source: gui/Block-Oriented EML/Control Systems/TimeDelay.mso @ 956

Last change on this file since 956 was 944, checked in by Argimiro Resende Secchi, 10 years ago

Adding Block-Oriented library by Jonathan Ospino Pinedo

File size: 7.0 KB
Line 
1#*-------------------------------------------------------------------
2* EMSO Model Library (EML) Copyright (C) 2004 - 2007 ALSOC.
3*
4* This LIBRARY is free software; you can distribute it and/or modify
5* it under the therms of the ALSOC FREE LICENSE as available at
6* http://www.enq.ufrgs.br/alsoc.
7*
8* EMSO is distributed under the terms of the ALSOC LICENSE as
9* available at http://www.enq.ufrgs.br/alsoc.
10*-----------------------------------------------------------------------
11* Adapted by: Jonathan Ospino P.
12* $Id: TimeDelay.mso  2012$
13*---------------------------------------------------------------------*#
14 
15using "types";
16
17Model TimeDelay
18
19        ATTRIBUTES
20        Pallete=true;
21        Icon="icon/TimeDelay";
22        Info="== Time Delay block ==
23                 
24                It delays the value of the input signal t0 units
25                to the right with respect to the time.
26                The resulting value is assigned to the output variable.
27       
28               
29                ******************  How does it work?  ***********************
30               
31                The model uses the <<Approximation based on series
32                of orthogonal collocation>> and <<Approximation based on series
33                of orthogonal collocation with capacitive filter>> cases
34                (see Quinto et. al,2009) and it solves them simultaneously.
35                Finally, the output value is seleceted depending on whether
36                or not the user specified a filter.
37       
38                ***************************************************************";
39
40
41        PARAMETERS
42
43        t0 as Real(Brief="Time Delay value",Default=0,Unit='s');
44        N as Integer(Brief="Number of elements (1<=N<=100)", Lower=1, Upper=100, Default=100);
45        Ntank as Integer(Brief="Number of tanks to be Used with the series of tanks (1<=N<=2000)", Lower=1, Upper=2000, Default=2000);
46       
47        Approach as Switcher(Brief="HINT: Use a filter just when...",Valid=["Tank series","Discretized","Discretized+filter","Capacitive series"],Default="Discretized");
48        alfa as Real(Brief="Unfiltered fraction",Default=0.94);
49        a(3,3) as Real(Brief="Parameters used on the 2nd-Order approaches",Hidden=true);
50
51
52        VARIABLES
53
54        in In as Real(PosX=0,PosY=0.5,Protected=true);
55        out Out as Real(PosX=1,PosY=0.5,Protected=true);
56       
57        x1(2*N+1) as Real(Hidden=true);                 # States for the 2nd-Order + FE approach(Discretized Model)
58        x2(2*N+2) as Real(Hidden=true);                 # States for the 2nd-Order + FE + Filter approach (Discretized Model + Filter)
59        x3(Ntank) as Real(Hidden=true);         # States for the tank delay approach
60        x4(3*N+1) as Real(Hidden=true);         # States for the 2nd-Order + Filters + FE approach (Capacitive series)
61       
62       
63        y1 as Real(Hidden=true);        # Tentative store for the Output variable when 2nd-Order + FE approach
64        y2 as Real(Hidden=true);        # Tentative store for the Output variable when 2nd-Order + FE + Filter approach
65        y3 as Real(Hidden=true);    # Tentative store for the Output variable when tank delay approach
66        y4 as Real(Hidden=true);    # Tentative store for the Output variable when 2nd-Order + Filters + FE approach
67
68        SET
69
70        a(1,1:3)=[2, -1.5, -0.5];
71        a(2,1:3)=[-2, 4.5, -2.5];
72        a(3,1:3)=[0, 1, -1];
73       
74       
75        EQUATIONS
76       
77        #* The following IF-ELSE sentence assures that user
78        can deactivate the action of the time delay block
79        over its input signal by just setting t0 to 0.
80       
81       
82        So, there are two posibilities: t>0 and t0=0.
83       
84        (1) t0>0 -> The block applies the time delay
85                                approach developed by (Quinto et al.,2009)
86                                considering the application or not of a
87                                capacitive filter.
88       
89        (2) t0=0 -> Since the previous case produces
90                                singularity problems when applied with t0=0,
91                                then an alternative path must be set in
92                                the current algorithm to success.
93        *#
94       
95        if t0>0*'s' then
96                        # 2nd-Order + FE approach (Discretized Model)
97                        x1(1)=In;
98                        for i in [2:2:2*N] do
99                                t0*diff(x1(i))=N*(a(1,1)*x1(i-1)+a(1,2)*x1(i)+a(1,3)*x1(i+1));
100                                t0*diff(x1(i+1))=N*(a(2,1)*x1(i-1)+a(2,2)*x1(i)+a(2,3)*x1(i+1));
101                        end
102                        y1=x1(2*N+1);
103               
104                        # 2nd-Order + FE + Filter approach (Discretized Model+Filter)
105                        x2(1)=In;
106                        for i in [2:2:2*N] do
