as Outlet_Main_Stream; # Hot and Cold Outlets |
---|
36 | Properties as Main_Properties; # Hot and Cold Properties |
---|
37 | Details as Details_Main; |
---|
38 | PressureDrop as Main_Pdrop; |
---|
39 | |
---|
40 | SET |
---|
41 | |
---|
42 | M = PP.MolecularWeight(); |
---|
43 | |
---|
44 | EQUATIONS |
---|
45 | |
---|
46 | "Hot Stream Average Temperature" |
---|
47 | Properties.Hot.Average.T = 0.5*Inlet.Hot.T + 0.5*Outlet.Hot.T; |
---|
48 | |
---|
49 | "Cold Stream Average Temperature" |
---|
50 | Properties.Cold.Average.T = 0.5*Inlet.Cold.T + 0.5*Outlet.Cold.T; |
---|
51 | |
---|
52 | "Hot Stream Average Pressure" |
---|
53 | Properties.Hot.Average.P = 0.5*Inlet.Hot.P+0.5*Outlet.Hot.P; |
---|
54 | |
---|
55 | "Cold Stream Average Pressure" |
---|
56 | Properties.Cold.Average.P = 0.5*Inlet.Cold.P+0.5*Outlet.Cold.P; |
---|
57 | |
---|
58 | "Cold Stream Wall Temperature" |
---|
59 | Properties.Cold.Wall.Twall = 0.5*Properties.Hot.Average.T + 0.5*Properties.Cold.Average.T; |
---|
60 | |
---|
61 | "Hot Stream Wall Temperature" |
---|
62 | Properties.Hot.Wall.Twall = 0.5*Properties.Hot.Average.T + 0.5*Properties.Cold.Average.T; |
---|
63 | |
---|
64 | "Hot Stream Average Molecular Weight" |
---|
65 | Properties.Hot.Average.Mw = sum(M*Inlet.Hot.z); |
---|
66 | |
---|
67 | "Cold Stream Average Molecular Weight" |
---|
68 | Properties.Cold.Average.Mw = sum(M*Inlet.Cold.z); |
---|
69 | |
---|
70 | |
---|
71 | |
---|
72 | if Inlet.Cold.v equal 0 |
---|
73 | |
---|
74 | then |
---|
75 | |
---|
76 | "Heat Capacity Cold Stream" |
---|
77 | Properties.Cold.Average.Cp = PP.LiquidCp(Properties.Cold.Average.T,Properties.Cold.Average.P,Inlet.Cold.z); |
---|
78 | Properties.Cold.Inlet.Cp = PP.LiquidCp(Inlet.Cold.T,Inlet.Cold.P,Inlet.Cold.z); |
---|
79 | Properties.Cold.Outlet.Cp = PP.LiquidCp(Outlet.Cold.T,Outlet.Cold.P,Outlet.Cold.z); |
---|
80 | |
---|
81 | "Mass Density Cold Stream" |
---|
82 | Properties.Cold.Average.rho = PP.LiquidDensity(Properties.Cold.Average.T,Properties.Cold.Average.P,Inlet.Cold.z); |
---|
83 | Properties.Cold.Inlet.rho = PP.LiquidDensity(Inlet.Cold.T,Inlet.Cold.P,Inlet.Cold.z); |
---|
84 | Properties.Cold.Outlet.rho = PP.LiquidDensity(Outlet.Cold.T,Outlet.Cold.P,Outlet.Cold.z); |
---|
85 | |
---|
86 | "Viscosity Cold Stream" |
---|
87 | Properties.Cold.Average.Mu = PP.LiquidViscosity(Properties.Cold.Average.T,Properties.Cold.Average.P,Inlet.Cold.z); |
---|
88 | Properties.Cold.Inlet.Mu = PP.LiquidViscosity(Inlet.Cold.T,Inlet.Cold.P,Inlet.Cold.z); |
---|
89 | Properties.Cold.Outlet.Mu = PP.LiquidViscosity(Outlet.Cold.T,Outlet.Cold.P,Outlet.Cold.z); |
---|
90 | |
---|
91 | "Conductivity Cold Stream" |
---|
92 | Properties.Cold.Average.K = PP.LiquidThermalConductivity(Properties.Cold.Average.T,Properties.Cold.Average.P,Inlet.Cold.z); |
