1 | #*------------------------------------------------------------------- |
---|
2 | * EMSO Model Library (EML) Copyright (C) 2004 - 2007 ALSOC. |
---|
3 | * |
---|
4 | * This LIBRARY is free software; you can distribute it and/or modify |
---|
5 | * it under the therms of the ALSOC FREE LICENSE as available at |
---|
6 | * http://www.enq.ufrgs.br/alsoc. |
---|
7 | * |
---|
8 | * EMSO Copyright (C) 2004 - 2007 ALSOC, original code |
---|
9 | * from http://www.rps.eng.br Copyright (C) 2002-2004. |
---|
10 | * All rights reserved. |
---|
11 | * |
---|
12 | * EMSO is distributed under the therms of the ALSOC LICENSE as |
---|
13 | * available at http://www.enq.ufrgs.br/alsoc. |
---|
14 | * |
---|
15 | *-------------------------------------------------------------------- |
---|
16 | * Author: Gerson Balbueno Bicca |
---|
17 | * $Id: DoublePipe.mso 78 2006-12-08 19:29:10Z paula $ |
---|
18 | *------------------------------------------------------------------*# |
---|
19 | |
---|
20 | using "HEX_Engine"; |
---|
21 | #===================================================================== |
---|
22 | # Basic Models for Double Pipe Heat Exchangers |
---|
23 | #===================================================================== |
---|
24 | |
---|
25 | Model DoublePipe_Basic |
---|
26 | |
---|
27 | PARAMETERS |
---|
28 | ext PP as CalcObject (Brief="External Physical Properties"); |
---|
29 | ext NComp as Integer (Brief="Number of Components"); |
---|
30 | M(NComp) as molweight (Brief="Component Mol Weight"); |
---|
31 | |
---|
32 | VARIABLES |
---|
33 | |
---|
34 | in Inlet as Inlet_Main_Stream; # Hot and Cold Inlets |
---|
35 | out Outlet as Outlet_Main_Stream; # Hot and Cold Outlets |
---|
36 | Properties as Main_Properties; # Hot and Cold Properties |
---|
37 | Details as Details_Main; |
---|
38 | Inner as Main_DoublePipe; |
---|
39 | Outer as Main_DoublePipe; |
---|
40 | Resistances as Main_Resistances; |
---|
41 | |
---|
42 | SET |
---|
43 | |
---|
44 | M = PP.MolecularWeight(); |
---|
45 | |
---|
46 | EQUATIONS |
---|
47 | |
---|
48 | "Hot Stream Average Temperature" |
---|
49 | Properties.Hot.Average.T = 0.5*Inlet.Hot.T + 0.5*Outlet.Hot.T; |
---|
50 | |
---|
51 | "Cold Stream Average Temperature" |
---|
52 | Properties.Cold.Average.T = 0.5*Inlet.Cold.T + 0.5*Outlet.Cold.T; |
---|
53 | |
---|
54 | "Hot Stream Average Pressure" |
---|
55 | Properties.Hot.Average.P = 0.5*Inlet.Hot.P+0.5*Outlet.Hot.P; |
---|
56 | |
---|
57 | "Cold Stream Average Pressure" |
---|
58 | Properties.Cold.Average.P = 0.5*Inlet.Cold.P+0.5*Outlet.Cold.P; |
---|
59 | |
---|
60 | "Cold Stream Wall Temperature" |
---|
61 | Properties.Cold.Wall.Twall = 0.5*Properties.Hot.Average.T + 0.5*Properties.Cold.Average.T; |
---|
62 | |
---|
63 | "Hot Stream Wall Temperature" |
---|
64 | Properties.Hot.Wall.Twall = 0.5*Properties.Hot.Average.T + 0.5*Properties.Cold.Average.T; |
---|
65 | |
---|
66 | "Hot Stream Average Molecular Weight" |
---|
67 | Properties.Hot.Average.Mw = sum(M*Inlet.Hot.z); |
---|
68 | |
---|
69 | "Cold Stream Average Molecular Weight" |
---|
70 | Properties.Cold.Average.Mw = sum(M*Inlet.Cold.z); |
---|
71 | |
---|
72 | |
---|
73 | |
---|
74 | if Inlet.Cold.v equal 0 |
---|
75 | then |
---|
76 | "Heat Capacity Cold Stream" |
---|
77 | Properties.Cold.Average.Cp = PP.LiquidCp(Properties.Cold.Average.T,Properties.Cold.Average.P,Inlet.Cold.z); |
---|
78 | Properties.Cold.Inlet.Cp = PP.LiquidCp(Inlet.Cold.T,Inlet.Cold.P,Inlet.Cold.z); |
---|
79 | Properties.Cold.Outlet.Cp = PP.LiquidCp(Outlet.Cold.T,Outlet.Cold.P,Outlet.Cold.z); |
---|
80 | |
---|
81 | "Mass Density Cold Stream" |
---|
82 | Properties.Cold.Average.rho = PP.LiquidDensity(Properties.Cold.Average.T,Properties.Cold.Average.P,Inlet.Cold.z); |
---|
83 | Properties.Cold.Inlet.rho = PP.LiquidDensity(Inlet.Cold.T,Inlet.Cold.P,Inlet.Cold.z); |
---|
84 | Properties.Cold.Outlet.rho = PP.LiquidDensity(Outlet.Cold.T,Outlet.Cold.P,Outlet.Cold.z); |
---|
85 | |
---|
86 | "Viscosity Cold Stream" |
---|
87 | Properties.Cold.Average.Mu = PP.LiquidViscosity(Properties.Cold.Average.T,Properties.Cold.Average.P,Inlet.Cold.z); |
---|
88 | Properties.Cold.Inlet.Mu = PP.LiquidViscosity(Inlet.Cold.T,Inlet.Cold.P,Inlet.Cold.z); |
---|
89 | Properties.Cold.Outlet.Mu = PP.LiquidViscosity(Outlet.Cold.T,Outlet.Cold.P,Outlet.Cold.z); |
---|
90 | |
---|
91 | "Conductivity Cold Stream" |
---|
92 | Properties.Cold.Average.K = PP.LiquidThermalConductivity(Properties.Cold.Average.T,Properties.Cold.Average.P,Inlet.Cold.z); |
---|
93 | Properties.Cold.Inlet.K = PP.LiquidThermalConductivity(Inlet.Cold.T,Inlet.Cold.P,Inlet.Cold.z); |
---|
94 | Properties.Cold.Outlet.K = PP.LiquidThermalConductivity(Outlet.Cold.T,Outlet.Cold.P,Outlet.Cold.z); |
---|
95 | |
---|
96 | "Heat Capacity Cold Stream" |
---|
97 | Properties.Cold.Wall.Cp = PP.LiquidCp(Properties.Cold.Wall.Twall,Properties.Cold.Average.P,Inlet.Cold.z); |
---|
98 | |
---|
99 | "Viscosity Cold Stream" |
---|
100 | Properties.Cold.Wall.Mu = PP.LiquidViscosity(Properties.Cold.Wall.Twall,Properties.Cold.Average.P,Inlet.Cold.z); |
---|
101 | |
---|
102 | "Conductivity Cold Stream" |
---|
103 | Properties.Cold.Wall.K = PP.LiquidThermalConductivity(Properties.Cold.Wall.Twall,Properties.Cold.Average.P,Inlet.Cold.z); |
---|
104 | |
---|
105 | |
---|
106 | else |
---|
107 | |
---|
108 | "Heat Capacity Cold Stream" |
---|