107                                alfa*t0*diff(x2(i))=N*(a(1,1)*x2(i-1)+a(1,2)*x2(i)+a(1,3)*x2(i+1));
108                                alfa*t0*diff(x2(i+1))=N*(a(2,1)*x2(i-1)+a(2,2)*x2(i)+a(2,3)*x2(i+1));
109                        end
110                        (1-alfa)*t0*diff(x2(2*N+2)) = N*(x2(2*N+1)-x2(2*N+2));
111                        y2=x2(2*N+2);
112                       
113                        # Tank series approach
114                        (t0/Ntank)*diff(x3(1))=In-x3(1);
115                        for i in [2:Ntank] do
116                                (t0/Ntank)*diff(x3(i))=x3(i-1)-x3(i);
117                        end
118                        y3=x3(Ntank);
119               
120                        # 2nd-Order + Filters +FE approach (Capacitive series)
121                        x4(1) = In;
122                        for i in [2:3:3*N-1] do
123                                t0*diff(x4(i)) = 2*N*(a(1,1)*x4(i-1)+a(1,2)*x4(i)+a(1,3)*x4(i+1));
124                                t0*diff(x4(i+1)) = 2*N*(a(2,1)*x4(i-1)+a(2,2)*x4(i)+a(2,3)*x4(i+1));
125                                t0*diff(x4(i+2)) = 2*N*(a(3,2)*x4(i+1)+a(3,3)*x4(i+2));
126                        end
127                        y4 = x4(3*N+1);
128        else
129                        # 2nd-Order + FE approach (Discretized Model)
130                        x1(1)=In;
131                        for i in [2:2:2*N] do
132                                diff(x1(i))=0*'1/s';
133                                diff(x1(i+1))=0*'1/s';
134                        end
135                        y1=0;
136               
137                        # 2nd-Order + FE + Filter approach (Discretized Model + Filter)
138                        x2(1)=In;
139                        for i in [2:2:2*N] do
140                                alfa*diff(x2(i))=0*'1/s';
141                                alfa*diff(x2(i+1))=0*'1/s';
142                        end
143                        (1-alfa)*diff(x2(2*N+2))=0*'1/s';
144                        y2=0;
145               
146                        # Tank series approach
147                        (t0/Ntank)*diff(x3(1))=0;
148                        for i in [2:Ntank] do
149                                (t0/Ntank)*diff(x3(i))=0;
150                        end
151                        y3=0;
152
153                        # 2nd-Order + Filters +FE approach (Capacitive series)
154                        x4(1) = In;
155                        for i in [2:3:3*N-1] do
156                                t0*diff(x4(i)) = 0;
157                                t0*diff(x4(i+1)) = 0;
158                                t0*diff(x4(i+2)) = 0;
159                        end
160                        y4 = 0;
161        end
162       
163        if t0>0*'s' then
164                switch Approach
165                        case "Discretized":
166                                Out=y1;
167                        case "Discretized+filter":
168                                Out=y2;
169                        case "Tank series":
170                                Out=y3;
171                        case "Capacitive series":
172                                Out=y4;
173                end
174        else
175                switch Approach
176                        case "Discretized":
177                                Out=In;
178                        case "Discretized+filter":
179                                Out=In;
180                        case "Tank series":
181                                Out=In;
182                        case "Capacitive series":
183                                Out=In;
184                end
185        end
186       
187       
188        INITIAL
189       
190        x1(2:2*N+1) = 0;
191        x2(2:2*N+2) = 0;       
192        x3=0;
193        x4(2:3*N+1) = 0;
194
195end
196
197
198#*      FINAL REMARKS
199        -------------
200       
201        The following paragraphs show some remarks about the implementation of the
202        the models included in the Quinto et al.'s file, so:
203       
204       
205        A. Higher-Order Padé
206        --------------------
207        This model was not implemented because it show many oscillations, even for the
208        higher possible value.
209
210   
211        B. 2nd-Order Finite-Elements Approximation (2nd-Order + FE)
212        -----------------------------------------------------------
213        This model did show very good results for N near to 100.
214
215
216        C. 2nd-Order Finite-Elements Approximation with Filter (2nd-Order + FE + Filter)
217        --------------------------------------------------------------------------------
218        This model did show very good results for N near to 100.
219
220
221        D. 2nd-Order plus Filters Finite-Elements Approximation (2nd-Order + Filters + FE)
222        ----------------------------------------------------------------------------------
223        This model did show very good results for N near to 100.
224
225
226        E. Series of tanks Approximation (Tanks series)
227        -----------------------------------------------
228        This model did show very good results for N near to 100.
229
230*#
231
232
233       
234
Note: See TracBrowser for help on using the repository browser.