---|
93 | Properties.Cold.Inlet.K = PP.LiquidThermalConductivity(Inlet.Cold.T,Inlet.Cold.P,Inlet.Cold.z); |
---|
94 | Properties.Cold.Outlet.K = PP.LiquidThermalConductivity(Outlet.Cold.T,Outlet.Cold.P,Outlet.Cold.z); |
---|
95 | |
---|
96 | "Heat Capacity Cold Stream" |
---|
97 | Properties.Cold.Wall.Cp = PP.LiquidCp(Properties.Cold.Wall.Twall,Properties.Cold.Average.P,Inlet.Cold.z); |
---|
98 | |
---|
99 | "Viscosity Cold Stream" |
---|
100 | Properties.Cold.Wall.Mu = PP.LiquidViscosity(Properties.Cold.Wall.Twall,Properties.Cold.Average.P,Inlet.Cold.z); |
---|
101 | |
---|
102 | "Conductivity Cold Stream" |
---|
103 | Properties.Cold.Wall.K = PP.LiquidThermalConductivity(Properties.Cold.Wall.Twall,Properties.Cold.Average.P,Inlet.Cold.z); |
---|
104 | |
---|
105 | |
---|
106 | else |
---|
107 | |
---|
108 | "Heat Capacity Cold Stream" |
---|
109 | Properties.Cold.Average.Cp = PP.VapourCp(Properties.Cold.Average.T,Properties.Cold.Average.P,Inlet.Cold.z); |
---|
110 | Properties.Cold.Inlet.Cp = PP.VapourCp(Inlet.Cold.T,Inlet.Cold.P,Inlet.Cold.z); |
---|
111 | Properties.Cold.Outlet.Cp = PP.VapourCp(Outlet.Cold.T,Outlet.Cold.P,Outlet.Cold.z); |
---|
112 | |
---|
113 | "Mass Density Cold Stream" |
---|
114 | Properties.Cold.Average.rho = PP.VapourDensity(Properties.Cold.Average.T,Properties.Cold.Average.P,Inlet.Cold.z); |
---|
115 | Properties.Cold.Inlet.rho = PP.VapourDensity(Inlet.Cold.T,Inlet.Cold.P,Inlet.Cold.z); |
---|
116 | Properties.Cold.Outlet.rho = PP.VapourDensity(Outlet.Cold.T,Outlet.Cold.P,Outlet.Cold.z); |
---|
117 | |
---|
118 | "Viscosity Cold Stream" |
---|
119 | Properties.Cold.Average.Mu = PP.VapourViscosity(Properties.Cold.Average.T,Properties.Cold.Average.P,Inlet.Cold.z); |
---|
120 | Properties.Cold.Inlet.Mu = PP.VapourViscosity(Inlet.Cold.T,Inlet.Cold.P,Inlet.Cold.z); |
---|
121 | Properties.Cold.Outlet.Mu = PP.VapourViscosity(Outlet.Cold.T,Outlet.Cold.P,Outlet.Cold.z); |
---|
122 | |
---|
123 | "Conductivity Cold Stream" |
---|
124 | Properties.Cold.Average.K = PP.VapourThermalConductivity(Properties.Cold.Average.T,Properties.Cold.Average.P,Inlet.Cold.z); |
---|
125 | Properties.Cold.Inlet.K = PP.VapourThermalConductivity(Inlet.Cold.T,Inlet.Cold.P,Inlet.Cold.z); |
---|
126 | Properties.Cold.Outlet.K = PP.VapourThermalConductivity(Outlet.Cold.T,Outlet.Cold.P,Outlet.Cold.z); |
---|
127 | |
---|
128 | "Heat Capacity Cold Stream" |
---|
129 | Properties.Cold.Wall.Cp = PP.VapourCp(Properties.Cold.Wall.Twall,Properties.Cold.Average.P,Inlet.Cold.z); |
---|
130 | |
---|
131 | |
---|
132 | "Viscosity Cold Stream" |
---|
133 | Properties.Cold.Wall.Mu = PP.VapourViscosity(Properties.Cold.Wall.Twall,Properties.Cold.Average.P,Inlet.Cold.z); |
---|
134 | |
---|