109 | Properties.Cold.Average.Cp = PP.VapourCp(Properties.Cold.Average.T,Properties.Cold.Average.P,Inlet.Cold.z); |
---|
110 | Properties.Cold.Inlet.Cp = PP.VapourCp(Inlet.Cold.T,Inlet.Cold.P,Inlet.Cold.z); |
---|
111 | Properties.Cold.Outlet.Cp = PP.VapourCp(Outlet.Cold.T,Outlet.Cold.P,Outlet.Cold.z); |
---|
112 | |
---|
113 | "Mass Density Cold Stream" |
---|
114 | Properties.Cold.Average.rho = PP.VapourDensity(Properties.Cold.Average.T,Properties.Cold.Average.P,Inlet.Cold.z); |
---|
115 | Properties.Cold.Inlet.rho = PP.VapourDensity(Inlet.Cold.T,Inlet.Cold.P,Inlet.Cold.z); |
---|
116 | Properties.Cold.Outlet.rho = PP.VapourDensity(Outlet.Cold.T,Outlet.Cold.P,Outlet.Cold.z); |
---|
117 | |
---|
118 | "Viscosity Cold Stream" |
---|
119 | Properties.Cold.Average.Mu = PP.VapourViscosity(Properties.Cold.Average.T,Properties.Cold.Average.P,Inlet.Cold.z); |
---|
120 | Properties.Cold.Inlet.Mu = PP.VapourViscosity(Inlet.Cold.T,Inlet.Cold.P,Inlet.Cold.z); |
---|
121 | Properties.Cold.Outlet.Mu = PP.VapourViscosity(Outlet.Cold.T,Outlet.Cold.P,Outlet.Cold.z); |
---|
122 | |
---|
123 | "Conductivity Cold Stream" |
---|
124 | Properties.Cold.Average.K = PP.VapourThermalConductivity(Properties.Cold.Average.T,Properties.Cold.Average.P,Inlet.Cold.z); |
---|
125 | Properties.Cold.Inlet.K = PP.VapourThermalConductivity(Inlet.Cold.T,Inlet.Cold.P,Inlet.Cold.z); |
---|
126 | Properties.Cold.Outlet.K = PP.VapourThermalConductivity(Outlet.Cold.T,Outlet.Cold.P,Outlet.Cold.z); |
---|
127 | |
---|
128 | "Heat Capacity Cold Stream" |
---|
129 | Properties.Cold.Wall.Cp = PP.VapourCp(Properties.Cold.Wall.Twall,Properties.Cold.Average.P,Inlet.Cold.z); |
---|
130 | |
---|
131 | |
---|
132 | "Viscosity Cold Stream" |
---|
133 | Properties.Cold.Wall.Mu = PP.VapourViscosity(Properties.Cold.Wall.Twall,Properties.Cold.Average.P,Inlet.Cold.z); |
---|
134 | |
---|
135 | "Conductivity Cold Stream" |
---|
136 | Properties.Cold.Wall.K = PP.VapourThermalConductivity(Properties.Cold.Wall.Twall,Properties.Cold.Average.P,Inlet.Cold.z); |
---|
137 | |
---|
138 | |
---|
139 | |
---|
140 | end |
---|
141 | |
---|
142 | if Inlet.Hot.v equal 0 |
---|
143 | |
---|
144 | then |
---|
145 | |
---|
146 | "Heat Capacity Hot Stream" |
---|
147 | Properties.Hot.Average.Cp = PP.LiquidCp(Properties.Hot.Average.T,Properties.Hot.Average.P,Inlet.Hot.z); |
---|
148 | Properties.Hot.Inlet.Cp = PP.LiquidCp(Inlet.Hot.T,Inlet.Hot.P,Inlet.Hot.z); |
---|
149 | Properties.Hot.Outlet.Cp = PP.LiquidCp(Outlet.Hot.T,Outlet.Hot.P,Outlet.Hot.z); |
---|
150 | |
---|
151 | "Mass Density Hot Stream" |
---|
152 | Properties.Hot.Average.rho = PP.LiquidDensity(Properties.Hot.Average.T,Properties.Hot.Average.P,Inlet.Hot.z); |
---|
153 | Properties.Hot.Inlet.rho = PP.LiquidDensity(Inlet.Hot.T,Inlet.Hot.P,Inlet.Hot.z); |
---|
154 | Properties.Hot.Outlet.rho = PP.LiquidDensity(Outlet.Hot.T,Outlet.Hot.P,Outlet.Hot.z); |
---|
155 | |
---|
156 | "Viscosity Hot Stream" |
---|
157 | Properties.Hot.Average.Mu = PP.LiquidViscosity(Properties.Hot.Average.T,Properties.Hot.Average.P,Inlet.Hot.z); |
---|
158 | Properties.Hot.Inlet.Mu = PP.LiquidViscosity(Inlet.Hot.T,Inlet.Hot.P,Inlet.Hot.z); |
---|
159 | Properties.Hot.Outlet.Mu = PP.LiquidViscosity(Outlet.Hot.T,Outlet.Hot.P,Outlet.Hot.z); |
---|
160 | |
---|
161 | "Conductivity Hot Stream" |
---|
162 | Properties.Hot.Average.K = PP.LiquidThermalConductivity(Properties.Hot.Average.T,Properties.Hot.Average.P,Inlet.Hot.z); |
---|
163 | Properties.Hot.Inlet.K = PP.LiquidThermalConductivity(Inlet.Hot.T,Inlet.Hot.P,Inlet.Hot.z); |
---|
164 | Properties.Hot.Outlet.K = PP.LiquidThermalConductivity(Outlet.Hot.T,Outlet.Hot.P,Outlet.Hot.z); |
---|
165 | |
---|
166 | "Heat Capacity Hot Stream" |
---|
167 | Properties.Hot.Wall.Cp = PP.LiquidCp(Properties.Hot.Wall.Twall,Properties.Hot.Average.P,Inlet.Hot.z); |
---|
168 | |
---|
169 | "Viscosity Hot Stream" |
---|
170 | Properties.Hot.Wall.Mu = PP.LiquidViscosity(Properties.Hot.Wall.Twall,Properties.Hot.Average.P,Inlet.Hot.z); |
---|
171 | |
---|
172 | "Conductivity Hot Stream" |
---|
173 | Properties.Hot.Wall.K = PP.LiquidThermalConductivity(Properties.Hot.Wall.Twall,Properties.Hot.Average.P,Inlet.Hot.z); |
---|
174 | |
---|
175 | |
---|
176 | else |
---|
177 | |
---|
178 | "Heat Capacity Hot Stream" |
---|
179 | Properties.Hot.Average.Cp = PP.VapourCp(Properties.Hot.Average.T,Properties.Hot.Average.P,Inlet.Hot.z); |
---|
180 | Properties.Hot.Inlet.Cp = PP.VapourCp(Inlet.Hot.T,Inlet.Hot.P,Inlet.Hot.z); |
---|
181 | Properties.Hot.Outlet.Cp = PP.VapourCp(Outlet.Hot.T,Outlet.Hot.P,Outlet.Hot.z); |
---|
182 | |
---|
183 | "Mass Density Hot Stream" |
---|
184 | Properties.Hot.Average.rho = PP.VapourDensity(Properties.Hot.Average.T,Properties.Hot.Average.P,Inlet.Hot.z); |
---|
185 | Properties.Hot.Inlet.rho = PP.VapourDensity(Inlet.Hot.T,Inlet.Hot.P,Inlet.Hot.z); |
---|
186 | Properties.Hot.Outlet.rho = PP.VapourDensity(Outlet.Hot.T,Outlet.Hot.P,Outlet.Hot.z); |
---|
187 | |
---|
188 | "Viscosity Hot Stream" |
---|
189 | Properties.Hot.Average.Mu = PP.VapourViscosity(Properties.Hot.Average.T,Properties.Hot.Average.P,Inlet.Hot.z); |
---|
190 | Properties.Hot.Inlet.Mu = PP.VapourViscosity(Inlet.Hot.T,Inlet.Hot.P,Inlet.Hot.z); |
---|
191 | Properties.Hot.Outlet.Mu = PP.VapourViscosity(Outlet.Hot.T,Outlet.Hot.P,Outlet.Hot.z); |
---|
192 | |
---|
193 | "Conductivity Hot Stream" |
---|
194 | Properties.Hot.Average.K = PP.VapourThermalConductivity(Properties.Hot.Average.T,Properties.Hot.Average.P,Inlet.Hot.z); |
---|
195 | Properties.Hot.Inlet.K = PP.VapourThermalConductivity(Inlet.Hot.T,Inlet.Hot.P,Inlet.Hot.z); |
---|
196 | Properties.Hot.Outlet.K = PP.VapourThermalConductivity(Outlet.Hot.T,Outlet.Hot.P,Outlet.Hot.z); |
---|
197 | |
---|
198 | "Heat Capacity Hot Stream" |
---|
199 | Properties.Hot.Wall.Cp = PP.VapourCp(Properties.Hot.Wall.Twall,Properties.Hot.Average.P,Inlet.Hot.z); |
---|
200 | |
---|
201 | "Viscosity Hot Stream" |
---|
202 | Properties.Hot.Wall.Mu = PP.VapourViscosity(Properties.Hot.Wall.Twall,Properties.Hot.Average.P,Inlet.Hot.z); |
---|
203 | |
---|
204 | "Conductivity Hot Stream" |
---|
205 | Properties.Hot.Wall.K = PP.VapourThermalConductivity(Properties.Hot.Wall.Twall,Properties.Hot.Average.P,Inlet.Hot.z); |
---|
206 | |
---|
207 | |
---|
208 | end |
---|
209 | |
---|
210 | #===================================================================== |
---|
211 | # Thermal Details |
---|
212 | #===================================================================== |
---|
213 | "Hot Stream Heat Capacity" |
---|
214 | Details.Ch =Inlet.Hot.F*Properties.Hot.Average.Cp; |
---|
215 | |
---|
216 | "Cold Stream Heat Capacity" |
---|
217 | Details.Cc =Inlet.Cold.F*Properties.Cold.Average.Cp; |
---|
218 | |
---|
219 | "Minimum Heat Capacity" |
---|
220 | Details.Cmin = min([Details.Ch,Details.Cc]); |
---|
221 | |
---|
222 | "Maximum Heat Capacity" |
---|
223 | Details.Cmax = max([Details.Ch,Details.Cc]); |
---|
224 | |
---|
225 | "Heat Capacity Ratio" |
---|
226 | Details.Cr*Details.Cmax = Details.Cmin; |
---|
227 | #===================================================================== |
---|
228 | # Energy Balance |
---|
229 | #===================================================================== |
---|
230 | "Energy Balance Hot Stream" |
---|
231 | Details.Q = Inlet.Hot.F*(Inlet.Hot.h-Outlet.Hot.h); |
---|
232 | |
---|
233 | "Energy Balance Cold Stream" |
---|
234 | Details.Q = Inlet.Cold.F*(Outlet.Cold.h - Inlet.Cold.h); |
---|
235 | |
---|
236 | #===================================================================== |
---|
237 | # Material Balance |
---|
238 | #===================================================================== |
---|
239 | "Flow Mass Inlet Cold Stream" |
---|
240 | Properties.Cold.Inlet.Fw = sum(M*Inlet.Cold.z)*Inlet.Cold.F; |
---|
241 | |
---|
242 | "Flow Mass Outlet Cold Stream" |
---|
243 | Properties.Cold.Outlet.Fw = sum(M*Outlet.Cold.z)*Outlet.Cold.F; |
---|
244 | |
---|
245 | "Flow Mass Inlet Hot Stream" |
---|
246 | Properties.Hot.Inlet.Fw = sum(M*Inlet.Hot.z)*Inlet.Hot.F; |
---|
247 | |
---|
248 | "Flow Mass Outlet Hot Stream" |
---|
249 | Properties.Hot.Outlet.Fw = sum(M*Outlet.Hot.z)*Outlet.Hot.F; |
---|
250 | |
---|
251 | "Molar Balance Hot Stream" |
---|
252 | Inlet.Hot.F = Outlet.Hot.F; |
---|
253 | |
---|
254 | "Molar Balance Cold Stream" |
---|
255 | Inlet.Cold.F = Outlet.Cold.F; |
---|
256 | |
---|
257 | #====================================== |
---|
258 | # Constraints |
---|
259 | #====================================== |
---|
260 | "Hot Stream Molar Fraction Constraint" |
---|
261 | Outlet.Hot.z=Inlet.Hot.z; |
---|
262 | |
---|
263 | "Cold Stream Molar Fraction Constraint" |
---|
264 | Outlet.Cold.z=Inlet.Cold.z; |
---|
265 | |
---|
266 | "No Phase Change In Cold Stream" |
---|
267 | Inlet.Cold.v=Outlet.Cold.v; |
---|
268 | |
---|
269 | "No Phase Change In Hot Stream" |
---|
270 | Inlet.Hot.v=Outlet.Hot.v; |
---|
271 | |
---|
272 | if Inner.PressureDrop.Re < 2300 |
---|
273 | |
---|
274 | then |
---|
275 | "Inner Side Friction Factor - laminar Flow" |
---|
276 | Inner.PressureDrop.fi*Inner.PressureDrop.Re = 16; |
---|
277 | |
---|
278 | else |
---|
279 | "Inner Side Friction Factor - Turbulent Flow" |
---|
280 | (Inner.PressureDrop.fi-0.0035)*(Inner.PressureDrop.Re^0.42) = 0.264; |
---|
281 | |
---|
282 | end |
---|
283 | |
---|
284 | |
---|
285 | if Outer.PressureDrop.Re < 2300 |
---|
286 | |
---|
287 | then |
---|
288 | "Inner Side Friction Factor - laminar Flow" |
---|
289 | Outer.PressureDrop.fi*Outer.PressureDrop.Re = 16; |
---|
290 | |
---|
291 | else |
---|
292 | "Inner Side Friction Factor - Turbulent Flow" |
---|
293 | (Outer.PressureDrop.fi - 0.0035)*(Outer.PressureDrop.Re^0.42) = 0.264; |
---|
294 | |
---|
295 | end |
---|
296 | |
---|
297 | "Overall Heat Transfer Coefficient" |
---|
298 | # Details.U*(Resistances.Rtube+Resistances.Rwall+Resistances.Rshell)=1; |
---|
299 | Details.U=1/(Resistances.Rtube+Resistances.Rwall+Resistances.Rshell); |
---|
300 | |
---|
301 | end |
---|
302 | |
---|
303 | Model DoublePipe as DoublePipe_Basic |
---|
304 | |
---|
305 | PARAMETERS |
---|
306 | |
---|
307 | HE as CalcObject (Brief="STHE Calculations",File="heatex"); |
---|
308 | Pi as constant (Brief="Pi Number",Default=3.14159265); |
---|
309 | Hside as Integer (Brief="Fluid Alocation Flag-Default:Outer",Lower=0,Upper=1); |
---|
310 | Side as Integer (Brief="Flow Direction",Lower=0,Upper=1); |
---|
311 | DoInner as length (Brief="Outside Diameter of Inner Pipe",Lower=1e-6); |
---|
312 | DiInner as length (Brief="Inside Diameter of Inner Pipe",Lower=1e-10); |
---|
313 | DiOuter as length (Brief="Inside Diameter of Outer pipe",Lower=1e-10); |
---|
314 | Lpipe as length (Brief="Effective Tube Length",Lower=0.1); |
---|
315 | Kwall as conductivity (Brief="Tube Wall Material Thermal Conductivity",Default=1.0); |
---|
316 | |
---|
317 | SET |
---|
318 | Pi = 3.14159265; |