135 | "Conductivity Cold Stream" |
---|
136 | Properties.Cold.Wall.K = PP.VapourThermalConductivity(Properties.Cold.Wall.Twall,Properties.Cold.Average.P,Inlet.Cold.z); |
---|
137 | |
---|
138 | |
---|
139 | |
---|
140 | end |
---|
141 | |
---|
142 | if Inlet.Hot.v equal 0 |
---|
143 | |
---|
144 | then |
---|
145 | |
---|
146 | "Heat Capacity Hot Stream" |
---|
147 | Properties.Hot.Average.Cp = PP.LiquidCp(Properties.Hot.Average.T,Properties.Hot.Average.P,Inlet.Hot.z); |
---|
148 | Properties.Hot.Inlet.Cp = PP.LiquidCp(Inlet.Hot.T,Inlet.Hot.P,Inlet.Hot.z); |
---|
149 | Properties.Hot.Outlet.Cp = PP.LiquidCp(Outlet.Hot.T,Outlet.Hot.P,Outlet.Hot.z); |
---|
150 | |
---|
151 | "Mass Density Hot Stream" |
---|
152 | Properties.Hot.Average.rho = PP.LiquidDensity(Properties.Hot.Average.T,Properties.Hot.Average.P,Inlet.Hot.z); |
---|
153 | Properties.Hot.Inlet.rho = PP.LiquidDensity(Inlet.Hot.T,Inlet.Hot.P,Inlet.Hot.z); |
---|
154 | Properties.Hot.Outlet.rho = PP.LiquidDensity(Outlet.Hot.T,Outlet.Hot.P,Outlet.Hot.z); |
---|
155 | |
---|
156 | "Viscosity Hot Stream" |
---|
157 | Properties.Hot.Average.Mu = PP.LiquidViscosity(Properties.Hot.Average.T,Properties.Hot.Average.P,Inlet.Hot.z); |
---|
158 | Properties.Hot.Inlet.Mu = PP.LiquidViscosity(Inlet.Hot.T,Inlet.Hot.P,Inlet.Hot.z); |
---|
159 | Properties.Hot.Outlet.Mu = PP.LiquidViscosity(Outlet.Hot.T,Outlet.Hot.P,Outlet.Hot.z); |
---|
160 | |
---|
161 | "Conductivity Hot Stream" |
---|
162 | Properties.Hot.Average.K = PP.LiquidThermalConductivity(Properties.Hot.Average.T,Properties.Hot.Average.P,Inlet.Hot.z); |
---|
163 | Properties.Hot.Inlet.K = PP.LiquidThermalConductivity(Inlet.Hot.T,Inlet.Hot.P,Inlet.Hot.z); |
---|
164 | Properties.Hot.Outlet.K = PP.LiquidThermalConductivity(Outlet.Hot.T,Outlet.Hot.P,Outlet.Hot.z); |
---|
165 | |
---|
166 | "Heat Capacity Hot Stream" |
---|
167 | Properties.Hot.Wall.Cp = PP.LiquidCp(Properties.Hot.Wall.Twall,Properties.Hot.Average.P,Inlet.Hot.z); |
---|
168 | |
---|
169 | "Viscosity Hot Stream" |
---|
170 | Properties.Hot.Wall.Mu = PP.LiquidViscosity(Properties.Hot.Wall.Twall,Properties.Hot.Average.P,Inlet.Hot.z); |
---|
171 | |
---|
172 | "Conductivity Hot Stream" |
---|
173 | Properties.Hot.Wall.K = PP.LiquidThermalConductivity(Properties.Hot.Wall.Twall,Properties.Hot.Average.P,Inlet.Hot.z); |
---|
174 | |
---|
175 | |
---|
176 | else |
---|
177 | |
---|
178 | "Heat Capacity Hot Stream" |
---|
179 | Properties.Hot.Average.Cp = PP.VapourCp(Properties.Hot.Average.T,Properties.Hot.Average.P,Inlet.Hot.z); |
---|
180 | Properties.Hot.Inlet.Cp = PP.VapourCp(Inlet.Hot.T,Inlet.Hot.P,Inlet.Hot.z); |
---|
181 | Properties.Hot.Outlet.Cp = PP.VapourCp(Outlet.Hot.T,Outlet.Hot.P,Outlet.Hot.z); |
---|
182 | |
---|
183 | "Mass Density Hot Stream" |
---|