---|
319 | Hside = HE.FluidAlocation(); |
---|
320 | Side = HE.FlowDir(); |
---|
321 | |
---|
322 | #"Inner Pipe Cross Sectional Area for Flow" |
---|
323 | Inner.HeatTransfer.As=Pi*DiInner*DiInner/4; |
---|
324 | |
---|
325 | #"Outer Pipe Cross Sectional Area for Flow" |
---|
326 | Outer.HeatTransfer.As=Pi*(DiOuter*DiOuter-DoInner*DoInner)/4; |
---|
327 | |
---|
328 | #"Inner Pipe Hydraulic Diameter for Heat Transfer" |
---|
329 | Inner.HeatTransfer.Dh=DiInner; |
---|
330 | |
---|
331 | #"Outer Pipe Hydraulic Diameter for Heat Transfer" |
---|
332 | Outer.HeatTransfer.Dh=(DiOuter*DiOuter-DoInner*DoInner)/DoInner; |
---|
333 | |
---|
334 | #"Inner Pipe Hydraulic Diameter for Pressure Drop" |
---|
335 | Inner.PressureDrop.Dh=DiInner; |
---|
336 | |
---|
337 | #"Outer Pipe Hydraulic Diameter for Pressure Drop" |
---|
338 | Outer.PressureDrop.Dh=DiOuter-DoInner; |
---|
339 | |
---|
340 | EQUATIONS |
---|
341 | |
---|
342 | "Exchange Surface Area" |
---|
343 | Details.A=Pi*DoInner*Lpipe; |
---|
344 | |
---|
345 | if Hside equal 1 |
---|
346 | |
---|
347 | then |
---|
348 | |
---|
349 | "Pressure Drop Hot Stream" |
---|
350 | Outlet.Hot.P = Inlet.Hot.P - Outer.PressureDrop.Pdrop; |
---|
351 | |
---|
352 | "Pressure Drop Cold Stream" |
---|
353 | Outlet.Cold.P = Inlet.Cold.P - Inner.PressureDrop.Pdrop; |
---|
354 | |
---|
355 | "Outer Pipe Film Coefficient" |
---|
356 | Outer.HeatTransfer.hcoeff= HE.PipeFilmCoeff(Outer.HeatTransfer.Re,Outer.HeatTransfer.PR,Properties.Hot.Average.K,Outer.HeatTransfer.Dh,Lpipe)*Outer.HeatTransfer.Phi; |
---|
357 | # Outer.HeatTransfer.hcoeff= (0.027*Outer.HeatTransfer.Re^(4/5)*Outer.HeatTransfer.PR^(1/3)*Properties.Hot.Average.K/Outer.HeatTransfer.Dh)*Outer.HeatTransfer.Phi; |
---|
358 | |
---|
359 | "Inner Pipe Film Coefficient" |
---|
360 | Inner.HeatTransfer.hcoeff= HE.PipeFilmCoeff(Inner.HeatTransfer.Re,Inner.HeatTransfer.PR,Properties.Cold.Average.K,DiInner,Lpipe)*Inner.HeatTransfer.Phi; |
---|
361 | # Inner.HeatTransfer.hcoeff= (0.027*Inner.HeatTransfer.Re^(4/5)*Inner.HeatTransfer.PR^(1/3)*Properties.Cold.Average.K/DiInner)*Inner.HeatTransfer.Phi; |
---|
362 | |
---|
363 | "Outer Pipe Pressure Drop" |
---|
364 | Outer.PressureDrop.Pdrop = (2*Outer.PressureDrop.fi*Lpipe*Properties.Hot.Average.rho*Outer.HeatTransfer.Vmean^2)/(Outer.PressureDrop.Dh*Outer.HeatTransfer.Phi); |
---|
365 | |
---|
366 | "Inner Pipe Pressure Drop" |
---|
367 | Inner.PressureDrop.Pdrop = (2*Inner.PressureDrop.fi*Lpipe*Properties.Cold.Average.rho*Inner.HeatTransfer.Vmean^2)/(DiInner*Inner.HeatTransfer.Phi); |
---|
368 | |
---|
369 | "Outer Pipe Phi correction" |
---|
370 | Outer.HeatTransfer.Phi = HE.PhiCorrection(Properties.Hot.Average.Mu,Properties.Hot.Wall.Mu); |
---|
371 | |
---|
372 | "Inner Pipe Phi correction" |
---|
373 | Inner.HeatTransfer.Phi = HE.PhiCorrection(Properties.Cold.Average.Mu,Properties.Cold.Wall.Mu); |
---|
374 | |
---|
375 | "Outer Pipe Prandtl Number" |
---|
376 | Outer.HeatTransfer.PR = ((Properties.Hot.Average.Cp/Properties.Hot.Average.Mw)*Properties.Hot.Average.Mu)/Properties.Hot.Average.K; |
---|
377 | |
---|
378 | "Inner Pipe Prandtl Number" |
---|
379 | Inner.HeatTransfer.PR = ((Properties.Cold.Average.Cp/Properties.Cold.Average.Mw)*Properties.Cold.Average.Mu)/Properties.Cold.Average.K; |
---|
380 | |
---|
381 | "Outer Pipe Reynolds Number for Heat Transfer" |
---|
382 | Outer.HeatTransfer.Re = (Properties.Hot.Average.rho*Outer.HeatTransfer.Vmean*Outer.HeatTransfer.Dh)/Properties.Hot.Average.Mu; |
---|
383 | |
---|
384 | "Outer Pipe Reynolds Number for Pressure Drop" |
---|
385 | Outer.PressureDrop.Re = (Properties.Hot.Average.rho*Outer.HeatTransfer.Vmean*Outer.PressureDrop.Dh)/Properties.Hot.Average.Mu; |
---|
386 | |
---|
387 | "Inner Pipe Reynolds Number for Heat Transfer" |
---|
388 | Inner.HeatTransfer.Re = (Properties.Cold.Average.rho*Inner.HeatTransfer.Vmean*Inner.HeatTransfer.Dh)/Properties.Cold.Average.Mu; |
---|
389 | |
---|
390 | "Inner Pipe Reynolds Number for Pressure Drop" |
---|
391 | Inner.PressureDrop.Re = Inner.HeatTransfer.Re; |
---|
392 | |
---|
393 | "Outer Pipe Velocity" |
---|
394 | Outer.HeatTransfer.Vmean*(Outer.HeatTransfer.As*Properties.Hot.Average.rho) = Properties.Hot.Inlet.Fw; |
---|
395 | |
---|
396 | "Inner Pipe Velocity" |
---|
397 | Inner.HeatTransfer.Vmean*(Inner.HeatTransfer.As*Properties.Cold.Average.rho) = Properties.Cold.Inlet.Fw; |
---|
398 | |
---|
399 | else |
---|
400 | |
---|
401 | "Pressure Drop Hot Stream" |
---|
402 | Outlet.Hot.P = Inlet.Hot.P - Inner.PressureDrop.Pdrop; |
---|
403 | |
---|
404 | "Pressure Drop Cold Stream" |
---|
405 | Outlet.Cold.P = Inlet.Cold.P - Outer.PressureDrop.Pdrop; |
---|
406 | |
---|
407 | "Inner Pipe Film Coefficient" |
---|
408 | Inner.HeatTransfer.hcoeff= HE.PipeFilmCoeff(Inner.HeatTransfer.Re,Inner.HeatTransfer.PR,Properties.Hot.Average.K,DiInner,Lpipe)*Inner.HeatTransfer.Phi; |
---|
409 | # Inner.HeatTransfer.hcoeff= (0.027*Inner.HeatTransfer.Re^(4/5)*Inner.HeatTransfer.PR^(1/3)*Properties.Hot.Average.K/DiInner)*Inner.HeatTransfer.Phi; |
---|
410 | |
---|
411 | "Outer Pipe Film Coefficient" |
---|
412 | Outer.HeatTransfer.hcoeff= HE.PipeFilmCoeff(Outer.HeatTransfer.Re,Outer.HeatTransfer.PR,Properties.Cold.Average.K,Outer.HeatTransfer.Dh,Lpipe)*Outer.HeatTransfer.Phi; |
---|
413 | # Outer.HeatTransfer.hcoeff= (0.027*Outer.HeatTransfer.Re^(4/5)*Outer.HeatTransfer.PR^(1/3)*Properties.Cold.Average.K/Outer.HeatTransfer.Dh)*Outer.HeatTransfer.Phi; |
---|
414 | |
---|
415 | "Outer Pipe Pressure Drop" |
---|
416 | Outer.PressureDrop.Pdrop = (2*Outer.PressureDrop.fi*Lpipe*Properties.Cold.Average.rho*Outer.HeatTransfer.Vmean^2)/(Outer.PressureDrop.Dh*Outer.HeatTransfer.Phi); |
---|
417 | |
---|
418 | "Inner Pipe Pressure Drop" |
---|
419 | Inner.PressureDrop.Pdrop = (2*Inner.PressureDrop.fi*Lpipe*Properties.Hot.Average.rho*Inner.HeatTransfer.Vmean^2)/(DiInner*Inner.HeatTransfer.Phi); |
---|
420 | |
---|
421 | "Outer Pipe Phi correction" |
---|
422 | Outer.HeatTransfer.Phi = HE.PhiCorrection(Properties.Cold.Average.Mu,Properties.Cold.Wall.Mu); |
---|
423 | |
---|
424 | "Inner Pipe Phi correction" |
---|
425 | Inner.HeatTransfer.Phi = HE.PhiCorrection(Properties.Hot.Average.Mu,Properties.Hot.Wall.Mu); |
---|
426 | |
---|
427 | "Outer Pipe Prandtl Number" |
---|
428 | Outer.HeatTransfer.PR = ((Properties.Cold.Average.Cp/Properties.Cold.Average.Mw)*Properties.Cold.Average.Mu)/Properties.Cold.Average.K; |
---|
429 | |
---|
430 | "Inner Pipe Prandtl Number" |
---|
431 | Inner.HeatTransfer.PR = ((Properties.Hot.Average.Cp/Properties.Hot.Average.Mw)*Properties.Hot.Average.Mu)/Properties.Hot.Average.K; |
---|
432 | |
---|
433 | "Outer Pipe Reynolds Number for Heat Transfer" |
---|
434 | Outer.HeatTransfer.Re = (Properties.Cold.Average.rho*Outer.HeatTransfer.Vmean*Outer.HeatTransfer.Dh)/Properties.Cold.Average.Mu; |
---|
435 | |
---|
436 | "Outer Pipe Reynolds Number for Pressure Drop" |
---|
437 | Outer.PressureDrop.Re = (Properties.Cold.Average.rho*Outer.HeatTransfer.Vmean*Outer.PressureDrop.Dh)/Properties.Cold.Average.Mu; |
---|
438 | |
---|
439 | "Inner Pipe Reynolds Number for Pressure Drop" |
---|
440 | Inner.PressureDrop.Re = Inner.HeatTransfer.Re; |
---|
441 | |
---|
442 | "Inner Pipe Reynolds Number for Heat Transfer" |
---|
443 | Inner.HeatTransfer.Re = (Properties.Hot.Average.rho*Inner.HeatTransfer.Vmean*Inner.HeatTransfer.Dh)/Properties.Hot.Average.Mu; |
---|
444 | |
---|
445 | "Outer Pipe Velocity" |
---|
446 | Outer.HeatTransfer.Vmean*(Outer.HeatTransfer.As*Properties.Cold.Average.rho)= Properties.Cold.Inlet.Fw; |
---|
447 | |
---|
448 | |
---|
449 | "Inner Pipe Velocity" |
---|
450 | Inner.HeatTransfer.Vmean*(Inner.HeatTransfer.As*Properties.Hot.Average.rho) = Properties.Hot.Inlet.Fw; |
---|
451 | |
---|
452 | end |
---|
453 | |
---|
454 | "Inner Pipe Resistance" |
---|
455 | Resistances.Rtube*(Inner.HeatTransfer.hcoeff*DiInner) = DoInner; |
---|
456 | |
---|
457 | "Wall Resistance" |
---|
458 | Resistances.Rwall*(2*Kwall) = DoInner*ln(DoInner/DiInner); |
---|
459 | |
---|
460 | "Outer Pipe Resistance" |
---|
461 | Resistances.Rshell*(Outer.HeatTransfer.hcoeff)=1; |
---|
462 | |
---|
463 | |
---|
464 | end |
---|
465 | |
---|
466 | Model DoublePipe_Basic_NTU as DoublePipe |
---|
467 | #===================================================================== |
---|
468 | # Basic Model Double Pipe Heat Exchanger - NTU Method |
---|
469 | #===================================================================== |
---|
470 | VARIABLES |
---|
471 | |
---|
472 | Eft as positive (Brief="Effectiveness",Default=0.5,Lower=1e-12); |
---|
473 | |
---|
474 | EQUATIONS |
---|
475 | |
---|
476 | "Energy Balance" |
---|
477 | Details.Q = Eft*Details.Cmin*(Inlet.Hot.T-Inlet.Cold.T); |
---|
478 | |
---|
479 | |
---|
480 | end |
---|
481 | |
---|
482 | Model DoublePipe_Basic_LMTD as DoublePipe |
---|
483 | #===================================================================== |
---|
484 | # Basic Model for Double Pipe Heat Exchanger- LMTD Method |
---|
485 | #===================================================================== |
---|
486 | VARIABLES |
---|
487 | |
---|
488 | DT0 as temp_delta (Brief="Temperature Difference at Inlet",Lower=1); |
---|
489 | DTL as temp_delta (Brief="Temperature Difference at Outlet",Lower=1); |
---|
490 | LMTD as temp_delta (Brief="Logarithmic Mean Temperature Difference",Lower=1); |
---|
491 | |
---|
492 | EQUATIONS |
---|
493 | #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++# |
---|
494 | # Log Mean Temperature Difference |
---|
495 | #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++# |
---|
496 | |
---|
497 | if abs(DT0 - DTL) > 0.05*max(abs([DT0,DTL])) |
---|
498 | |
---|
499 | then |
---|
500 | "Log Mean Temperature Difference" |
---|
501 | LMTD*ln(DT0/DTL) = (DT0-DTL); |
---|
502 | |
---|
503 | else |
---|
504 | |
---|
505 | if DT0*DTL equal 0 |
---|
506 | |
---|
507 | then |
---|
508 | "Log Mean Temperature Difference" |
---|
509 | LMTD = 0.5*(DT0+DTL); |
---|
510 | |
---|
511 | else |
---|
512 | "Log Mean Temperature Difference" |
---|
513 | LMTD = 0.5*(DT0+DTL)*(1-(DT0-DTL)^2/(DT0*DTL)*(1+(DT0-DTL)^2/(DT0*DTL)/2)/12); |
---|
514 | |
---|
515 | end |
---|
516 | |
---|
517 | end |
---|
518 | |
---|
519 | "Exchange Surface Area" |
---|
520 | Details.Q = Details.U*Pi*DoInner*Lpipe*LMTD; |
---|
521 | |
---|
522 | end |
---|
523 | |
---|
524 | Model DoublePipe_LMTD as DoublePipe_Basic_LMTD |
---|
525 | |
---|
526 | EQUATIONS |
---|
527 | |
---|
528 | if Side equal 0 |
---|
529 | |
---|
530 | then |
---|
531 | "Temperature Difference at Inlet - Cocurrent Flow" |
---|
532 | DT0 = Inlet.Hot.T - Inlet.Cold.T; |
---|
533 | |
---|
534 | "Temperature Difference at Outlet - Cocurrent Flow" |
---|
535 | DTL = Outlet.Hot.T - Outlet.Cold.T; |
---|
536 | |
---|
537 | else |
---|