184 | Properties.Hot.Average.rho = PP.VapourDensity(Properties.Hot.Average.T,Properties.Hot.Average.P,Inlet.Hot.z); |
---|
185 | Properties.Hot.Inlet.rho = PP.VapourDensity(Inlet.Hot.T,Inlet.Hot.P,Inlet.Hot.z); |
---|
186 | Properties.Hot.Outlet.rho = PP.VapourDensity(Outlet.Hot.T,Outlet.Hot.P,Outlet.Hot.z); |
---|
187 | |
---|
188 | "Viscosity Hot Stream" |
---|
189 | Properties.Hot.Average.Mu = PP.VapourViscosity(Properties.Hot.Average.T,Properties.Hot.Average.P,Inlet.Hot.z); |
---|
190 | Properties.Hot.Inlet.Mu = PP.VapourViscosity(Inlet.Hot.T,Inlet.Hot.P,Inlet.Hot.z); |
---|
191 | Properties.Hot.Outlet.Mu = PP.VapourViscosity(Outlet.Hot.T,Outlet.Hot.P,Outlet.Hot.z); |
---|
192 | |
---|
193 | "Conductivity Hot Stream" |
---|
194 | Properties.Hot.Average.K = PP.VapourThermalConductivity(Properties.Hot.Average.T,Properties.Hot.Average.P,Inlet.Hot.z); |
---|
195 | Properties.Hot.Inlet.K = PP.VapourThermalConductivity(Inlet.Hot.T,Inlet.Hot.P,Inlet.Hot.z); |
---|
196 | Properties.Hot.Outlet.K = PP.VapourThermalConductivity(Outlet.Hot.T,Outlet.Hot.P,Outlet.Hot.z); |
---|
197 | |
---|
198 | "Heat Capacity Hot Stream" |
---|
199 | Properties.Hot.Wall.Cp = PP.VapourCp(Properties.Hot.Wall.Twall,Properties.Hot.Average.P,Inlet.Hot.z); |
---|
200 | |
---|
201 | "Viscosity Hot Stream" |
---|
202 | Properties.Hot.Wall.Mu = PP.VapourViscosity(Properties.Hot.Wall.Twall,Properties.Hot.Average.P,Inlet.Hot.z); |
---|
203 | |
---|
204 | "Conductivity Hot Stream" |
---|
205 | Properties.Hot.Wall.K = PP.VapourThermalConductivity(Properties.Hot.Wall.Twall,Properties.Hot.Average.P,Inlet.Hot.z); |
---|
206 | |
---|
207 | |
---|
208 | end |
---|
209 | |
---|
210 | #===================================================================== |
---|
211 | # Thermal Details |
---|
212 | #===================================================================== |
---|
213 | "Hot Stream Heat Capacity" |
---|
214 | Details.Ch =Inlet.Hot.F*Properties.Hot.Average.Cp; |
---|
215 | |
---|
216 | "Cold Stream Heat Capacity" |
---|
217 | Details.Cc =Inlet.Cold.F*Properties.Cold.Average.Cp; |
---|
218 | |
---|
219 | "Heat Capacity Ratio" |
---|
220 | [Details.Cmin,Details.Cmax,Details.Cr] = HE.HeatCapacityRatio(Details.Ch,Details.Cc); |
---|
221 | |
---|
222 | #===================================================================== |
---|
223 | # Energy Balance |
---|
224 | #===================================================================== |
---|
225 | "Energy Balance Hot Stream" |
---|
226 | Details.Q = Inlet.Hot.F*(Inlet.Hot.h-Outlet.Hot.h); |
---|
227 | |
---|
228 | "Energy Balance Cold Stream" |
---|
229 | Details.Q =-Inlet.Cold.F*(Inlet.Cold.h-Outlet.Cold.h); |
---|
230 | |
---|
231 | #===================================================================== |
---|
232 | # Material Balance |
---|
233 | #===================================================================== |
---|
234 | "Flow Mass Inlet Cold Stream" |
---|
235 | Properties.Cold.Inlet.Fw = sum(M*Inlet.Cold.z)*Inlet.Cold.F; |
---|
236 | |
---|
237 | "Flow Mass Outlet Cold Stream" |
---|
238 | Properties.Cold.Outlet.Fw = sum(M*Outlet.Cold.z)*Outlet.Cold.F; |
---|
239 | |
---|
240 | "Flow Mass Inlet Hot Stream" |
---|
241 | Properties.Hot.Inlet.Fw = sum(M*Inlet.Hot.z)*Inlet.Hot.F; |
---|
242 | |
---|
243 | "Flow Mass Outlet Hot Stream" |
---|
244 | Properties.Hot.Outlet.Fw = sum(M*Outlet.Hot.z)*Outlet.Hot.F; |
---|
245 | |
---|
246 | "Molar Balance Hot Stream" |
---|
247 | Inlet.Hot.F = Outlet.Hot.F; |
---|
248 | |
---|
249 | "Molar Balance Cold Stream" |
---|
250 | Inlet.Cold.F = Outlet.Cold.F; |
---|
251 | |
---|
252 | #====================================== |
---|
253 | # Constraints |
---|
254 | #====================================== |
---|
255 | "Hot Stream Molar Fraction Constraint" |
---|
256 | Outlet.Hot.z=Inlet.Hot.z; |
---|
257 | |
---|
258 | "Cold Stream Molar Fraction Constraint" |
---|
259 | Outlet.Cold.z=Inlet.Cold.z; |
---|
260 | |
---|
261 | "No Phase Change In Cold Stream" |
---|
262 | Inlet.Cold.v=Outlet.Cold.v; |
---|
263 | |
---|
264 | "No Phase Change In Hot Stream" |
---|
265 | Inlet.Hot.v=Outlet.Hot.v; |
---|
266 | |
---|
267 | #====================================== |
---|
268 | # Pressure Drop |
---|
269 | #====================================== |
---|
270 | |
---|
271 | "Pressure Drop Hot Stream" |
---|
272 | Outlet.Hot.P = Inlet.Hot.P - PressureDrop.Hot.Pdrop; |
---|
273 | |
---|
274 | "Pressure Drop Cold Stream" |
---|
275 | Outlet.Cold.P = Inlet.Cold.P - PressureDrop.Cold.Pdrop; |
---|
276 | |
---|
277 | "Fraction of Inlet Pressure : Hot Stream" |
---|
278 | PressureDrop.Hot.Pdrop = Inlet.Hot.P*PressureDrop.Hot.FPdrop; |
---|
279 | |
---|
280 | "Fraction of Inlet Pressure : Cold Stream" |
---|
281 | PressureDrop.Cold.Pdrop = Inlet.Cold.P*PressureDrop.Cold.FPdrop; |
---|
282 | |
---|
283 | |
---|
284 | end |
---|
285 | |
---|
286 | Model Heatex_Basic_NTU as HeatExchangerSimplified_Basic |
---|
287 | #===================================================================== |
---|
288 | # Basic Model for Heat Exchangers - NTU Method |
---|
289 | #===================================================================== |
---|
290 | VARIABLES |
---|
291 | |
---|
292 | Eft as positive (Brief="Effectiveness",Default=0.05,Lower=1e-8); |
---|
293 | |
---|
294 | EQUATIONS |
---|
295 | |
---|
296 | "Energy Balance" |
---|
297 | Details.Q = Eft*Details.Cmin*(Inlet.Hot.T-Inlet.Cold.T); |
---|
298 | |
---|
299 | |
---|
300 | end |
---|
301 | |
---|
302 | Model Heatex_Basic_LMTD as HeatExchangerSimplified_Basic |