538 | "Temperature Difference at Inlet - Counter Flow" |
---|
539 | DT0 = Inlet.Hot.T - Outlet.Cold.T; |
---|
540 | |
---|
541 | "Temperature Difference at Outlet - Counter Flow" |
---|
542 | DTL = Outlet.Hot.T - Inlet.Cold.T; |
---|
543 | end |
---|
544 | |
---|
545 | end |
---|
546 | |
---|
547 | Model DoublePipe_NTU as DoublePipe_Basic_NTU |
---|
548 | |
---|
549 | EQUATIONS |
---|
550 | |
---|
551 | if Details.Cr equal 0 |
---|
552 | |
---|
553 | then |
---|
554 | "Effectiveness in Cocurrent Flow" |
---|
555 | Eft = 1-exp(-Details.NTU); |
---|
556 | |
---|
557 | else |
---|
558 | |
---|
559 | if Side equal 0 |
---|
560 | |
---|
561 | then |
---|
562 | "Effectiveness in Cocurrent Flow" |
---|
563 | Eft*(1+Details.Cr) = (1-exp(-Details.NTU*(1+Details.Cr))); |
---|
564 | |
---|
565 | else |
---|
566 | |
---|
567 | if Details.Cr equal 1 |
---|
568 | |
---|
569 | then |
---|
570 | "Effectiveness in Counter Flow" |
---|
571 | Eft*(1+Details.NTU) = Details.NTU; |
---|
572 | |
---|
573 | else |
---|
574 | "Effectiveness in Counter Flow" |
---|
575 | Eft*(1-Details.Cr*exp(-Details.NTU*(1-Details.Cr))) = (1-exp(-Details.NTU*(1-Details.Cr))); |
---|
576 | |
---|
577 | end |
---|
578 | |
---|
579 | end |
---|
580 | |
---|
581 | |
---|
582 | end |
---|
583 | |
---|
584 | end |
---|
585 | |
---|
586 | Model Multitubular_Basic |
---|
587 | |
---|
588 | PARAMETERS |
---|
589 | |
---|
590 | Npipe as Integer (Brief="N Pipe in Series",Default=2); |
---|
591 | ext PP as CalcObject (Brief="External Physical Properties"); |
---|
592 | HE as CalcObject (Brief="STHE Calculations",File="heatex"); |
---|
593 | Pi as constant (Brief="Pi Number",Default=3.14159265); |
---|
594 | Hside as Integer (Brief="Fluid Alocation Flag-Default:Outer",Lower=0,Upper=1); |
---|
595 | DoInner as length (Brief="Outside Diameter of Inner Pipe",Lower=1e-6); |
---|
596 | DiInner as length (Brief="Inside Diameter of Inner Pipe",Lower=1e-10); |
---|
597 | DiOuter as length (Brief="Inside Diameter of Outer pipe",Lower=1e-10); |
---|
598 | Lpipe as length (Brief="Effective Tube Length",Lower=0.1); |
---|
599 | Kwall as conductivity (Brief="Tube Wall Material Thermal Conductivity",Default=1.0); |
---|
600 | |
---|
601 | SET |
---|
602 | Pi = 3.14159265; |
---|
603 | Hside = HE.FluidAlocation(); |
---|
604 | |
---|
605 | VARIABLES |
---|
606 | |
---|
607 | Unity(Npipe) as DoublePipe_Basic; |
---|
608 | |
---|
609 | EQUATIONS |
---|
610 | |
---|
611 | for i in [1:Npipe] |
---|
612 | |
---|
613 | "Exchange Surface Area" |
---|
614 | Unity(i).Details.A=Pi*DoInner*Lpipe; |
---|
615 | |
---|
616 | "Inner Pipe Cross Sectional Area for Flow" |
---|
617 | Unity(i).Inner.HeatTransfer.As=Pi*DiInner*DiInner/4; |
---|
618 | |
---|
619 | "Outer Pipe Cross Sectional Area for Flow" |
---|
620 | Unity(i).Outer.HeatTransfer.As=Pi*(DiOuter*DiOuter-DoInner*DoInner)/4; |
---|
621 | |
---|
622 | "Inner Pipe Hydraulic Diameter for Heat Transfer" |
---|
623 | Unity(i).Inner.HeatTransfer.Dh=DiInner; |
---|
624 | |
---|
625 | "Outer Pipe Hydraulic Diameter for Heat Transfer" |
---|
626 | Unity(i).Outer.HeatTransfer.Dh=(DiOuter*DiOuter-DoInner*DoInner)/DoInner; |
---|
627 | |
---|
628 | "Inner Pipe Hydraulic Diameter for Pressure Drop" |
---|
629 | Unity(i).Inner.PressureDrop.Dh=DiInner; |
---|
630 | |
---|
631 | "Outer Pipe Hydraulic Diameter for Pressure Drop" |
---|
632 | Unity(i).Outer.PressureDrop.Dh=DiOuter-DoInner; |
---|
633 | |
---|
634 | if Hside equal 1 |
---|
635 | |
---|
636 | then |
---|
637 | |
---|
638 | "Outer Pipe Film Coefficient" |
---|
639 | Unity(i).Outer.HeatTransfer.hcoeff= HE.PipeFilmCoeff(Unity(i).Outer.HeatTransfer.Re,Unity(i).Outer.HeatTransfer.PR,Unity(i).Properties.Hot.Average.K,Unity(i).Outer.HeatTransfer.Dh,Lpipe)*Unity(i).Outer.HeatTransfer.Phi; |
---|
640 | |
---|
641 | "Inner Pipe Film Coefficient" |
---|
642 | Unity(i).Inner.HeatTransfer.hcoeff= HE.PipeFilmCoeff(Unity(i).Inner.HeatTransfer.Re,Unity(i).Inner.HeatTransfer.PR,Unity(i).Properties.Cold.Average.K,DiInner,Lpipe)*Unity(i).Inner.HeatTransfer.Phi; |
---|
643 | |
---|
644 | "Outer Pipe Pressure Drop" |
---|
645 | Unity(i).Outer.PressureDrop.Pdrop = (2*Unity(i).Outer.PressureDrop.fi*Lpipe*Unity(i).Properties.Hot.Average.rho*Unity(i).Outer.HeatTransfer.Vmean^2)/(Unity(i).Outer.PressureDrop.Dh*Unity(i).Outer.HeatTransfer.Phi); |
---|
646 | |
---|
647 | "Inner Pipe Pressure Drop" |
---|
648 | Unity(i).Inner.PressureDrop.Pdrop = (2*Unity(i).Inner.PressureDrop.fi*Lpipe*Unity(i).Properties.Cold.Average.rho*Unity(i).Inner.HeatTransfer.Vmean^2)/(DiInner*Unity(i).Inner.HeatTransfer.Phi); |
---|
649 | |
---|
650 | "Outer Pipe Phi correction" |
---|
651 | Unity(i).Outer.HeatTransfer.Phi = HE.PhiCorrection(Unity(i).Properties.Hot.Average.Mu,Unity(i).Properties.Hot.Wall.Mu); |
---|
652 | |
---|
653 | "Inner Pipe Phi correction" |
---|
654 | Unity(i).Inner.HeatTransfer.Phi = HE.PhiCorrection(Unity(i).Properties.Cold.Average.Mu,Unity(i).Properties.Cold.Wall.Mu); |
---|
655 | |
---|
656 | "Outer Pipe Prandtl Number" |
---|
657 | Unity(i).Outer.HeatTransfer.PR = ((Unity(i).Properties.Hot.Average.Cp/Unity(i).Properties.Hot.Average.Mw)*Unity(i).Properties.Hot.Average.Mu)/Unity(i).Properties.Hot.Average.K; |
---|
658 | |
---|
659 | "Inner Pipe Prandtl Number" |
---|
660 | Unity(i).Inner.HeatTransfer.PR = ((Unity(i).Properties.Cold.Average.Cp/Unity(i).Properties.Cold.Average.Mw)*Unity(i).Properties.Cold.Average.Mu)/Unity(i).Properties.Cold.Average.K; |
---|
661 | |
---|
662 | "Outer Pipe Reynolds Number for Heat Transfer" |
---|
663 | Unity(i).Outer.HeatTransfer.Re = (Unity(i).Properties.Hot.Average.rho*Unity(i).Outer.HeatTransfer.Vmean*Unity(i).Outer.HeatTransfer.Dh)/Unity(i).Properties.Hot.Average.Mu; |
---|
664 | |
---|
665 | "Outer Pipe Reynolds Number for Pressure Drop" |
---|
666 | Unity(i).Outer.PressureDrop.Re = (Unity(i).Properties.Hot.Average.rho*Unity(i).Outer.HeatTransfer.Vmean*Unity(i).Outer.PressureDrop.Dh)/Unity(i).Properties.Hot.Average.Mu; |
---|
667 | |
---|
668 | "Inner Pipe Reynolds Number for Heat Transfer" |
---|
669 | Unity(i).Inner.HeatTransfer.Re = (Unity(i).Properties.Cold.Average.rho*Unity(i).Inner.HeatTransfer.Vmean*Unity(i).Inner.HeatTransfer.Dh)/Unity(i).Properties.Cold.Average.Mu; |
---|
670 | |
---|
671 | "Inner Pipe Reynolds Number for Pressure Drop" |
---|
672 | Unity(i).Inner.PressureDrop.Re = Unity(i).Inner.HeatTransfer.Re; |
---|
673 | |
---|
674 | "Outer Pipe Velocity" |
---|
675 | Unity(i).Outer.HeatTransfer.Vmean = Unity(i).Properties.Hot.Inlet.Fw/(Unity(i).Outer.HeatTransfer.As*Unity(i).Properties.Hot.Average.rho); |
---|
676 | |
---|
677 | "Inner Pipe Velocity" |
---|
678 | Unity(i).Inner.HeatTransfer.Vmean = Unity(i).Properties.Cold.Inlet.Fw/(Unity(i).Inner.HeatTransfer.As*Unity(i).Properties.Cold.Average.rho); |
---|
679 | |
---|
680 | else |
---|
681 | |
---|
682 | "Inner Pipe Film Coefficient" |
---|
683 | Unity(i).Inner.HeatTransfer.hcoeff= HE.PipeFilmCoeff(Unity(i).Inner.HeatTransfer.Re,Unity(i).Inner.HeatTransfer.PR,Unity(i).Properties.Hot.Average.K,DiInner,Lpipe)*Unity(i).Inner.HeatTransfer.Phi; |
---|
684 | |
---|
685 | "Outer Pipe Film Coefficient" |
---|
686 | Unity(i).Outer.HeatTransfer.hcoeff= HE.PipeFilmCoeff(Unity(i).Outer.HeatTransfer.Re,Unity(i).Outer.HeatTransfer.PR,Unity(i).Properties.Cold.Average.K,Unity(i).Outer.HeatTransfer.Dh,Lpipe)*Unity(i).Outer.HeatTransfer.Phi; |
---|
687 | |
---|
688 | "Outer Pipe Pressure Drop" |
---|
689 | Unity(i).Outer.PressureDrop.Pdrop = (2*Unity(i).Outer.PressureDrop.fi*Lpipe*Unity(i).Properties.Cold.Average.rho*Unity(i).Outer.HeatTransfer.Vmean^2)/(Unity(i).Outer.PressureDrop.Dh*Unity(i).Outer.HeatTransfer.Phi); |
---|
690 | |
---|
691 | "Inner Pipe Pressure Drop" |
---|
692 | Unity(i).Inner.PressureDrop.Pdrop = (2*Unity(i).Inner.PressureDrop.fi*Lpipe*Unity(i).Properties.Hot.Average.rho*Unity(i).Inner.HeatTransfer.Vmean^2)/(DiInner*Unity(i).Inner.HeatTransfer.Phi); |
---|
693 | |
---|
694 | "Outer Pipe Phi correction" |
---|
695 | Unity(i).Outer.HeatTransfer.Phi = HE.PhiCorrection(Unity(i).Properties.Cold.Average.Mu,Unity(i).Properties.Cold.Wall.Mu); |
---|
696 | |
---|
697 | "Inner Pipe Phi correction" |
---|
698 | Unity(i).Inner.HeatTransfer.Phi = HE.PhiCorrection(Unity(i).Properties.Hot.Average.Mu,Unity(i).Properties.Hot.Wall.Mu); |
---|
699 | |
---|
700 | "Outer Pipe Prandtl Number" |
---|
701 | Unity(i).Outer.HeatTransfer.PR = ((Unity(i).Properties.Cold.Average.Cp/Unity(i).Properties.Cold.Average.Mw)*Unity(i).Properties.Cold.Average.Mu)/Unity(i).Properties.Cold.Average.K; |
---|
702 | |
---|
703 | "Inner Pipe Prandtl Number" |
---|
704 | Unity(i).Inner.HeatTransfer.PR = ((Unity(i).Properties.Hot.Average.Cp/Unity(i).Properties.Hot.Average.Mw)*Unity(i).Properties.Hot.Average.Mu)/Unity(i).Properties.Hot.Average.K; |
---|
705 | |
---|
706 | "Outer Pipe Reynolds Number for Heat Transfer" |
---|
707 | Unity(i).Outer.HeatTransfer.Re = (Unity(i).Properties.Cold.Average.rho*Unity(i).Outer.HeatTransfer.Vmean*Unity(i).Outer.HeatTransfer.Dh)/Unity(i).Properties.Cold.Average.Mu; |
---|
708 | |
---|
709 | "Outer Pipe Reynolds Number for Pressure Drop" |
---|
710 | Unity(i).Outer.PressureDrop.Re = (Unity(i).Properties.Cold.Average.rho*Unity(i).Outer.HeatTransfer.Vmean*Unity(i).Outer.PressureDrop.Dh)/Unity(i).Properties.Cold.Average.Mu; |
---|
711 | |
---|
712 | "Inner Pipe Reynolds Number for Pressure Drop" |
---|
713 | Unity(i).Inner.PressureDrop.Re = Unity(i).Inner.HeatTransfer.Re; |
---|
714 | |
---|
715 | "Inner Pipe Reynolds Number for Heat Transfer" |
---|
716 | Unity(i).Inner.HeatTransfer.Re = (Unity(i).Properties.Hot.Average.rho*Unity(i).Inner.HeatTransfer.Vmean*Unity(i).Inner.HeatTransfer.Dh)/Unity(i).Properties.Hot.Average.Mu; |
---|
717 | |
---|
718 | "Outer Pipe Velocity" |
---|
719 | Unity(i).Outer.HeatTransfer.Vmean = Unity(i).Properties.Cold.Inlet.Fw/(Unity(i).Outer.HeatTransfer.As*Unity(i).Properties.Cold.Average.rho); |
---|
720 | |
---|
721 | "Inner Pipe Velocity" |
---|
722 | Unity(i).Inner.HeatTransfer.Vmean = Unity(i).Properties.Hot.Inlet.Fw/(Unity(i).Inner.HeatTransfer.As*Unity(i).Properties.Hot.Average.rho); |
---|
723 | |
---|
724 | end |
---|
725 | |
---|
726 | "Inner Pipe Resistance" |
---|
727 | Unity(i).Resistances.Rtube = DoInner/(Unity(i).Inner.HeatTransfer.hcoeff*DiInner); |
---|
728 | |
---|
729 | "Wall Resistance" |
---|
730 | Unity(i).Resistances.Rwall=DoInner*ln(DoInner/DiInner)/(2*Kwall); |
---|
731 | |
---|
732 | "Outer Pipe Resistance" |
---|
733 | Unity(i).Resistances.Rshell*(Unity(i).Outer.HeatTransfer.hcoeff)=1; |
---|
734 | |
---|
735 | end |
---|
736 | |
---|
737 | |
---|
738 | end |
---|
739 | |
---|
740 | Model Multitubular_Basic_LMTD as Multitubular_Basic |
---|
741 | #===================================================================== |
---|
742 | # Basic Model for Double Pipe Heat Exchanger- LMTD Method |
---|