---|
303 | #===================================================================== |
---|
304 | # Basic Model for Heat Exchangers - LMTD Method |
---|
305 | #===================================================================== |
---|
306 | |
---|
307 | VARIABLES |
---|
308 | |
---|
309 | LMTD as temp_delta (Brief="Logarithmic Mean Temperature Difference"); |
---|
310 | Fc as positive (Brief="LMTD Correction Factor",Lower=0.75); |
---|
311 | MTD as temp_delta (Brief="Mean Temperature Difference"); |
---|
312 | |
---|
313 | EQUATIONS |
---|
314 | |
---|
315 | "Exchange Surface Area" |
---|
316 | Details.Q = Details.U*Details.A*Fc*LMTD; |
---|
317 | |
---|
318 | "Mean Temperature Difference" |
---|
319 | MTD = Fc*LMTD; |
---|
320 | |
---|
321 | end |
---|
322 | |
---|
323 | |
---|
324 | #===================================================================== |
---|
325 | # Concrete Models for Simplified Heat Exchangers |
---|
326 | #===================================================================== |
---|
327 | |
---|
328 | #===================================================================== |
---|
329 | # LMTD Method |
---|
330 | #===================================================================== |
---|
331 | |
---|
332 | Model HeatExchanger_LMTD as Heatex_Basic_LMTD |
---|
333 | |
---|
334 | EQUATIONS |
---|
335 | |
---|
336 | "Cocurrent Flow LMTD" |
---|
337 | LMTD = HE.LogMeanTemperature(Inlet.Hot.T,Outlet.Hot.T,Inlet.Cold.T,Outlet.Cold.T); |
---|
338 | |
---|
339 | end |
---|
340 | |
---|
341 | Model E_Shell_LMTD as Heatex_Basic_LMTD |
---|
342 | #===================================================================== |
---|
343 | # Shell and Tubes Heat Exchanger with 1 shell pass - LMTD Method |
---|
344 | #===================================================================== |
---|
345 | EQUATIONS |
---|
346 | |
---|
347 | "Counter Flow LMTD" |
---|
348 | LMTD = HE.CounterLMTD(Inlet.Hot.T,Outlet.Hot.T,Inlet.Cold.T,Outlet.Cold.T); |
---|
349 | |
---|
350 | "LMTD Correction Factor" |
---|
351 | Fc = HE.EshellCorrectionFactor(Inlet.Hot.T,Outlet.Hot.T,Inlet.Cold.T,Outlet.Cold.T); |
---|
352 | |
---|
353 | end |
---|
354 | |
---|
355 | Model F_Shell_LMTD as Heatex_Basic_LMTD |
---|
356 | #===================================================================== |
---|
357 | # Shell and Tubes Heat Exchanger with 2 shell passes - LMTD Method |
---|
358 | #===================================================================== |
---|
359 | EQUATIONS |
---|
360 | |
---|
361 | "Counter Flow LMTD" |
---|
362 | LMTD = HE.CounterLMTD(Inlet.Hot.T,Outlet.Hot.T,Inlet.Cold.T,Outlet.Cold.T); |
---|
363 | |
---|
364 | "LMTD Correction Factor" |
---|
365 | Fc = HE.FshellCorrectionFactor(Inlet.Hot.T,Outlet.Hot.T,Inlet.Cold.T,Outlet.Cold.T); |
---|
366 | |
---|
367 | end |
---|
368 | |
---|
369 | Model Multipass_LMTD as Heatex_Basic_LMTD |
---|
370 | #============================================================================ |
---|
371 | # Shell and Tubes Heat Exchanger In Series with 1 shell pass - LMTD Method |
---|
372 | #============================================================================ |
---|
373 | PARAMETERS |
---|
374 | |
---|
375 | Nshell as Integer (Brief="N Shell in Series",Lower=2); |
---|
376 | |
---|
377 | EQUATIONS |
---|
378 | |
---|
379 | "Counter Flow LMTD" |
---|
380 | LMTD = HE.CounterLMTD(Inlet.Hot.T,Outlet.Hot.T,Inlet.Cold.T,Outlet.Cold.T); |
---|
381 | |
---|
382 | "LMTD Correction Factor" |
---|
383 | Fc = HE.MpassCorrectionFactor(Inlet.Hot.T,Outlet.Hot.T,Inlet.Cold.T,Outlet.Cold.T,Nshell); |
---|
384 | |
---|
385 | end |
---|
386 | |
---|
387 | |
---|
388 | #===================================================================== |
---|
389 | # NTU Method |
---|
390 | #===================================================================== |
---|
391 | |
---|
392 | Model HeatExchanger_NTU as Heatex_Basic_NTU |
---|
393 | |
---|
394 | EQUATIONS |
---|
395 | |
---|
396 | "Effectiveness" |
---|
397 | Eft=HE.Effectiveness(Details.Cr,Details.NTU); |
---|
398 | |
---|
399 | end |
---|
400 | |
---|
401 | Model E_Shell_NTU as Heatex_Basic_NTU |
---|
402 | #===================================================================== |
---|
403 | # Shell and Tubes Heat Exchanger with 1 shell pass - NTU Method |
---|
404 | #===================================================================== |
---|
405 | EQUATIONS |
---|
406 | |
---|
407 | "TEMA E Shell Effectiveness" |
---|
408 | Eft = 2*(1+Details.Cr+sqrt(1+Details.Cr^2)*((1+exp(-Details.NTU*sqrt(1+Details.Cr^2)))/(1-exp(-Details.NTU*sqrt(1+Details.Cr^2)))) )^-1; |
---|
409 | |
---|
410 | end |
---|
411 | |
---|
412 | Model F_Shell_NTU as Heatex_Basic_NTU |
---|
413 | #===================================================================== |
---|
414 | # Shell and Tubes Heat Exchanger with 2 shell passes - NTU Method |
---|
415 | #===================================================================== |
---|
416 | VARIABLES |
---|
417 | |
---|
418 | Eft1 as positive (Brief="Effectiveness Correction",Lower=0.01,Upper=1,Default=0.5); |
---|
419 | |
---|
420 | EQUATIONS |
---|
421 | |
---|
422 | "Effectiveness Correction" |
---|
423 | Eft1 = 2*(1+Details.Cr+sqrt(1+Details.Cr^2)*((1+exp(-Details.NTU*sqrt(1+Details.Cr^2)))/(1-exp(-Details.NTU*sqrt(1+Details.Cr^2)))) )^-1; |
---|
424 | |
---|
425 | "TEMA F Shell Effectiveness" |
---|
426 | Eft = ( ((1-Eft1*Details.Cr)/(1-Eft1))^2 -1 )*( ((1-Eft1*Details.Cr)/(1-Eft1))^2 - Details.Cr )^-1; |
---|
427 | |
---|
428 | end |
---|