743 | #===================================================================== |
---|
744 | VARIABLES |
---|
745 | |
---|
746 | DT0(Npipe) as temp_delta (Brief="Temperature Difference at Inlet",Lower=1); |
---|
747 | DTL(Npipe) as temp_delta (Brief="Temperature Difference at Outlet",Lower=1); |
---|
748 | LMTD(Npipe) as temp_delta (Brief="Logarithmic Mean Temperature Difference",Lower=1); |
---|
749 | |
---|
750 | EQUATIONS |
---|
751 | #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++# |
---|
752 | # Log Mean Temperature Difference |
---|
753 | #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++# |
---|
754 | for i in [1:Npipe] |
---|
755 | |
---|
756 | if abs(DT0(i) - DTL(i)) > 0.05*max(abs([DT0(i),DTL(i)])) |
---|
757 | |
---|
758 | then |
---|
759 | "Log Mean Temperature Difference" |
---|
760 | LMTD(i)= (DT0(i)-DTL(i))/ln(DT0(i)/DTL(i)); |
---|
761 | |
---|
762 | else |
---|
763 | |
---|
764 | if DT0(i)*DTL(i) equal 0 |
---|
765 | |
---|
766 | then |
---|
767 | "Log Mean Temperature Difference" |
---|
768 | LMTD(i) = 0.5*(DT0(i)+DTL(i)); |
---|
769 | |
---|
770 | else |
---|
771 | "Log Mean Temperature Difference" |
---|
772 | LMTD(i) = 0.5*(DT0(i)+DTL(i))*(1-(DT0(i)-DTL(i))^2/(DT0(i)*DTL(i))*(1+(DT0(i)-DTL(i))^2/(DT0(i)*DTL(i))/2)/12); |
---|
773 | |
---|
774 | end |
---|
775 | |
---|
776 | end |
---|
777 | |
---|
778 | "Exchange Surface Area" |
---|
779 | Unity(i).Details.Q = Unity(i).Details.U*Unity(i).Details.A*LMTD(i); |
---|
780 | |
---|
781 | end |
---|
782 | |
---|
783 | end |
---|
784 | |
---|
785 | Model Multitubular_Counter_NTU as Multitubular_Basic |
---|
786 | |
---|
787 | VARIABLES |
---|
788 | |
---|
789 | Eft(Npipe) as positive (Brief="Effectiveness",Default=0.05,Lower=1e-8); |
---|
790 | |
---|
791 | CONNECTIONS |
---|
792 | |
---|
793 | Unity([1:Npipe-1]).Outlet.Hot to Unity([2:Npipe]).Inlet.Hot; |
---|
794 | Unity([2:Npipe]).Outlet.Cold to Unity([1:Npipe-1]).Inlet.Cold; |
---|
795 | |
---|
796 | EQUATIONS |
---|
797 | |
---|
798 | for i in [1:Npipe] |
---|
799 | |
---|
800 | if Unity(i).Details.Cr equal 0 |
---|
801 | |
---|
802 | then |
---|
803 | "Effectiveness" |
---|
804 | Eft(i) = 1-exp(-Unity(i).Details.NTU); |
---|
805 | |
---|
806 | else |
---|
807 | |
---|
808 | if Unity(i).Details.Cr equal 1 |
---|
809 | |
---|
810 | then |
---|
811 | "Effectiveness in Counter Flow" |
---|
812 | Eft(i) = Unity(i).Details.NTU/(1+Unity(i).Details.NTU); |
---|
813 | |
---|
814 | else |
---|
815 | "Effectiveness in Counter Flow" |
---|
816 | Eft(i)*(1-Unity(i).Details.Cr*exp(-Unity(i).Details.NTU*(1-Unity(i).Details.Cr))) = (1-exp(-Unity(i).Details.NTU*(1-Unity(i).Details.Cr))); |
---|
817 | |
---|
818 | end |
---|
819 | |
---|
820 | |
---|
821 | end |
---|
822 | |
---|
823 | "Energy Balance" |
---|
824 | Unity(i).Details.Q = Eft(i)*Unity(i).Details.Cmin*(Unity(i).Inlet.Hot.T-Unity(i).Inlet.Cold.T); |
---|
825 | |
---|
826 | end |
---|
827 | |
---|
828 | end |
---|
829 | |
---|
830 | Model Multitubular_Cocurrent_NTU as Multitubular_Basic |
---|
831 | |
---|
832 | VARIABLES |
---|
833 | |
---|
834 | Eft(Npipe) as positive (Brief="Effectiveness",Default=0.05,Lower=1e-8); |
---|
835 | |
---|
836 | CONNECTIONS |
---|
837 | |
---|
838 | Unity([1:Npipe-1]).Outlet.Hot to Unity([2:Npipe]).Inlet.Hot; |
---|
839 | Unity([1:Npipe-1]).Outlet.Cold to Unity([2:Npipe]).Inlet.Cold; |
---|
840 | |
---|
841 | EQUATIONS |
---|
842 | |
---|
843 | for i in [1:Npipe] |
---|
844 | |
---|
845 | if Unity(i).Details.Cr equal 0 |
---|
846 | |
---|
847 | then |
---|
848 | "Effectiveness" |
---|
849 | Eft(i) = 1-exp(-Unity(i).Details.NTU); |
---|
850 | |
---|
851 | else |
---|
852 | "Effectiveness in Cocurrent Flow" |
---|
853 | Eft = (1-exp(-Unity(i).Details.NTU*(1+Unity(i).Details.Cr)))/(1+Unity(i).Details.Cr); |
---|
854 | |
---|
855 | end |
---|
856 | |
---|
857 | "Energy Balance" |
---|
858 | Unity(i).Details.Q = Eft(i)*Unity(i).Details.Cmin*(Unity(i).Inlet.Hot.T-Unity(i).Inlet.Cold.T); |
---|
859 | |
---|
860 | end |
---|
861 | |
---|
862 | end |
---|
863 | |
---|
864 | Model Multitubular_Counter_LMTD as Multitubular_Basic_LMTD |
---|
865 | |
---|
866 | CONNECTIONS |
---|
867 | |
---|
868 | Unity([1:Npipe-1]).Outlet.Hot to Unity([2:Npipe]).Inlet.Hot; |
---|
869 | Unity([2:Npipe]).Outlet.Cold to Unity([1:Npipe-1]).Inlet.Cold; |
---|
870 | |
---|
871 | EQUATIONS |
---|
872 | for i in [1:Npipe] |
---|
873 | |
---|
874 | "Temperature Difference at Inlet - Counter Flow" |
---|
875 | DT0(i) = Unity(i).Inlet.Hot.T - Unity(i).Outlet.Cold.T; |
---|
876 | |
---|
877 | "Temperature Difference at Outlet - Counter Flow" |
---|
878 | DTL(i) = Unity(i).Outlet.Hot.T - Unity(i).Inlet.Cold.T; |
---|
879 | |
---|
880 | end |
---|
881 | |
---|
882 | end |
---|
883 | |
---|
884 | Model Multitubular_Cocurrent_LMTD as Multitubular_Basic_LMTD |
---|
885 | |
---|
886 | CONNECTIONS |
---|
887 | |
---|
888 | Unity([1:Npipe-1]).Outlet.Hot to Unity([2:Npipe]).Inlet.Hot; |
---|
889 | Unity([1:Npipe-1]).Outlet.Cold to Unity([2:Npipe]).Inlet.Cold; |
---|
890 | |
---|
891 | EQUATIONS |
---|
892 | |
---|
893 | for i in [1:Npipe] |
---|
894 | |
---|
895 | "Temperature Difference at Inlet - Cocurrent Flow" |
---|
896 | DT0(i) = Unity(i).Inlet.Hot.T - Unity(i).Inlet.Cold.T; |
---|
897 | |
---|
898 | "Temperature Difference at Outlet - Cocurrent Flow" |
---|
899 | DTL(i) = Unity(i).Outlet.Hot.T - Unity(i).Outlet.Cold.T; |
---|
900 | |
---|
901 | end |
---|
902 | |
---|
903 | end |
---|